Nothing Special   »   [go: up one dir, main page]

JPS6124225A - Method of producing jig for electronic part baking - Google Patents

Method of producing jig for electronic part baking

Info

Publication number
JPS6124225A
JPS6124225A JP14628484A JP14628484A JPS6124225A JP S6124225 A JPS6124225 A JP S6124225A JP 14628484 A JP14628484 A JP 14628484A JP 14628484 A JP14628484 A JP 14628484A JP S6124225 A JPS6124225 A JP S6124225A
Authority
JP
Japan
Prior art keywords
weight
stabilized zirconia
cao
base material
cao content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14628484A
Other languages
Japanese (ja)
Other versions
JPH04586B2 (en
Inventor
明 渡辺
徳田 博保
河野 晃治
吉形 健治
高山 義男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Krosaki Harima Corp
Original Assignee
Kyushu Refractories Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu Refractories Co Ltd filed Critical Kyushu Refractories Co Ltd
Priority to JP14628484A priority Critical patent/JPS6124225A/en
Publication of JPS6124225A publication Critical patent/JPS6124225A/en
Publication of JPH04586B2 publication Critical patent/JPH04586B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電子部品、例えばセラミックコンデンサーなど
の焼成に用いられる治具の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to improvements in jigs used for firing electronic components, such as ceramic capacitors.

〔発明が解決しようとする問題〕[Problem that the invention seeks to solve]

電子部品、例えばセラミックコンデンサーを製造する際
にはコンデンサー素地を1200〜1400°Cで焼成
する工程があるが、コンデンサーの接触する部分には該
コンデンサーとの反応が最も少ない材料としてジルコニ
アが用いられている。実際の焼成に際して従来は、アル
ミナ・シリカ質の治具、具体的には匣鉢にジルコニア板
を敷きその上に敷粉トシてジルコニア粉末を載せてコン
デンサー素地を並べるか、あるいはジルコニア質の匣鉢
にジルコニア粉末敷粉を載せてコンデンサー素地を並べ
るのが一般な方法である。しかし、前者のジルコニア板
を敷く方法は比較的安価ではあるが、手作業で製品の乗
せ降ろしをする場合は非常に繁雑で多(の手間を要し、
また自動化した場合に製品を取出す際匣鉢を反転させて
コンデンサーを取出そうとすると、ジルコニア板が落下
してしまい、オートメ−シロン化のネックとなっている
。一方、後者の匣鉢全体をジルコニアとする方法は、ジ
ルコニアが急熱急冷の熱衝撃に弱く、比重が太き(、し
かも非常に高価である欠点を有する。
When manufacturing electronic components, such as ceramic capacitors, there is a process of firing the capacitor base at 1200 to 1400°C, but zirconia is used for the parts that come in contact with the capacitor as it is the material that least reacts with the capacitor. There is. In the past, during actual firing, a zirconia board was laid in an alumina-silica jig, specifically a sagger, and zirconia powder was placed on top of the zirconia plate, and the capacitor base was arranged, or a zirconia sagger was placed on top of the zirconia plate. A common method is to place zirconia powder on top of the capacitor base. However, although the former method of laying zirconia plates is relatively inexpensive, it is very complicated and time-consuming when loading and unloading products manually.
In addition, in the case of automation, when attempting to take out the product by inverting the sagger to take out the condenser, the zirconia plate falls off, creating a bottleneck in automation. On the other hand, the latter method in which the entire sagger is made of zirconia has the drawbacks that zirconia is susceptible to thermal shock due to rapid heating and cooling, has a high specific gravity (and is very expensive).

上述の欠点を解消するため、一般に広く使用されている
アルミナ・シリカ質匣鉢を用い、その被焼成物を載せる
側の表面にジルコニア溶射層を形成する方法が考えられ
る。しかし単にアルミナ・シリカ質材料にジルコニアを
溶射したのみでは、加熱・冷却の熱履歴を繰返すうちに
溶射層が基材から剥離してしまう。
In order to eliminate the above-mentioned drawbacks, a method can be considered in which a widely used alumina-silica sagger is used and a zirconia sprayed layer is formed on the surface of the sagger on which the object to be fired is placed. However, if zirconia is simply sprayed onto an alumina-siliceous material, the sprayed layer will peel off from the base material as the thermal history of heating and cooling is repeated.

