Nothing Special   »   [go: up one dir, main page]

JPS6124825B2 - - Google Patents

Info

Publication number
JPS6124825B2
JPS6124825B2 JP4704577A JP4704577A JPS6124825B2 JP S6124825 B2 JPS6124825 B2 JP S6124825B2 JP 4704577 A JP4704577 A JP 4704577A JP 4704577 A JP4704577 A JP 4704577A JP S6124825 B2 JPS6124825 B2 JP S6124825B2
Authority
JP
Japan
Prior art keywords
region
conductivity type
semiconductor
capacitive element
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4704577A
Other languages
Japanese (ja)
Other versions
JPS53132278A (en
Inventor
Susumu Hirai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP4704577A priority Critical patent/JPS53132278A/en
Publication of JPS53132278A publication Critical patent/JPS53132278A/en
Publication of JPS6124825B2 publication Critical patent/JPS6124825B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Semiconductor Integrated Circuits (AREA)

Description

【発明の詳細な説明】 本発明は例えば回路素子としてのトランジスタ
が形成される半導体集積回路に適用して好適な半
導体容量素子に係わり、この容量素子を設けるこ
とによつて製造工程数を増加させるようなことが
なく、しかも大容量の容量素子として構成するこ
とが出来るようにしたものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor capacitive element suitable for application to a semiconductor integrated circuit in which a transistor as a circuit element is formed, and the number of manufacturing steps is increased by providing this capacitive element. The present invention is designed so that such problems do not occur and, moreover, it can be configured as a large capacity capacitive element.

このような半導体集積回路に用いる容量素子と
しては、例えば特公昭51−44068号公報に開示さ
れるものがある。この容量素子は第1図に示すよ
うに例えばトランジスタのコレクタ領域、ベース
領域、エミツタ領域に相当する各領域1,2,3
が設けられ、第1の電極4が領域1に接続され領
域3上に絶縁層例えばSiO2層6を介して跨るよ
うに形成され、領域2及び3に接続して第2の電
極5が設けられて成る。このようにして第1、第
2の電極4及び5間に、電極4−絶縁層6−領域
3によるいわゆるMIS構造の容量と領域1及び2
間の接合Jによる寄生容量とが並列に接続された
構成となされる。
As a capacitive element used in such a semiconductor integrated circuit, there is one disclosed in Japanese Patent Publication No. 51-44068, for example. As shown in FIG.
A first electrode 4 is connected to region 1 and is formed over region 3 via an insulating layer, for example, a SiO 2 layer 6, and a second electrode 5 is connected to regions 2 and 3. It is made up of In this way, between the first and second electrodes 4 and 5, the capacitance of the so-called MIS structure consisting of the electrode 4 - the insulating layer 6 - the region 3 and the regions 1 and 2 are formed.
The structure is such that the parasitic capacitance due to the junction J between the two is connected in parallel.

本発明は上述したようにMIS構造による容量
と、接合容量とによつて容量素子を構成するも、
更にその容量の増大化をはかるようにした半導体
容量素子を提供せんとするものである。
As described above, the present invention configures a capacitive element by the capacitance of the MIS structure and the junction capacitance.
Furthermore, it is an object of the present invention to provide a semiconductor capacitive element whose capacity is increased.

