JPS6124168A - Fused carbonate type fuel cell device - Google Patents
Fused carbonate type fuel cell deviceInfo
- Publication number
- JPS6124168A JPS6124168A JP59146316A JP14631684A JPS6124168A JP S6124168 A JPS6124168 A JP S6124168A JP 59146316 A JP59146316 A JP 59146316A JP 14631684 A JP14631684 A JP 14631684A JP S6124168 A JPS6124168 A JP S6124168A
- Authority
- JP
- Japan
- Prior art keywords
- reformer
- fuel
- fuel cell
- gas
- fuel gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/06—Combination of fuel cells with means for production of reactants or for treatment of residues
- H01M8/0606—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
- H01M8/0612—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
- H01M8/0625—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/14—Fuel cells with fused electrolytes
- H01M2008/147—Fuel cells with molten carbonates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0048—Molten electrolytes used at high temperature
- H01M2300/0051—Carbonates
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Fuel Cell (AREA)
Abstract
Description
【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、溶融炭酸塩形燃料電池装置に関し。[Detailed description of the invention] [Industrial application field] The present invention relates to a molten carbonate fuel cell device.
特に内部リホーミング機能を有するものに関するもので
ある〇
〔従来の技術〕
第2図は、従来の例えば内部リホーミング型溶融炭酸塩
形燃料電池装置の側面から見た断面図である。図におい
て、(1)は複数の燃料電池1例えば溶融炭酸塩形燃料
電池(以下、燃料電池と称す)(tc) 、端板(la
) 、セパレータ板(1b)、触媒保持冷却板(1d)
より構成される燃料電池積層体1例えば溶融炭酸塩形燃
料電池積層体(以下、燃料電池積層体と称す)である。2 is a sectional view of a conventional internal reforming type molten carbonate fuel cell device as seen from the side. In the figure, (1) indicates a plurality of fuel cells 1, such as molten carbonate fuel cells (hereinafter referred to as fuel cells) (tc), end plates (la
), separator plate (1b), catalyst holding cooling plate (1d)
The fuel cell stack 1 is, for example, a molten carbonate fuel cell stack (hereinafter referred to as a fuel cell stack).
触媒保持冷却板(1d)は内部に炭化水素分解触媒(2
]を保持している。燃料は燃料ガス入口出口マニホルド
(3)を通して燃料電池積層体(1)に供給・排出され
る。燃料ガス入口出口マニホルド(3)はその内部に燃
料ガスを触媒保持冷却板(Xd)に分配°供給するため
の内部マニホルド(8a)を備えている。(4)は触媒
保持冷却板(1d)より排出された燃料ガスを燃料電池
積層体(υに反転・供給するための燃料ガス反転マニホ
ルドである。The catalyst holding cooling plate (1d) has a hydrocarbon decomposition catalyst (2
] is maintained. Fuel is supplied to and discharged from the fuel cell stack (1) through the fuel gas inlet and outlet manifold (3). The fuel gas inlet/outlet manifold (3) is provided with an internal manifold (8a) for distributing and supplying fuel gas to the catalyst holding cooling plate (Xd). (4) is a fuel gas reversing manifold for reversing and supplying the fuel gas discharged from the catalyst holding cooling plate (1d) to the fuel cell stack (υ).
(5)は触媒保持冷却板(1d)同志を電気的に絶縁す
るための絶縁継手、(6)は燃料電池積層体(υと燃料
ガス入口出口マニホルド+33および燃料ガス反転マニ
ホルド(4]との電気的絶縁、及び燃料ガスと酸化剤ガ
スである反応ガスの気密を保持するtこめのガスケツ−
トである。図中、矢印は燃料又は燃料ガスの流れる方向
を示す。(5) is an insulating joint for electrically insulating the catalyst holding cooling plate (1d), and (6) is an insulating joint between the fuel cell stack (υ), the fuel gas inlet/outlet manifold +33, and the fuel gas reversing manifold (4). A gasket that maintains electrical insulation and airtightness of the reactant gases, which are the fuel gas and the oxidant gas.
It is. In the figure, arrows indicate the direction in which fuel or fuel gas flows.