ジルコニアはよく知られているいるように、単斜晶−正
方晶−立方晶の結晶変態を持ち、コンデンサー焼成の温
度領域で結晶変態に伴なう異常な膨張・収縮があり、こ
れに伴なう溶射層の体積変化のため剥離してしまうので
ある。この結晶変態に伴なう異常な膨張・収縮は安定化
剤を加えたジルコニア(安定化ジルコニア)を用いるこ
とにより防止出来る。
As is well known, zirconia has a monoclinic-tetragonal-cubic crystal transformation, and in the capacitor firing temperature range, it undergoes abnormal expansion and contraction due to crystal transformation. The thermal spray layer peels off due to volume changes. Abnormal expansion and contraction accompanying this crystal transformation can be prevented by using zirconia to which a stabilizer has been added (stabilized zirconia).

安定化ジルコニアの安定化剤としては、酸化カルシウム
、酸化マグネシウム、酸化イツトリウムが知られている
が、酸化マグネシウムはジルコニアとの固溶体が不安定
で、高温での使用中MgOが固溶体から抜けやすく、一
方散化イットリウムは価格が高い。これに比べて酸化カ
ルシウムは固溶体が安定で、高温においてもCaOが比
較的拡散しにくく、しかも安価である。従って酸化カル
シウムが安定化剤としては好ましい。
Calcium oxide, magnesium oxide, and yttrium oxide are known as stabilizers for stabilized zirconia, but magnesium oxide is unstable as a solid solution with zirconia, and MgO easily escapes from the solid solution during use at high temperatures. Dispersed yttrium is expensive. In comparison, calcium oxide has a stable solid solution, CaO is relatively difficult to diffuse even at high temperatures, and is inexpensive. Therefore, calcium oxide is preferred as a stabilizer.

しかし、アルミナ・シリカ質基材にCaO安定化ジルコ
ニア溶射した場合、CaOは高温下では基材中に少しず
つ拡散してゆ(ため、溶射層中のCaO量が次第に減少
し、ジルコニアは安定化領域からはずれ、加熱・冷却に
伴なう異常な膨張・収縮が次第に現われ剥離の原因とな
る。そのためCaOの拡散消失を予期して多量のCaO
を含むジルコニアを用いると、電子部品、例えばチタン
酸バリウムを主体とするコンデンサーを焼成する際にチ
タン酸バリウムとの反応が促進され、それがコンデンサ
ーの特性に悪影響を及ぼす恐れがある。
However, when thermally spraying CaO-stabilized zirconia onto an alumina/siliceous base material, CaO gradually diffuses into the base material at high temperatures (therefore, the amount of CaO in the sprayed layer gradually decreases, and the zirconia stabilizes). When the area deviates from the area, abnormal expansion and contraction due to heating and cooling gradually appears, causing peeling.Therefore, anticipating the diffusion and disappearance of CaO, a large amount of CaO is removed.
When zirconia containing barium titanate is used, the reaction with barium titanate is accelerated during firing of an electronic component, for example, a capacitor mainly composed of barium titanate, which may adversely affect the characteristics of the capacitor.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者等は以上の溶射法によって製造される電子部品
焼成用治具において溶射層と基材の熱膨張及び溶射層と
電子部品との反応の問題について種々検討を加えた結果
、耐火基材中のA1ス03及びSiOユの含有量と安定
化ジルコニア中の安定他剤含有量を調整することにより
、基材と溶射層の熱膨張曲線をほぼ等しくし、しかも反
応もほとんどなくすることが可能であることを見出して
本発明を完成したものである。
The present inventors have conducted various studies on the problems of thermal expansion between the thermal sprayed layer and the base material and reaction between the thermal sprayed layer and the electronic components in a jig for firing electronic components manufactured by the above thermal spraying method. By adjusting the content of A1 and SiO3 in the stabilized zirconia and the content of other stabilizers in the stabilized zirconia, it is possible to make the thermal expansion curves of the base material and the sprayed layer almost equal, and also to almost eliminate the reaction. The present invention was completed by discovering that this is possible.