第2図を参照して本発明の一例を説明するに、
図示の例は共通の半導体基体11上に、回路素子
として本発明による半導体容量素子12とNPN
トランジスタ13とを形成した集積回路を示す。
半導体基体11は第1導電型、図示の例ではP型
の半導体サブストレイト14上に第2導電型、図
示の例ではN型の半導体層15がエピタキシヤル
成長されて成り、半導体層15に之を横切つてサ
ブストレイト14と同導電型を有するアイソレー
シヨン領域16が例えば選択的拡散によつてサブ
ストレイト14に達する深さを以つて基体11の
一の主面即ち半導体層15を有する側の主面11
aに臨んで例えば格子状のパターンに形成され、
このアイソレーシヨン領域16により囲まれた一
の島領域15AにNPNトランジスタ13が形成
され、他の同様にアイソレーシヨン領域16によ
つて取囲まれた島領域15Bに本発明による半導
体容量素子12が形成されて成る。17及び18
は夫々トランジスタ13及び容量素子12が形成
される部分に必要に応じて形成された第2導電型
の高濃度埋込領域を示し、之等埋込領域17及び
18は夫々半導体層15のエピタキシヤル成長に
先立つて選択的拡散によつて形成し得る。19は
NPNトランジスタのコレクタ領域で、N型の半
導体層15の一部より構成され、このコレクタ領
域19上の一部にP型のベース領域20が例えば
選択的拡散によつて形成され、更にこのベース領
域20上の一部に例えば選択的拡散を以つて比較
的高不純物濃度のN型のエミツタ領域21が形成
される。又コレクタ領域19上にはエミツタ領域
21の拡散と同時に高不純物濃度のコレクタ電極
の取出し領域22を形成し得る。23,24,2
5は夫々エミツタ領域21、ベース領域20、コ
レクタ領域19の高濃度領域22上にオーミツク
に被着されたエミツタ電極、ベース電極及びコレ
クタ電極である。
An example of the present invention will be described with reference to FIG.
In the illustrated example, a semiconductor capacitive element 12 according to the present invention and an NPN are used as circuit elements on a common semiconductor substrate 11.
2 shows an integrated circuit in which a transistor 13 is formed.
The semiconductor substrate 11 is formed by epitaxially growing a semiconductor layer 15 of a second conductivity type, N type in the illustrated example, on a semiconductor substrate 14 of a first conductivity type, P type in the illustrated example. One principal surface of the substrate 11, that is, the side having the semiconductor layer 15, has a depth across which an isolation region 16 having the same conductivity type as the substrate 14 reaches the substrate 14 by, for example, selective diffusion. Main surface 11 of
Facing a, it is formed, for example, in a grid pattern,
An NPN transistor 13 is formed in one island region 15A surrounded by this isolation region 16, and a semiconductor capacitive element 12 according to the present invention is formed in another island region 15B similarly surrounded by the isolation region 16. It consists of being done. 17 and 18
denotes a second conductivity type high concentration buried region formed as necessary in the portion where the transistor 13 and the capacitive element 12 are formed, respectively, and these buried regions 17 and 18 are epitaxial regions of the semiconductor layer 15 It can be formed by selective diffusion prior to growth. 19 is
A collector region of an NPN transistor, which is made up of a part of an N-type semiconductor layer 15. A P-type base region 20 is formed in a part of this collector region 19 by, for example, selective diffusion, and this base region An N-type emitter region 21 having a relatively high impurity concentration is formed on a portion of the semiconductor device 20 by, for example, selective diffusion. Further, on the collector region 19, a highly impurity-concentrated collector electrode lead-out region 22 can be formed simultaneously with the diffusion of the emitter region 21. 23, 24, 2
Reference numerals 5 denote an emitter electrode, a base electrode, and a collector electrode which are ohmicly deposited on the emitter region 21, the base region 20, and the high concentration region 22 of the collector region 19, respectively.

又、他の島領域15Bには、NPNトランジス
タ13のベース領域20の拡散と同時にその一部
がアイソレーシヨン領域16上に跨るように第1
導電型の領域26を形成し、更に之の上にトラン
ジスタ13のエミツタ領域21の形成と同時に例
えば選択的拡散によつて第2導電型の領域27を
形成する。
Further, in the other island region 15B, a first insulating film is formed such that a part thereof straddles the isolation region 16 at the same time as the base region 20 of the NPN transistor 13 is diffused.
A region 26 of a conductivity type is formed, and a region 27 of a second conductivity type is formed thereon simultaneously with the formation of the emitter region 21 of the transistor 13, for example, by selective diffusion.

このようにして島領域15Bを囲むアイソレー
シヨン領域16の一部と島領域15B下のサブス
トレイト14と領域26とによつて第1導電型の
第1の領域28を形成し、厚さ方向にこの第1の
領域28を形成し、領域26の、基体11の主面
に沿つて延在する領域部分を厚さ方向に挾んでそ
の下側及び上側に半導体層15の一部より成る第
2導電型の第2の領域29と基体11の主面11
aに臨む第2導電型の第3の領域27とを区分形
成する。又、第2の領域29は、その一部が基体
11の主面11aに臨むようになされ、この主面
11aに臨む部分に領域21及び27の形成例え
ば選択的拡散と同時に高濃度の電極取り出し領域
30を形成する。
In this way, a first region 28 of the first conductivity type is formed by a part of the isolation region 16 surrounding the island region 15B, the substrate 14 under the island region 15B, and the region 26. This first region 28 is formed, and a first region 28 made of a part of the semiconductor layer 15 is formed on the lower and upper sides of the region 26 extending along the main surface of the base body 11 sandwiching the region 26 in the thickness direction. 2nd conductivity type second region 29 and main surface 11 of base 11
A third region 27 of the second conductivity type facing a is formed separately. Further, a part of the second region 29 faces the main surface 11a of the base 11, and regions 21 and 27 are formed in the portion facing the main surface 11a, for example, by selective diffusion and at the same time, high concentration electrode extraction. A region 30 is formed.