次に動作について説明する。炭化水素を主成分とする燃
料とスチームは内部マニホルド(8a) 、絶縁継手(
5)を通して触媒保持冷却板(1d)に供給される。炭
化水素とスチームは触媒保持冷却板(1d)内部で炭化
水素分解触媒(2]の触媒作用により下式(υ〜(3)
に示すように溶融炭酸塩形燃料電池(IC)が直接煤°
料として利用可能な水素と一酸化炭素を主要成分とする
燃料ガスに変質される。Next, the operation will be explained. Hydrocarbon-based fuel and steam are stored in the internal manifold (8a) and insulated joints (
5) is supplied to the catalyst holding cooling plate (1d). Hydrocarbons and steam are generated by the catalytic action of the hydrocarbon decomposition catalyst (2) inside the catalyst holding cooling plate (1d) according to the following formula (υ~(3)
As shown in Figure 2, molten carbonate fuel cells (ICs) directly generate soot.
It is transformed into a fuel gas whose main components are hydrogen and carbon monoxide, which can be used as fuel.
CHn + HzO−+ Co + 8H2+4.
9.8kcae/moe −(1)m+2n
CnHm + nHao →nco + −H2f21
Co + HzO→CO2+ H! −9,8kca
e/moe −(3)これらの反応は全体としては
吸熱反応であり、燃料電池(IC)で副生ずる熱エネル
ギーを反応熱として利用し、燃料電池積層体(1]の冷
却を行っている。CHn + HzO-+ Co + 8H2+4.
9.8kcae/moe -(1)m+2n CnHm + nHao →nco + -H2f21
Co+HzO→CO2+H! -9,8kca
e/moe - (3) These reactions are endothermic reactions as a whole, and the thermal energy by-produced in the fuel cell (IC) is used as reaction heat to cool the fuel cell stack (1).
変質された燃料ガスは燃料ガス反転マニホルド(4)内
部で流れの方向を反転し、燃料電池(IC)の燃料ガス
側電極に供給される。ここで溶融炭酸塩形燃料電池(1
c)は1例えば650℃前後で動作する燃料電池で、燃
料ガス側電極・酸化ガス側電極においてそれぞれ下式(
4)及び+5) 、 (61に示すような電気化学反応
を行うことにより、水素・−酸化炭素の持つ化学エネル
ギーを電気エネルギーと副生ずる熱エネルギーとに変換
する。The altered fuel gas reverses its flow direction inside the fuel gas inversion manifold (4) and is supplied to the fuel gas side electrode of the fuel cell (IC). Here, a molten carbonate fuel cell (1
c) is a fuel cell that operates at, for example, around 650°C, and the fuel gas side electrode and oxidant gas side electrode each have the following formula (
4) and +5), (By performing an electrochemical reaction as shown in 61, the chemical energy of hydrogen and carbon oxide is converted into electrical energy and thermal energy as a by-product.
(燃料ガス側電極)
H2+ Co: −* H,0+ c02+ 2e
−+4)CO+H20→H2+CO2−
(51
(酸化ガス測置り
Cot ” 20z ” 2e →COa
(61先に述べたように副生ずる熱エネルギ
ーはそのほとんどが触媒保持冷却板(1d)を通し゛て
炭化水素分解反応の反応熱として除去され、残りは反応
ガスを熱媒体としてガス冷却により除去される。燃料電
池(lc)で消費された燃料ガスは燃料ガス入口出口マ
ニホルド(3)を通して系外に排出される。溶融炭酸塩
形燃料電池積層体(υは1個当り0.6−1.OVの直
流電圧を出す溶融炭酸塩形燃料電池(IC)を複数個直
列に接続した積層体であり、内部マニホルド(8a)を
通してこの溶融炭酸塩形燃料電池(lc)同志の電気的
短絡を防ぐ構造が不可欠である。絶縁継手(5)は触媒
保持冷却板(1d)を通しての電気的短絡を防ぐための
もので1例えば具体的にはセラミック材料で作られてい
る。(Fuel gas side electrode) H2+ Co: -* H,0+ c02+ 2e
-+4) CO+H20→H2+CO2-
(51 (Oxide gas measurement Cot "20z" 2e → COa
(61 As mentioned earlier, most of the by-produced thermal energy is removed as reaction heat of the hydrocarbon decomposition reaction through the catalyst holding cooling plate (1d), and the rest is removed by gas cooling using the reaction gas as a heat medium. The fuel gas consumed in the fuel cell (LC) is discharged to the outside of the system through the fuel gas inlet and outlet manifold (3). It is a stacked body in which multiple molten carbonate fuel cells (IC) that generate DC voltage are connected in series, and has a structure that prevents electrical short circuits between the molten carbonate fuel cells (LC) through an internal manifold (8a). The insulating coupling (5) is for preventing electrical short circuits through the catalyst holding cold plate (1d) and is made, for example, of a ceramic material.