本発明は耐火基材の表面にCaO安定化ジルコニアを溶
射する方法であって、その溶射にあたって基材側から表
面に向かって次第に溶射材料中のCaO含有量の少ない
安定化ジルコニアを溶射することを特徴とする電子部品
焼成用治具の製造方法を提供するものである。
The present invention is a method of thermally spraying CaO-stabilized zirconia onto the surface of a fire-resistant base material, in which stabilized zirconia with a low CaO content in the thermal spraying material is gradually sprayed from the base material side toward the surface. The present invention provides a method for manufacturing a jig for firing electronic components.

本発明者等は各種耐火材料の熱膨張挙動について検討の
結果、通常の耐火れんがや匣鉢として使用されるアルミ
ナ・シリカ質材料は、そのAlコ03含有量の高い領、
域でCaO安定化ジルコニア溶射層と熱膨張曲線が比較
的類似していることを見出した。そして安定化ジルコニ
ア中のCaO含有量を増した場合には、A1コ03含有
量の多いアルミナ・シリカ材料を使用すれば熱膨張挙動
が追従できることもわかった。
As a result of studying the thermal expansion behavior of various refractory materials, the present inventors found that alumina-siliceous materials used for ordinary refractory bricks and saggers have high Alco03 content.
It was found that the thermal expansion curve was relatively similar to that of the CaO-stabilized zirconia sprayed layer in the area. It has also been found that when the CaO content in the stabilized zirconia is increased, the thermal expansion behavior can be followed by using an alumina-silica material with a high A1co03 content.

従ってA110385重量%以上、SiO215重量%
以下、残部は不可避的不純物から成る耐火性基材を用い
、安定化ジルコニア中のCaO量を6〜15重量%とじ
た材料を溶射すれば、20回を越える熱履歴に対しても
剥離することな(使用できることが判明した。
Therefore, A110385% by weight or more, SiO215% by weight
Hereinafter, if a material containing 6 to 15% by weight of CaO in stabilized zirconia is thermally sprayed using a fire-resistant base material with the remainder consisting of unavoidable impurities, it will peel off even after more than 20 thermal cycles. (It turns out that it can be used.

一方、反応による製品への悪影響の排除についてはジル
コニア溶射材料を最初はCaO含有量の多いものから次
第にCaO含有量の少ないものへと変化させて溶射し、
最後は安定化領域限度か、あるいは部分安定化領域であ
っても、安定化領域に近い範囲の材料を溶射することに
よって対処し得ることを見出した。この溶射材料中の安
定化剤の変化は段階的に行なっても、連続的でもよい。
On the other hand, in order to eliminate the adverse effects on products due to reactions, the zirconia thermal spray material is first changed from a material with a high CaO content to a material with a low CaO content.
Finally, it has been found that the limit of the stabilization region, or even the partial stabilization region, can be addressed by spraying a material close to the stabilization region. This change in stabilizer in the thermal spray material may be gradual or continuous.

〔作用〕[Effect]

耐火基材はアルミナ・シリカ質でAl2O385重量%
以上、S i 0215重量%以下、残部は不可避的不
純物から成るものを使用する。AI:LC1385重量
%以下、5iO215重量%以上では基材は安定化ジル
コニアの熱膨張挙動に追従できない。
The fireproof base material is alumina-silica and contains 85% by weight of Al2O3.
In the above, S i 0215% by weight or less, with the remainder consisting of unavoidable impurities. If AI:LC is 1385% by weight or less and 5iO2 is 15% by weight or more, the base material cannot follow the thermal expansion behavior of stabilized zirconia.