そしてこの電極取り出し領域30上において、
第2の領域29に対して第1の電極31をオーミ
ツクに接続すると共に、この第1の電極31を領
域27上に被着形成された絶縁層32を介して領
域27上に跨がるように形成する。
And on this electrode extraction area 30,
The first electrode 31 is electrically connected to the second region 29, and the first electrode 31 is connected over the region 27 via an insulating layer 32 formed on the region 27. to form.

ここに絶縁層32は例えば領域27の選択的拡
散時に生じた酸化物SiO2皮膜より形成し得る。
又第1の領域28の例えばアイソレーシヨン領域
16及び領域26上と第3の領域27とにオーミ
ツクに接続して第2の電極33を被着する。
The insulating layer 32 here can be formed, for example, from an oxide SiO 2 coating produced during the selective diffusion of the region 27 .
Further, a second electrode 33 is ohmicly connected to, for example, the isolation region 16 and region 26 of the first region 28 and to the third region 27 .

34は基体11の表面(主面11a)には、各
領域の選択的拡散時の拡散マスクとして形成した
或いは拡散時に生じた例えばSiO2膜より成る表
面保護の絶縁層である。
Reference numeral 34 designates a surface-protecting insulating layer formed on the surface (principal surface 11a) of the substrate 11 and made of, for example, a SiO 2 film, which is formed as a diffusion mask during selective diffusion of each region, or formed during diffusion.

尚、この場合、アイソレーシヨン領域16、従
つて第2の電極33には最底電位例えば接地電位
が与えられる。
In this case, the isolation region 16, and hence the second electrode 33, are given the lowest potential, such as the ground potential.

上述の本発明の半導体容量素子12は、第1及
び第2の電極31及び33間に、第1の電極31
−絶縁層32−領域27のMIS構造による容量
と、之と並列に第1の領域28と第2の領域29
間に形成される接合即ち領域26と領域29間の
接合J1、アイソレーシヨン領域16と領域29間
の接合J2、領域29又は埋込領域18とサブスト
レイト領域14間に形成される接合J3との各接合
容量によつて形成された容量が構成される。
The semiconductor capacitive element 12 of the present invention described above has a first electrode 31 between the first and second electrodes 31 and 33.
- Insulating layer 32 - Capacitance due to the MIS structure of region 27, and in parallel thereto, first region 28 and second region 29
junctions formed between regions 26 and 29, J 1 between isolation regions 16 and 29, junctions J 2 between regions 29 or buried regions 18 and substrate regions 14; The capacitance formed by each junction capacitance with J 3 is configured.

上述したように本発明構成によれば第2の領域
29をその厚み方向に関して、第1の領域28の
サブストレイト領域14と領域26とによつては
さみ込んで形成したので、その接合面積は第1図
の場合に比し格段的に増大し、従つて接合容量の
増大化をはかることができ、大容量の容量素子が
構成される。又、この容量素子12の形成は特別
の工程によつて行う必要はなく、他の回路素子例
えばNPN型の半導体素子13の各領域の形成と
同時に形成し得るので製造の簡易化をはかること
ができる。
As described above, according to the configuration of the present invention, the second region 29 is sandwiched between the substrate region 14 and the region 26 of the first region 28 in the thickness direction, so that the bonding area thereof is equal to that of the first region 28. The junction capacitance is significantly increased compared to the case shown in FIG. 1, and therefore the junction capacitance can be increased, and a capacitive element with a large capacitance is constructed. Further, the formation of the capacitive element 12 does not need to be performed through a special process, and can be formed simultaneously with the formation of each region of other circuit elements, such as the NPN type semiconductor element 13, thereby simplifying the manufacturing process. can.