このように、燃料電池(lc)に供給される燃料ガスは
、燃料電池(1c)が直接燃料として利用可能な水素と
一酸化炭素を主要成分とする燃料ガスに改質する必要が
ある。この従来装置では2例えば内部マニホルド(8a
)、触媒保持冷却板(ld) 、炭化水素分解触媒(2
)、及び絶縁継手(6)によって改質器を構成し、燃料
ガスを改質している。In this way, the fuel gas supplied to the fuel cell (lc) needs to be reformed into a fuel gas containing hydrogen and carbon monoxide as main components that can be directly used by the fuel cell (1c) as fuel. In this conventional device, for example, an internal manifold (8a
), catalyst holding cooling plate (ld), hydrocarbon decomposition catalyst (2
) and an insulating joint (6) constitute a reformer to reform the fuel gas.
【発明が解決しようとする問題点]
従来の溶融炭酸塩形燃料電池装置では、改質器が溶融炭
酸塩形燃料電池積層体(1)の内部に組込まれた構造で
あり、複数の燃料電池(1c)へ燃料ガスを分配して供
給する流路に設けられているため。[Problems to be Solved by the Invention] In the conventional molten carbonate fuel cell device, the reformer is built into the molten carbonate fuel cell stack (1), and a plurality of fuel cells (1c) because it is provided in the flow path that distributes and supplies fuel gas.
個々の触媒保持冷却板(ld)へ燃料ガスを分配する構
造を必要とし、また絶縁継手(6)を必要とするなどマ
ニホルドの構造が複雑になるという問題点があった。ま
た炭化水素分解触媒(2目よ長期的にはシンタリンク・
炭素の析出等により活性が低下するが、このような構造
ではその再生・交換等の保守が難しいという問題点があ
った。This method requires a structure for distributing fuel gas to each catalyst holding cooling plate (ld), and requires an insulating joint (6), resulting in a complicated manifold structure. In addition, hydrocarbon decomposition catalysts (2nd, long-term sinter link
Although activity decreases due to carbon precipitation, etc., such a structure has the problem that maintenance such as regeneration and replacement is difficult.
この発明は、かかる問題点を解決するためになされたも
ので、簡素な構造で、かつ触媒の再生・交換等の保守の
容易な溶融炭酸塩形燃料電池装置を得ることを目的とす
る。The present invention has been made to solve these problems, and aims to provide a molten carbonate fuel cell device that has a simple structure and is easy to maintain such as catalyst regeneration and replacement.
この発明に係る溶融炭酸塩形燃料電池装置は。 A molten carbonate fuel cell device according to the present invention.
触媒を有し、燃料ガスを改質する改質器、この改質器で
改質された燃料ガスが供給されると共に。A reformer having a catalyst and reforming fuel gas, and a fuel gas reformed by the reformer being supplied thereto.
酸化ガスが供給され電気化学反応を起す燃料電池を備え
たものにおいて、改質器を燃料電池からの排出燃料ガス
流路または排出酸化ガス流路に設けて、排出燃料ガスま
たは排出酸化ガスの熱を改質器に与えるようにしたもの
である。In a fuel cell that is supplied with oxidizing gas to cause an electrochemical reaction, a reformer is installed in the exhaust fuel gas flow path or exhaust oxidant gas flow path from the fuel cell, and the heat of the exhaust fuel gas or exhaust oxidant gas is removed. is supplied to the reformer.
〔問題点を解決するための手段の作用)この発明におけ
る改質器は、その働きにおいて燃料電池積層体から分離
し、排出燃料ガス流路または排出酸化ガス流路に設けら
れており、改質器内で燃料ガスを複数の燃料電池に分配
する必要がなくなるため、簡素な構造で、かつ改質器内
の触媒の再生・交換等の保守が容易になる。[Operation of the means for solving the problem] In its function, the reformer in the present invention is separated from the fuel cell stack and is provided in the exhaust fuel gas flow path or the exhaust oxidant gas flow path, and is Since there is no need to distribute fuel gas to multiple fuel cells within the reformer, the structure is simple and maintenance such as regeneration and replacement of the catalyst in the reformer becomes easy.
以下、この発明の一実施例を図について説明する。第1
図において【υは、複数の燃料電池、例えば溶融炭酸塩
形燃料電池、端板、セパレータ板より構成される燃料電
池積層体1例えば溶融炭酸塩形燃料電池積層体である。An embodiment of the present invention will be described below with reference to the drawings. 1st
In the figure, [υ] is a fuel cell stack 1, such as a molten carbonate fuel cell stack, which is composed of a plurality of fuel cells, such as molten carbonate fuel cells, end plates, and separator plates.