基材と直接接触する部分の安定化ジルコニア中の安定化
剤CaOの含有量は6〜15重量%の範囲とする。Ca
Oは高温における使用中に徐々に基材中に拡散して失わ
れ、次第にその含有量が少なくなるので、ジルコニアの
安定化の点では安定化剤は多いほど好ましいが、15重
量%を越えるとアルミナ・シリカ基材のAI:103を
多くしても剥離を生じ、匣鉢が多数回の使用に耐えない
。一方、Ca06重量%以下ではCaOの消失による安
定化の喪失が起こりやすく、やはり好ましくない。
The content of the stabilizer CaO in the stabilized zirconia in the portion directly in contact with the base material is in the range of 6 to 15% by weight. Ca
During use at high temperatures, O gradually diffuses into the base material and is lost, and its content gradually decreases. Therefore, in terms of stabilizing zirconia, the more stabilizer the better, but if it exceeds 15% by weight, Even if the amount of AI:103 in the alumina-silica base material is increased, peeling occurs and the sagger cannot withstand repeated use. On the other hand, if Ca06% by weight or less, stability is likely to be lost due to disappearance of CaO, which is also not preferable.

最表層に溶射される安定化ジルコニアのCaO含有量は
4〜10重量%である。部分安定化領域であっても、4
重量%以上であればジルコニアの相変化に伴なう体積の
異常変化はそれほどでもないが、4重量%以下ではそれ
がひどくなり、剥離の原因となる。また10重量%以上
では電子部品との反応が問題となる。基材と接触してい
る層と最表層の他に中間層はなくてもよいが、該2層の
CaO量がかなり異なる場合は中間のCaO量の中間層
を設けるのがより好ましい。あるいはジルコニア溶射層
中のCaO量を連続的に変化させれば、溶射層間の剥離
を防止するという点ではなお望ましい。
The CaO content of the stabilized zirconia sprayed on the outermost layer is 4 to 10% by weight. Even in the partially stabilized region, 4
If it is more than 4% by weight, the abnormal change in volume due to the phase change of zirconia is not so great, but if it is less than 4% by weight, it becomes severe and causes peeling. Moreover, if it exceeds 10% by weight, reaction with electronic components becomes a problem. There may be no intermediate layer other than the layer in contact with the base material and the outermost layer, but if the two layers have considerably different amounts of CaO, it is more preferable to provide an intermediate layer with an intermediate amount of CaO. Alternatively, it is more desirable to continuously change the amount of CaO in the zirconia sprayed layer in order to prevent separation between the sprayed layers.

〔発明の構成〕[Structure of the invention]

次に本発明の製造方法について説明する。 Next, the manufacturing method of the present invention will be explained.

溶射はジルコニアの融点から考えてプラズマ溶射が、特
に水プラズマ溶射が好ましい。溶射は通常のセラミック
溶射の方法で行なわれ、溶射材料の粒径は150μ以下
のものを用いる。
Considering the melting point of zirconia, plasma spraying is preferable, and water plasma spraying is particularly preferable. Thermal spraying is carried out by the usual ceramic spraying method, and the particle size of the sprayed material is 150 μm or less.

耐火基材中のA1.03及びS i O2含有量に対す
る耐火基材の熱膨張の関係及びCaO含有量に対する安
定化ジルコニア溶射層の熱膨張の関係をあらかじめ求め
て、組成の定まった耐火基材を用いる場合には、その耐
火基材と等しい熱膨張挙動を有する安定化ジルコニアの
CaO含有量を決定するか、逆に安定化ジルコニアのC
aO含有量が定まっている場合には、安定化ジルコニア
と等しい熱膨張挙動を有する耐火基材の組成を決定する
The relationship of the thermal expansion of the fireproof base material to the A1.03 and S i O2 content in the fireproof base material and the relationship of the thermal expansion of the stabilized zirconia sprayed layer to the CaO content are determined in advance, and the fireproof base material with a determined composition is determined. When using a stabilized zirconia, determine the CaO content of the stabilized zirconia that has the same thermal expansion behavior as the refractory base material, or conversely determine the CaO content of the stabilized zirconia
When the aO content is determined, the composition of the refractory substrate is determined which has the same thermal expansion behavior as the stabilized zirconia.