尚第2図の例に於ては第2の領域29即ち半導
体素子13のコレクタ領域19に対応する領域に
生じたPN接合の接合容量を利用して容量素子1
2を構成した場合であるが、第3図及び第4図の
例に於ては、第2図に説明したようにトランジス
タ素子13のいわばベース領域20に相当する拡
散領域26に関して生じたPN接合の接合容量を
一部の容量として半導体容量素子を構成した場合
である。第3図及び第4図に於て第2図と対応す
る部分には同一符号を付し、更に第2図に於ける
トランジスタ素子13に対応する部分を省略して
示す。
In the example shown in FIG. 2, the capacitive element 1 is
2, in the examples shown in FIGS. 3 and 4, the PN junction generated in the diffusion region 26 corresponding to the so-called base region 20 of the transistor element 13 as explained in FIG. This is a case where a semiconductor capacitive element is configured with the junction capacitance of . In FIGS. 3 and 4, parts corresponding to those in FIG. 2 are given the same reference numerals, and parts corresponding to the transistor element 13 in FIG. 2 are omitted.

第3図に於ては、領域26をアイソレーシヨン
領域16より離間して島領域15B上の一部に第
2図に説明したトランジスタ13のベース領域2
0の形成と同時に形成し、領域27を同様に第2
図に説明したトランジスタ13のエミツタ領域2
1の形成と同時にこの領域27が領域26外に延
在して第2の領域29の一部に、即ち島領域15
BのN型部分より成る第2の領域29に連接する
ように形成し、第1の電極31を領域26とオー
ミツクに接続して領域27と絶縁層32を介して
対向するように形成し、第2の電極33を第3の
領域27にオーミツクに接続して形成した場合
で、この場合に於ても電極31−絶縁層32−領
域27によつて形成されるMIS構造による容量を
形成するも、之と並列に領域26を厚み方向には
さみ込んで形成する第3の領域27と第2の領域
29との間に形成されるPN接合を接合容量とし
て大容量の容量素子が構成される。ここに領域2
7と29との接続は外部接続によつて行うことも
できることは云う迄もないところである。
In FIG. 3, the region 26 is separated from the isolation region 16, and the base region 2 of the transistor 13 explained in FIG.
0, and similarly form the second region 27.
Emitter region 2 of transistor 13 explained in the figure
1, this region 27 extends outside the region 26 and becomes a part of the second region 29, that is, the island region 15.
A first electrode 31 is ohmically connected to the region 26 and is formed to face the region 27 with an insulating layer 32 in between. This is a case in which the second electrode 33 is ohmicly connected to the third region 27, and in this case also a capacitance is formed by the MIS structure formed by the electrode 31, the insulating layer 32, and the region 27. Also, a large-capacitance capacitive element is constructed by using the PN junction formed between the third region 27 and the second region 29, which are formed by sandwiching the region 26 in parallel with this in the thickness direction, as a junction capacitor. . area 2 here
It goes without saying that the connection between 7 and 29 can also be made by external connection.

又、第4図の例に於ては、領域26をアイソレ
ーシヨン領域16の一部に跨がるように形成し、
第1の電極31をアイソレーシヨン領域16に接
続すると共に、絶縁層32を介して第3の領域2
7と対向するように、云い換えれば、絶縁層32
を介して第3の領域27上に跨がるように形成し
た場合である。
Further, in the example of FIG. 4, the region 26 is formed so as to straddle a part of the isolation region 16,
The first electrode 31 is connected to the isolation region 16 and the third region 2 is connected via the insulating layer 32.
In other words, the insulating layer 32
This is a case in which the third region 27 is formed so as to straddle the third region 27 via the third region 27 .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の説明に供する半導体容量素子
の拡大断面図、第2図は本発明による半導体容量
素子を用いた半導体集積回路の要部の断面図、第
3図及び第4図は半導体容量素子の他の例を示す
断面図である。 11は半導体基体、14はその半導体サブスト
レイト領域、15は半導体層、11aは主面、1
2は本発明による半導体容量素子、13はトラン
ジスタ素子、19,20及び21はトランジスタ
素子13のコレクタ、ベース及びエミツタ領域、
28は第1の領域、29は第2の領域、27は第
3の領域、J1,J2及びJ3は接合である。
FIG. 1 is an enlarged sectional view of a semiconductor capacitive element used for explaining the present invention, FIG. 2 is a sectional view of a main part of a semiconductor integrated circuit using a semiconductor capacitive element according to the present invention, and FIGS. FIG. 7 is a cross-sectional view showing another example of a capacitive element. 11 is a semiconductor substrate, 14 is a semiconductor substrate region thereof, 15 is a semiconductor layer, 11a is a main surface, 1
2 is a semiconductor capacitive element according to the present invention; 13 is a transistor element; 19, 20 and 21 are collector, base and emitter regions of the transistor element 13;
28 is a first region, 29 is a second region, 27 is a third region, and J 1 , J 2 and J 3 are junctions.