従来例と同様、(2)は炭化水素分解触媒、(6)はガ
スケットである。As in the conventional example, (2) is a hydrocarbon decomposition catalyst, and (6) is a gasket.
(7)は酸化ガス入口マニホルド、(8)は排出酸化ガ
ス流路で1例えば酸化ガス出口マニホルドである。(7) is an oxidizing gas inlet manifold, and (8) is an exhaust oxidizing gas flow path, for example, an oxidizing gas outlet manifold.
酸化ガス出口マニホルド(8)は、その内部に炭化水素
分解触媒(2)を保持した改質器(9)を備えている。The oxidizing gas outlet manifold (8) is equipped with a reformer (9) holding a hydrocarbon decomposition catalyst (2) therein.
OOは燃料ガス入口マニホルドであり、改質器(9)の
出口側と接続している。Ql)は排出燃料ガス流路で1
例えば燃料ガス出口マニホルドである。なお。OO is a fuel gas inlet manifold, which is connected to the outlet side of the reformer (9). Ql) is 1 in the exhaust fuel gas flow path.
For example, a fuel gas outlet manifold. In addition.
図中、矢印Aは燃料ガスの流れる方向を示し、矢印Bは
酸化ガスの流れる方向を示す0
次にこのような溶融炭酸塩形燃料電池装置の動作につい
て説明する。炭化水素を主成分とする燃料とスチームは
改質器(9)に供給される。改質器(9)は内部に炭化
水素分解触媒【21を保持しており、この実施例では改
質器19)を例えば酸化ガス出口マニホルド(8)の内
部に設けることにより排出された酸化ガスの持つ顕熱を
利用して式(υ〜(3)を行わせしめ、炭化水素を分解
している〇
改質器(9)で改質され、水素・−酸化炭素が主成分と
なった燃料ガスは、燃料ガス入口マニホルドQOを通し
て燃料電池積層体(1]に供給され、式(4)〜(6)
に従い、燃料ガスの持っている化学エネルギーが電気エ
ネルギーと副生ずる熱エネルギーとに変換される。この
時副生ずる熱エネルギーは酸化ガスにより持ち去られ、
酸化ガス出口マニホルド(8)内部において改質器(9
)の外壁を通して燃料ガスと熱交換することにより、そ
のほとんどが炭化水素分解の反応熱として利用される。In the figure, arrow A indicates the direction in which fuel gas flows, and arrow B indicates the direction in which oxidizing gas flows.Next, the operation of such a molten carbonate fuel cell device will be explained. Hydrocarbon-based fuel and steam are supplied to the reformer (9). The reformer (9) holds a hydrocarbon decomposition catalyst [21] inside, and in this embodiment, the reformer 19) is provided inside the oxidant gas outlet manifold (8), so that the oxidant gas discharged A fuel that is reformed in the reformer (9) and whose main components are hydrogen and carbon oxide. Gas is supplied to the fuel cell stack (1) through the fuel gas inlet manifold QO, and formulas (4) to (6)
Accordingly, the chemical energy of the fuel gas is converted into electrical energy and by-product thermal energy. The thermal energy produced as a by-product at this time is carried away by the oxidizing gas,
A reformer (9) is installed inside the oxidizing gas outlet manifold (8).
), most of the heat is used as reaction heat for hydrocarbon decomposition.
この発明では従来例と異なり改質器(9]がその働きに
おいて燃料電池積層体(1)と独立して設けられている
ため、構造上絶縁継手(5)が不要であり、また触媒保
持冷却板(1d)および個々の触媒保持冷却板(ld)
に燃料ガスを分配するような複雑な構造も不要となるな
ど、構造が大巾に簡素になる。更に改質器(9)内の炭
化水素分解触媒(2)の再生・交換等の保守も容易に行
うことができ、溶融炭酸塩形燃料電池装置の信頼性が向
上する。In this invention, unlike the conventional example, the reformer (9) is provided independently from the fuel cell stack (1) in its function, so there is no need for an insulating joint (5) in terms of structure, and catalyst retention cooling plate (1d) and individual catalyst holding cold plate (ld)
The structure becomes much simpler, as there is no need for a complicated structure for distributing fuel gas. Furthermore, maintenance such as regeneration and replacement of the hydrocarbon decomposition catalyst (2) in the reformer (9) can be easily performed, and the reliability of the molten carbonate fuel cell device is improved.