安定化ジルコニアのCaO含有量は既述のように6〜1
5重量%の範囲とする。
As mentioned above, the CaO content of stabilized zirconia is 6 to 1.
The range is 5% by weight.

溶射の順序は耐火基材にまずCaO含有含有量6〜電5 の厚みは0.05〜5mmが好ましい。溶射終了後、今
度はCaO含有量4〜10重量%の安定化ジルコニアを
再び溶射する。溶射層の厚みはやはり0.05〜5mm
とする。こうして治具が製造される。
The order of thermal spraying is to first coat the refractory base material with a CaO content of 6 to 5 and a thickness of 0.05 to 5 mm. After the thermal spraying is completed, stabilized zirconia with a CaO content of 4 to 10% by weight is again thermally sprayed. The thickness of the sprayed layer is still 0.05 to 5 mm.
shall be. In this way, the jig is manufactured.

以上は溶射層が2層の場合であるが、基材に溶射する際
安定化ジルコニア中のCaO含有量を次第に減少させた
ものに変えて順次溶射し、最表層はあらかじめ予定した
CaO含有量の安定化ジルコニアを溶射することによっ
て溶射層を3層以上とするか、溶射を途中で中断しない
で、CaO含有量を次第に減少させた安定化ジルコニア
をホッパーから連続的に供給して溶射することもよい。
The above is a case where there are two thermally sprayed layers, but when spraying onto the base material, the CaO content in the stabilized zirconia is changed to one that gradually decreases and is thermally sprayed one after another, and the outermost layer has a predetermined CaO content. By thermally spraying stabilized zirconia, the number of thermally sprayed layers can be increased to three or more, or it is also possible to thermally spray by continuously supplying stabilized zirconia with a gradually reduced CaO content from a hopper without interrupting thermal spraying. good.

こうすることによって、溶射層が2層の場合より更に熱
履歴に対する安定性が増す。
By doing so, stability against thermal history is further increased than in the case of two sprayed layers.

〔実施例〕〔Example〕

以下実施例により本発明の方法をより具体的に説明する
The method of the present invention will be explained in more detail with reference to Examples below.

実施例 I AI:20a 92重量%、5iO26重量%、その抽
残部が不可避的不純物より成るアルミナ・シリカ質耐火
基材を170xllOxlO mmに切り出し、その表
面にまずCaO10重量%含有の安定化ジルコニア粉末
を水ブラスズマ溶射装置により0.2++un厚さに溶
射した。次いでCaO含有量を5重量%にした安定化ジ
ルコニア粉末を同じく水プラスズマ溶射装置を用いて0
 、3mm厚さに溶射して溶射体を得た。
Example I An alumina-silica refractory base material consisting of 92% by weight of AI:20a, 26% by weight of 5iO, the raffinate portion of which was made up of unavoidable impurities, was cut out to a size of 170xllOxlO mm, and stabilized zirconia powder containing 10% by weight of CaO was first applied to its surface. Thermal spraying was carried out to a thickness of 0.2++un using a water plasma sprayer. Next, stabilized zirconia powder with a CaO content of 5% by weight was sprayed using the same water plasma spraying equipment.
A sprayed body was obtained by spraying to a thickness of 3 mm.

実施例 2 まずCa010重量%含有の安定化ジルコニアを0、I
n+m、次いでCa’07重量%含有の安定化ジルコニ
アを0.1mm、最後にCaO含有量を5重量%にした
ものを0 、2mm厚さに溶射した以外は実施例1と同
様にして溶射)!!3層より成る製品を得た。
Example 2 First, stabilized zirconia containing 10% by weight of Ca0, I
n+m, then 0.1 mm of stabilized zirconia containing 7% by weight of Ca'0, and finally 0.1 mm of stabilized zirconia containing 5% by weight of CaO was sprayed in the same manner as in Example 1) ! ! A product consisting of three layers was obtained.