Claims (1)

【特許請求の範囲】[Claims] 1 半導体基体に第1導電型領域によつて囲まれ
た第2導電型の島領域が設けられ、該島領域内に
第1導電型の第1の領域が設けられ、該第1の領
域は、上記半導体基体の主面に平行に延在する領
域部分を有し、上記島領域内に上記第1の領域の
上記領域部分によつてその上側と下側とに夫々第
2導電型の第3の領域と第2の領域とを区分し、
上記第1の領域に接続される第1の電極が絶縁層
を介して上記第3の領域上に跨るように形成さ
れ、上記第2及び第3の領域は互いに電気的に接
続され、これらのうち少くとも一方の領域に第2
の電極が接続されて成る半導体容量素子。
1. An island region of a second conductivity type surrounded by a region of a first conductivity type is provided in a semiconductor substrate, a first region of a first conductivity type is provided within the island region, and the first region is , having a region extending parallel to the main surface of the semiconductor substrate, and having a second conductivity type second conductivity type in the island region on the upper and lower sides thereof, respectively, by the region portion of the first region. 3 and the second area,
A first electrode connected to the first region is formed so as to straddle the third region via an insulating layer, and the second and third regions are electrically connected to each other. a second area in at least one of the areas.
A semiconductor capacitive element consisting of connected electrodes.
JP4704577A 1977-04-22 1977-04-22 Semiconductor capacity element Granted JPS53132278A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4704577A JPS53132278A (en) 1977-04-22 1977-04-22 Semiconductor capacity element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4704577A JPS53132278A (en) 1977-04-22 1977-04-22 Semiconductor capacity element

Publications (2)

Publication Number Publication Date
JPS53132278A JPS53132278A (en) 1978-11-17
JPS6124825B2 true JPS6124825B2 (en) 1986-06-12

Family

ID=12764189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4704577A Granted JPS53132278A (en) 1977-04-22 1977-04-22 Semiconductor capacity element

Country Status (1)

Country Link
JP (1) JPS53132278A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5965461A (en) * 1982-10-06 1984-04-13 Toshiba Corp Semiconductor device

Also Published As

Publication number Publication date
JPS53132278A (en) 1978-11-17

Similar Documents

Publication Publication Date Title
JPS6159852A (en) Manufacture of semiconductor device
JP2979554B2 (en) Method for manufacturing semiconductor device
JPS6124825B2 (en)
JPS6323335A (en) Isolation and substrate connection for bipolar integrated circuit
JPS61245573A (en) Semiconductor device
JPS61172346A (en) Semiconductor integrated circuit device
JP2501556B2 (en) Optical sensor and manufacturing method thereof
KR900008818B1 (en) Manufacture method of a particle in bipolar integrated circuit
JPS61278161A (en) High withstand voltage semiconductor device
JP2613939B2 (en) Semiconductor device
JP2757872B2 (en) Semiconductor device and manufacturing method thereof
KR100247281B1 (en) Junction capacitor using bipolar transistor structure and manufacturing method thereof
JPH075639Y2 (en) Junction isolation structure between semiconductor regions in an integrated circuit device
JPS6118344B2 (en)
JPH079385Y2 (en) Semiconductor integrated circuit device
JPH09181335A (en) Semiconductor device
JPH03155659A (en) Semiconductor device
JP2518880B2 (en) Semiconductor device
JPS6334949A (en) Semiconductor device
JPS59134B2 (en) Semiconductor integrated circuit device
JPS6244430B2 (en)
JP2538384B2 (en) Semiconductor integrated circuit
JP2604793B2 (en) Semiconductor device
JPH0474478A (en) Diode
JPH0346335A (en) Bipolar-type semiconductor integrated circuit