なお、上記実施例では改質器(9)を酸化ガス出口マニ
ホルド(8)内部に設置すたものを示したが、燃料ガス
°出口マニホルド(ロ)内部に設けてもよい。さらに、
マニホルド内部に限らず、燃料電池からの排出燃料ガス
流路または排出酸化ガス流路に設けて。In the above embodiment, the reformer (9) is installed inside the oxidizing gas outlet manifold (8), but it may also be installed inside the fuel gas outlet manifold (b). moreover,
Not only inside the manifold, but also in the exhaust fuel gas flow path or exhaust oxidant gas flow path from the fuel cell.
排出ガスの熱を改質器+93に与えるような構成にすれ
ば、上記実施例と同様の効果を奏する。If the structure is such that the heat of the exhaust gas is applied to the reformer +93, the same effects as in the above embodiment can be obtained.
以上のように、この発明によれば、触媒を有し。 As described above, according to the present invention, a catalyst is provided.
燃料ガスを改質する改質器、この改質器で改質された燃
料ガスが供給されると共に、酸化ガスが供給され電気化
学反応を起す燃料電池を備えたものにおいて、改質器を
燃料電池からの排出燃料ガス流路または排出酸化ガス流
路に設けて、排出燃料ガスまたは排出酸化ガスの熱を改
質器に与えるように構成することにより、改質器をその
働きにおいて燃料電池と分離し、簡素な構造でかつ触媒
の再生・交換等の保守の容易な信頼性の高い溶融炭酸塩
形燃料電池装置が得られる効果がある。A reformer that reformes fuel gas is supplied with fuel gas reformed by this reformer, and is equipped with a fuel cell that is supplied with oxidizing gas to cause an electrochemical reaction. By providing heat from the exhaust fuel gas or exhaust oxidant gas to the reformer by providing it in the exhaust fuel gas flow path or exhaust oxidant gas flow path from the battery, the reformer can function as a fuel cell. This has the effect of providing a highly reliable molten carbonate fuel cell device that is separated, has a simple structure, and is easy to maintain such as catalyst regeneration and replacement.
第1図はこの発明の一実施例による溶融炭酸塩形燃料電
池装置を一部断面で示す正面図、第2図は従来の内部リ
ホーミング型溶融炭酸塩形燃料電池装置を示す構成図で
ある。
(υ・・・燃料電池積層体、(lc)・・・燃料電池、
(幻・・・触媒、(8)・・・排出酸化ガス流路、(9
)・・・改質器、(ロ)・・・排出燃料ガス流路。
なお1図中、同一符号は同一、又は相当部分を〜示す。FIG. 1 is a partially sectional front view showing a molten carbonate fuel cell device according to an embodiment of the present invention, and FIG. 2 is a configuration diagram showing a conventional internal reforming type molten carbonate fuel cell device. . (υ... fuel cell stack, (lc)... fuel cell,
(Phantom...catalyst, (8)...exhaust oxidizing gas flow path, (9
)...Reformer, (b)...Exhaust fuel gas flow path. In addition, in FIG. 1, the same reference numerals indicate the same or corresponding parts.
Claims (1)
改質された燃料ガスが供給されると共に、酸化ガスが供
給され電気化学反応を起す燃料電池を備えたものにおい
て、上記改質器を上記燃料電池からの排出燃料ガス流路
または排出酸化ガス流路に設けて、排出燃料ガスまたは
排出酸化ガスの熱を上記改質器に与えるようにした溶融
炭酸塩形燃料電池装置。A reformer having a catalyst and reforming fuel gas, and a fuel cell to which the fuel gas reformed by the reformer is supplied and an oxidizing gas to cause an electrochemical reaction, A molten carbonate fuel cell in which the reformer is provided in an exhaust fuel gas flow path or an exhaust oxidant gas flow path from the fuel cell, and heat from the exhaust fuel gas or exhaust oxidant gas is applied to the reformer. Device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59146316A JPS6124168A (en) | 1984-07-13 | 1984-07-13 | Fused carbonate type fuel cell device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59146316A JPS6124168A (en) | 1984-07-13 | 1984-07-13 | Fused carbonate type fuel cell device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6124168A true JPS6124168A (en) | 1986-02-01 |
Family
ID=15404910
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59146316A Pending JPS6124168A (en) | 1984-07-13 | 1984-07-13 | Fused carbonate type fuel cell device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6124168A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02228691A (en) * | 1989-02-28 | 1990-09-11 | Taichi Fuji | Light-transmissive display body made of synthetic resin |