実施例 3 溶射粉末供給タンクを2個用意し、一方のタンクにはC
aO含有量5重量%の安定化ジルコニアを、他方にはC
aO含有量31重量%のジルコン酸カルシウムを入れ、
フィーダーを調節して両者を混合し、混合物の見掛、け
のCaO含有量が10重量%から5重量%まで連続的に
変化するようにしたものを溶射装置に供給し、実施例1
と同じ耐火基材に0.5mII+厚さに水プラズマ溶射
機を用いて溶射して溶射体を得た。
Example 3 Two thermal spray powder supply tanks were prepared, and one tank was filled with C.
Stabilized zirconia with an aO content of 5% by weight and C
Add calcium zirconate with an aO content of 31% by weight,
The feeder was adjusted to mix the two so that the apparent CaO content of the mixture was continuously changed from 10% by weight to 5% by weight, and the mixture was supplied to a thermal spraying device.
A sprayed body was obtained by spraying onto the same refractory base material to a thickness of 0.5 mII using a water plasma spraying machine.

比較例 1 溶射層をCaO含有量5重量%の安定化ジルコモア粉末
を0.5mm厚さの1層にした以外は実施例1と同様に
して溶射体を得た。
Comparative Example 1 A thermal spray body was obtained in the same manner as in Example 1 except that the thermal spray layer was a single layer of 0.5 mm thick stabilized zirconia powder with a CaO content of 5% by weight.

比較例 2 溶射層をCaO含有量12重量%の安定化ジルコニア粉
末を0.5mm厚さの1層にした以外は実施例1と同様
にして溶射体を得た。
Comparative Example 2 A thermal spray body was obtained in the same manner as in Example 1, except that the thermal spray layer was a single layer of 0.5 mm thick stabilized zirconia powder with a CaO content of 12% by weight.

〔発明の効果〕〔Effect of the invention〕

実施例1〜3及び比較例1.2の5種の試料にチタン酸
バリウムコンデンサー素地を載せ、電気炉中で室温より
昇温速度5”C/minで1400”Cに昇温し、4 
hr保保持室室温で炉冷する操作を繰返して、基材と溶
射層の接着状況とコンデンサーの特性への影響を観察し
た。その結果、比較例1の試料は′66回目端にわずか
剥離が認められ、9回目の熱履歴で約1/3が剥離した
。比較例2の試料では10回目の熱履歴でも剥離は認め
られなかったがチタン酸バリウムコンデンサーにCaO
との反応の影響が多(見られた。しかし、実施例1〜3
の試料はいずれも焼成後のコンデンサーにCaOとの反
応の影響は認められず、剥離も実施例1の試料で熱履歴
15回目を過ぎてや一端に剥離が認められたが、20回
まで使用できた。一方、実施例2及び3の試料は20回
目まで全く剥離は見られなかった。これは本発明の効果
を如実に示すものである。
Barium titanate capacitor bodies were placed on the five samples of Examples 1 to 3 and Comparative Example 1.2, and the temperature was raised from room temperature to 1400"C at a heating rate of 5"C/min in an electric furnace.
The operation of furnace cooling at room temperature in the hr storage chamber was repeated to observe the adhesion between the base material and the sprayed layer and the effect on the characteristics of the capacitor. As a result, in the sample of Comparative Example 1, slight peeling was observed at the end of the '66th heat cycle, and approximately 1/3 of the sample was peeled off at the 9th heat cycle. In the sample of Comparative Example 2, no peeling was observed even after the 10th heat cycle, but the barium titanate capacitor contained CaO.
However, in Examples 1 to 3, the influence of the reaction with
In all of the samples, no influence of reaction with CaO was observed on the capacitors after firing, and some peeling was observed in the sample of Example 1 after the 15th heat cycle, but after the 15th heat cycle, the capacitors were used up to 20 cycles. did it. On the other hand, no peeling was observed in the samples of Examples 2 and 3 until the 20th test. This clearly shows the effect of the present invention.

以上述べた。ように、本発明の方法で製造された電子部
品焼成用治具はアルミナ・シリカ耐火基材上に該基材と
の熱膨張を合わせたCaO安定化ジルコニアを溶射し、
さらにその上層にCaO含有量を減じた安定化ジルコニ
アを溶射することにより、治具使用中に被焼成物の電子
部品に悪影響を及ぼすことなく、また治具が熱履歴を受
けてもジルコニアの安定化が失われず、溶射層が剥離す
ることもな(、繰返し使用可能である。
As stated above. As such, the electronic component firing jig manufactured by the method of the present invention is made by thermally spraying CaO-stabilized zirconia whose thermal expansion matches that of the base material onto an alumina-silica refractory base material.
Furthermore, by thermally spraying stabilized zirconia with a reduced CaO content on the top layer, the zirconia will remain stable even when the jig is subjected to thermal history, without adversely affecting the electronic components of the fired object during use of the jig. The coating does not lose its properties and the sprayed layer does not peel off (and can be used repeatedly).

Claims (4)

【特許請求の範囲】[Claims] (1)Al_2O_385重量%以上、SiO_215
重量%以下より成る耐火基材の表面にCaOの含有量が
4〜15重量%である安定化ジルコニアを溶射する方法
であって、その溶射にあたって基材側から表面に向かっ
て次第に溶射材料中のCaO含有量の少ない安定化ジル
コニアを溶射することを特徴とする電子部品焼成用治具
の製造方法。
(1) Al_2O_385% by weight or more, SiO_215
A method of thermally spraying stabilized zirconia containing 4 to 15% by weight of CaO on the surface of a fire-resistant base material consisting of A method for manufacturing a jig for firing electronic parts, characterized by thermally spraying stabilized zirconia with a low CaO content.
(2)基材側にCaOの含有量が6〜15重量%である
安定化ジルコニアを溶射し、次いでその上にCaOの含
有量が4〜10重量%である安定化ジルコニアを溶射す
ることを特徴とする特許請求の範囲(1)記載の電子部
品焼成用治具の製造方法。
(2) Spraying stabilized zirconia with a CaO content of 6 to 15% by weight on the base material side, and then thermal spraying stabilized zirconia with a CaO content of 4 to 10% by weight on top of it. A method for manufacturing a jig for firing an electronic component according to claim (1).
(3)基材側にCaOの含有量が6〜15重量%である
安定化ジルコニアを溶射し、表面側がCaOの含有量が
4〜10重量%である安定化ジルコニアを溶射し、両溶
射層間はその中間のCaO含有量の安定化ジルコニアを
1層以上溶射することを特徴とする特許請求の範囲(1
)記載の電子部品焼成用治具の製造方法。
(3) Stabilized zirconia with a CaO content of 6 to 15% by weight is sprayed on the base material side, and stabilized zirconia with a CaO content of 4 to 10% by weight is sprayed on the surface side, and between both sprayed layers. Claims (1) are characterized in that one or more layers of stabilized zirconia with an intermediate CaO content are thermally sprayed.
) A method for manufacturing a jig for firing electronic components as described in
(4)基材側がCaO含有量が6〜15重量%である安
定化ジルコニア、表面側がCaO含有量が4〜10重量
%である安定化ジルコニアを、CaO含有量が連続的に
変化するように溶射することを特徴とする特許請求の範
囲(1)記載の電子部品焼成用治具の製造方法。
(4) Stabilized zirconia with a CaO content of 6 to 15% by weight on the base material side and stabilized zirconia with a CaO content of 4 to 10% by weight on the surface side so that the CaO content changes continuously. A method for manufacturing an electronic component firing jig according to claim (1), which comprises thermal spraying.
JP14628484A 1984-07-13 1984-07-13 Method of producing jig for electronic part baking Granted JPS6124225A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14628484A JPS6124225A (en) 1984-07-13 1984-07-13 Method of producing jig for electronic part baking

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14628484A JPS6124225A (en) 1984-07-13 1984-07-13 Method of producing jig for electronic part baking