EP0429958A2 (en) * | 1989-11-25 | 1991-06-05 | Ishikawajima-Harima Heavy Industries Co., Ltd. | Power generation system using molten carbonate fuel cell |
NL1001519C2 (en) * | 1994-10-28 | 1998-07-29 | Mtu Friedrichshafen Gmbh | Fuel cell assembly with reformer. |
JP2001196088A (en) * | 1999-12-13 | 2001-07-19 | Sofco Lp | Unified manifold/reforming device for fuel cell system |
JP2007214115A (en) * | 2006-02-07 | 2007-08-23 | Doosan Heavy Industries & Construction Co Ltd | Molten carbonate fuel cell provided with indirect internal reformer |
US7638039B2 (en) | 2004-06-15 | 2009-12-29 | Cormetech, Inc. | In-situ catalyst replacement |
US7658898B2 (en) | 2006-08-01 | 2010-02-09 | Cormetech, Inc. | Compositions and methods for treating exhaust gases |
US7776786B2 (en) | 2004-05-04 | 2010-08-17 | Cormetech, Inc. | Catalyst systems advantageous for high particulate matter environments |
US7807110B2 (en) | 2004-03-12 | 2010-10-05 | Cormetech Inc. | Catalyst systems |
-
1984
- 1984-07-13 JP JP59146316A patent/JPS6124168A/en active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02228691A (en) * | 1989-02-28 | 1990-09-11 | Taichi Fuji | Light-transmissive display body made of synthetic resin |
EP0429958A2 (en) * | 1989-11-25 | 1991-06-05 | Ishikawajima-Harima Heavy Industries Co., Ltd. | Power generation system using molten carbonate fuel cell |
NL1001519C2 (en) * | 1994-10-28 | 1998-07-29 | Mtu Friedrichshafen Gmbh | Fuel cell assembly with reformer. |
JP2001196088A (en) * | 1999-12-13 | 2001-07-19 | Sofco Lp | Unified manifold/reforming device for fuel cell system |
US7807110B2 (en) | 2004-03-12 | 2010-10-05 | Cormetech Inc. | Catalyst systems |
US7776786B2 (en) | 2004-05-04 | 2010-08-17 | Cormetech, Inc. | Catalyst systems advantageous for high particulate matter environments |
US7638039B2 (en) | 2004-06-15 | 2009-12-29 | Cormetech, Inc. | In-situ catalyst replacement |
JP2007214115A (en) * | 2006-02-07 | 2007-08-23 | Doosan Heavy Industries & Construction Co Ltd | Molten carbonate fuel cell provided with indirect internal reformer |
US7658898B2 (en) | 2006-08-01 | 2010-02-09 | Cormetech, Inc. | Compositions and methods for treating exhaust gases |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3092670B2 (en) | Method of generating electricity in fuel cell and fuel cell | |
US5601937A (en) | Hydrocarbon reformer for electrochemical cells | |
CA2397682C (en) | Multipurpose reversible electrochemical system | |
US20160149245A1 (en) | Method of Plasma-Catalyzed, Thermally-Integrated Reforming | |
US20040126288A1 (en) | Hydrogen generator for fuel cell | |
US8460409B2 (en) | Plasma-catalyzed fuel reformer | |
JPS61193372A (en) | Internally reformed type of fuel cell | |
JP2581662B2 (en) | Fuel cell generator | |
JPH0613096A (en) | Method and apparatus for reformation in fuel cell power generation system | |
US20090136813A1 (en) | Fuel Cell | |
JP2008521184A (en) | Equipment for carrying out chemical reactions | |
JPH06310158A (en) | Internally reformed fuel cell device and fuel cell power generating system | |
JP2004520694A (en) | Fuel cell system | |
JP4815140B2 (en) | Reformer and fuel cell system | |
JPS6124168A (en) | Fused carbonate type fuel cell device | |
US7122269B1 (en) | Hydronium-oxyanion energy cell | |
JPH08102326A (en) | Fuel cell power generating system | |
JPS63232275A (en) | Fuel cell of lamination type | |
US20140162154A1 (en) | Plasma-catalyzed fuel reformer system | |
JP3784751B2 (en) | Solid oxide fuel cell system | |
JPH08301601A (en) | Methanol reformer | |
JP4942292B2 (en) | Power generator | |
JP2004299939A (en) | Fuel reformer, and fuel battery generator | |
JPS63310574A (en) | Internal reforming type fuel cell | |
JP2009129701A (en) | Fuel cell module |