Publications (2)

Publication Number Publication Date
JPS6124225A true JPS6124225A (en) 1986-02-01
JPH04586B2 JPH04586B2 (en) 1992-01-08

Family

ID=15404222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14628484A Granted JPS6124225A (en) 1984-07-13 1984-07-13 Method of producing jig for electronic part baking

Country Status (1)

Country Link
JP (1) JPS6124225A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01126285A (en) * 1987-11-10 1989-05-18 Ngk Insulators Ltd Zirconia coated ceramic tool
JPH02102171A (en) * 1988-10-11 1990-04-13 Nichias Corp Refractory for ceramic calcination
US5201547A (en) * 1991-04-10 1993-04-13 Toyota Jidosha Kabushiki Kaisha Rear under body structure
JP2010238903A (en) * 2009-03-31 2010-10-21 Nichicon Corp Method of manufacturing positive temperature coefficient thermistor
JP2016211043A (en) * 2015-05-11 2016-12-15 株式会社アテクト Method for producing turbine wheel

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5775850A (en) * 1980-10-31 1982-05-12 Toshiba Ceramics Co Double layer vessel for thermally treating part of electronic industry and its manufacture
JPS5922148A (en) * 1982-07-29 1984-02-04 Fujitsu Ltd Diagnostic system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5775850A (en) * 1980-10-31 1982-05-12 Toshiba Ceramics Co Double layer vessel for thermally treating part of electronic industry and its manufacture
JPS5922148A (en) * 1982-07-29 1984-02-04 Fujitsu Ltd Diagnostic system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01126285A (en) * 1987-11-10 1989-05-18 Ngk Insulators Ltd Zirconia coated ceramic tool
JPH0524878B2 (en) * 1987-11-10 1993-04-09 Nippon Gaishi Kk
JPH02102171A (en) * 1988-10-11 1990-04-13 Nichias Corp Refractory for ceramic calcination
JPH0543660B2 (en) * 1988-10-11 1993-07-02 Nichias Corp
US5201547A (en) * 1991-04-10 1993-04-13 Toyota Jidosha Kabushiki Kaisha Rear under body structure
JP2010238903A (en) * 2009-03-31 2010-10-21 Nichicon Corp Method of manufacturing positive temperature coefficient thermistor
JP2016211043A (en) * 2015-05-11 2016-12-15 株式会社アテクト Method for producing turbine wheel

Also Published As

Publication number Publication date
JPH04586B2 (en) 1992-01-08

Similar Documents

Publication Publication Date Title
JP3579155B2 (en) Tools for firing
JPS6124225A (en) Method of producing jig for electronic part baking
JP2007076935A (en) Tool for firing electronic component and its production method
KR100439075B1 (en) Jig for firing electronic components
KR100518905B1 (en) Setter for firing ceramic electronic parts
JP4069637B2 (en) Electronic component firing jig
JP4116593B2 (en) Baking tool material
JP2002060287A (en) Firing vessel
JPH05178673A (en) Jig for sintering electronic parts
JP3395549B2 (en) Jig for firing electronic components
JPS6112017A (en) Jig for sintering electronic part
JP2000247752A (en) Jig for baking electronic part with suppressed reaction and peeling
JP4136249B2 (en) Baking jig for electronic parts
JP2003020292A (en) Tool material for burning
JPS6384011A (en) Manufacture of baking jig for electronic component
JPS6333551A (en) Jig for baking electronic parts
CN102020487B (en) Carrying utensil
JP3549099B2 (en) Manufacturing method of electronic component firing jig
JP3131066B2 (en) Jig for firing ceramic products
JPH09286678A (en) Refractory coated with zirconia
KR890002445B1 (en) Process of ceramic capacitor manufacture
JP2001213666A (en) Material for making electronic part by sintering
JPH0682166A (en) Jig for firing
JPH0268488A (en) Cordierite type functionally gradient materials
JPH06116066A (en) Production of internal insulation for ceramic firing furnace

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees