Nothing Special   »   [go: up one dir, main page]

JPS61235533A - High heat resistant sintered hard alloy - Google Patents

High heat resistant sintered hard alloy

Info

Publication number
JPS61235533A
JPS61235533A JP7476885A JP7476885A JPS61235533A JP S61235533 A JPS61235533 A JP S61235533A JP 7476885 A JP7476885 A JP 7476885A JP 7476885 A JP7476885 A JP 7476885A JP S61235533 A JPS61235533 A JP S61235533A
Authority
JP
Japan
Prior art keywords
phase
rigid
cemented carbide
metal phase
joined metallic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7476885A
Other languages
Japanese (ja)
Inventor
Matsuo Higuchi
樋口 松夫
Yasuhiro Saito
斉藤 恭寛
Seiji Nakatani
中谷 征司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP7476885A priority Critical patent/JPS61235533A/en
Publication of JPS61235533A publication Critical patent/JPS61235533A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an sintered hard alloy which has the high heat resistant and is excellent in the thermal shock resistance and the toughness and endures the severe use conditions by consituting a rigid phase and a joined metallic phase wherein the rigid dispersion particles having the specified particle size are dispersed uniformly and finely. CONSTITUTION:The high heat resistant sintered hard alloy consisting of the rigid phase and the joined metallic phase and the rigid dispersion particles having 0.01%n3mum particle size are dispersed uniformly and finely in the above- mentioned joined metallic phase endures enough the use in a severe use conditions such as a rapid thermal cycling and the elevation in the surface temp. of a tool. As the above-mentioned rigid dispersion particles, one or more kinds among ThO2, Al2O3. ZrO2, Y2O3, SiO2, Al4O3, WC, SiC, Si3N4, AlN, YN, TiB2 and ZrB2 are used. Also as the above-mentioned rigid phase, the phase consisting of WC is suitable and as the joined metallic phase, the phase consisting of one or more kinds among Ni, Co, Fe, Cr, Mo and W are preferable. Furthermore it is desirable that the amount of the joined metallic phase is regulated to 10-35wt.% total amount and the amount of the rigid dispersion particles is regulated to 10-40 vol.% joined metallic phase.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、たとえば温間・熱間鍛造用工具などに用い
られる高耐熱性超硬合金に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a highly heat-resistant cemented carbide used, for example, in tools for warm and hot forging.

従来の技術 従来から、熱間鍛造用に使用される金型やパンチの材料
として、主にダイス鋼(SKD61)が使われていた。
Conventional Technology Conventionally, die steel (SKD61) has been mainly used as a material for molds and punches used for hot forging.

ダイス鋼は、表面に熱亀裂変形が発生しやすい。そのた
め、現状では、ダイス鋼からなる金型やパンチの寿命は
短く、製品の寸法精度も悪い。したがって、熱間鍛造後
の部品は、研削加工が必要とされている。
Die steel is prone to thermal cracking and deformation on its surface. Therefore, at present, the lifespan of molds and punches made of die steel is short, and the dimensional accuracy of the products is poor. Therefore, parts after hot forging require grinding.

しかし、最近の動向として、鍛造後の侵加工を省略する
ために、精密な温間鍛造や精密な熱間鍛造が要望されて
いる。
However, as a recent trend, precise warm forging and precise hot forging are desired in order to omit the erosion process after forging.

発明が解決しようとする問題点 しかし、以下のような問題点がある。温間鍛造や熱R鍛
造では、被加工物の濃度が高い。しかも、鍛造材料の変
形によって発熱も生じる。そのため、金型表面の温度が
急上昇する。一方、金型からワークを取出した後は、潤
滑剤、冷却水、冷却油などを金型表面に吹付けるので、
金型は急冷される。
Problems to be Solved by the Invention However, there are the following problems. In warm forging and hot R forging, the concentration of the workpiece is high. Moreover, heat generation occurs due to the deformation of the forged material. As a result, the temperature on the mold surface rises rapidly. On the other hand, after removing the workpiece from the mold, lubricant, cooling water, cooling oil, etc. are sprayed onto the mold surface.
The mold is rapidly cooled.

このような温度の急激な変化による熱衝撃によって、金
型表面には損傷が生ずる。なお、ここでいう温間とは約
200〜800℃であり、熱間とは約800〜1100
℃の範囲を示すものである。
Thermal shock caused by such rapid changes in temperature causes damage to the mold surface. In addition, warm here means about 200-800 degrees Celsius, and hot means about 800-1100 degrees Celsius
It indicates the range of degrees Celsius.

そのため、従来から用いられているダイス鋼では、肌荒
れ、変形、熱亀裂が著しく、また鋼の熱膨張が大きいた
め高精度を出すことができない。
Therefore, conventionally used die steel suffers from severe surface roughness, deformation, and thermal cracking, and because the steel has large thermal expansion, high precision cannot be achieved.

高温での硬度が大きい5K)l−51でも、熱膨張、熱
亀裂、クラックなどの問題があり、高寿命を望めない。
Even with 5K) l-51, which has a high hardness at high temperatures, there are problems such as thermal expansion, thermal cracks, and cracks, and a long life cannot be expected.

上述材料と比較して、高温での熱膨張が鋼の172であ
る超硬合金が望ましい。しかし、瑣在市場で用いられて
いる超硬合金は、耐熱衝撃性や靭性が低いので、熱間鍛
造のような厳しい使用条件下では使用に耐えない。
In comparison to the above-mentioned materials, a cemented carbide having a thermal expansion at high temperatures of 172 that of steel is preferred. However, the cemented carbide used in the current market has low thermal shock resistance and low toughness, so it cannot be used under severe usage conditions such as hot forging.

それゆえに、この発明の目的は、急激な熱サイクル、工
具表面温度の上昇などの厳しい使用条件下でも、十分に
使用に耐え得る高耐熱性超硬合金を提供することである
Therefore, an object of the present invention is to provide a highly heat-resistant cemented carbide that can be satisfactorily used even under severe usage conditions such as rapid thermal cycles and increases in tool surface temperature.

なお、熱間で使用される超硬合金として、鋼線材圧延に
用いられる圧延ロールが知られている。
Note that, as a cemented carbide used in hot conditions, rolling rolls used for rolling steel wire are known.

しかし、この圧延ロールは、圧延時には、均等荷重下で
用いられる。つまり、圧延ロールには、前述したような
強い熱rItは加わっていない。このことからも、前述
した使用条件がいかに厳しいがが推定され得る。
However, this rolling roll is used under uniform load during rolling. In other words, the strong heat rIt as described above is not applied to the rolling roll. From this, it can be inferred how severe the above-mentioned usage conditions are.

問題点を解決するための手段、 作用および発明の効果 この発明による高耐熱性超硬合金は、硬質相と結合金属
相とからなる。そして、結合金属相相粒径0.01μ−
以上3μm以下の硬質分散粒子を均一微細に分散させて
いることを特徴とする。
Means for Solving the Problems, Actions and Effects of the Invention The highly heat-resistant cemented carbide according to the present invention consists of a hard phase and a binder metal phase. And the bonded metal phase grain size is 0.01 μ-
It is characterized in that hard dispersed particles of 3 μm or less are uniformly and finely dispersed.

超硬合金の靭性および熱亀裂性を改善するには。To improve the toughness and thermal cracking properties of cemented carbide.

結合金属相の量を増せばよい。しかし、そのようにすれ
ば、合金の硬度が下がり、鍛造金型としての条件を満足
しなくなる。そこで、この発明の狙いとするところは、
常温における硬度はもちろんのこと、温間あるいは熱間
鍛造条件下の高1!(200〜1100℃)での硬度を
高く維持することのできる合金組成および組織を得るこ
とにある。
The amount of bound metal phase may be increased. However, if this is done, the hardness of the alloy will decrease and the conditions for a forging die will no longer be satisfied. Therefore, the aim of this invention is to
Not only hardness at room temperature, but also high hardness under warm or hot forging conditions! The object of the present invention is to obtain an alloy composition and structure that can maintain high hardness at temperatures (200 to 1100°C).

これを実現するために、結合金属相に分散される硬質分
散粒子は、その粒径が0.01μm以上3μ翔以下とさ
れる。そして、粒径が0.03μ園以上1μ園以下であ
るならば、分散効果はざらに高められる。硬質分散粒子
を結合金属相に分散させる方法として、色々なものが゛
ある。たとえば、従来の粉末冶金法を用いて分散させて
もよい。また、最近開発されたメカニカルアロイング法
によって分散粒子を結合金属相となる金属粉末中に予め
あるいは混合時に分散させておけば、より均質な超硬合
金が得られる。すなわち、真空雰囲気下、不活性ガス雰
囲気下、窒素ガス雰囲気下、あるいは種々の酸素分圧の
雰囲気下において、乾式で高エネルギのアトライタやボ
ールミルを用いて分散粒子を結合金属粉末中に混合前や
混合時に分散させると、より大きな効果が得られる。
In order to achieve this, the hard dispersed particles dispersed in the bonded metal phase have a particle size of 0.01 μm or more and 3 μm or less. If the particle size is between 0.03 μm and 1 μm, the dispersion effect is greatly enhanced. There are various methods for dispersing hard dispersed particles into a bound metal phase. For example, conventional powder metallurgy methods may be used for dispersion. Further, if dispersed particles are dispersed in the metal powder serving as the bonding metal phase in advance or during mixing using the recently developed mechanical alloying method, a more homogeneous cemented carbide can be obtained. That is, in a vacuum atmosphere, an inert gas atmosphere, a nitrogen gas atmosphere, or an atmosphere with various oxygen partial pressures, dispersed particles are mixed into a bonded metal powder using a dry high-energy attritor or ball mill. A greater effect can be obtained by dispersing it during mixing.

硬質分散粒子は、好ましくは、TtlOz、A(L20
3、Zr0z、Y2O5、St Ot、An<Cs 、
WC,Si C,Si a N4 % A庭N、YN、
T ! B 2 N Z r B 2からなる群から選
択された1種または2種以上の物質である。これらの物
質を硬質分散粒子として用いれば、超硬合金は高い耐熱
性を呈するようになる。また、硬質相は、たとえば炭化
タングステンからなる。さらに、結合金属相は、たとえ
ば、Ni 、 Go 、 Fe 、 Or 、 MOl
Wからなる群から選択された1種または2種以上の物質
からなる。
The hard dispersed particles are preferably TtlOz,A(L20
3, Zr0z, Y2O5, St Ot, An<Cs,
WC, Si C, Si a N4% A garden N, YN,
T! One or more substances selected from the group consisting of B2NZrB2. If these substances are used as hard dispersed particles, the cemented carbide will exhibit high heat resistance. Further, the hard phase is made of, for example, tungsten carbide. Additionally, the bound metal phase can include, for example, Ni, Go, Fe, Or, MOL
It consists of one or more substances selected from the group consisting of W.

好ましくは、結合金属相の同は、全体の10重量%以上
35重量%以下の範囲内にあり、硬質分散粒子の世は、
結合金属相の10体積%以上40体積%以下の範囲内に
あるようにされる。結合金属相の量が10重量%未満な
らば、靭性が不足する。一方、この結合金属相のmが3
5重量%を越えるならば、硬度が不足し、そのため鍛造
用金型としての使用に耐えなくなる。硬質分散粒子の量
が結合金属相の10体積%以上40体積%以下の範囲内
にあれば、分散効果が高く、i11澗強度、硬度が高く
なり、^耐熱性を発揮する。この硬質分散粒子の量が1
0体積%未満ならば結合金属相内に分散する硬質分散粒
子の量が不足し、そのため所望の効果がほとんど得られ
ない。一方、硬質分散粒子の量が結合金属相の40体積
%を越えるならば、結合金属相内の靭性が低下し、かえ
って逆効果となる。
Preferably, the content of the binding metal phase is within the range of 10% to 35% by weight of the total, and in the case of hard dispersed particles,
The content of the binder metal phase is within a range of 10% by volume or more and 40% by volume or less. If the amount of binding metal phase is less than 10% by weight, toughness is insufficient. On the other hand, m of this bonded metal phase is 3
If it exceeds 5% by weight, the hardness will be insufficient and therefore it will not be able to withstand use as a forging die. If the amount of hard dispersed particles is within the range of 10% by volume or more and 40% by volume or less of the bound metal phase, the dispersion effect is high, the strength and hardness are high, and heat resistance is exhibited. The amount of hard dispersed particles is 1
If it is less than 0% by volume, the amount of hard dispersed particles dispersed within the bonded metal phase will be insufficient, and therefore the desired effect will hardly be obtained. On the other hand, if the amount of hard dispersed particles exceeds 40% by volume of the bonded metal phase, the toughness within the bonded metal phase will decrease, which will have the opposite effect.

第1図は、各種合金の^Il硬度の変化を示す図である
。図中、1が本発明に従った^耐熱性超硬合金である。
FIG. 1 is a diagram showing changes in ^Il hardness of various alloys. In the figure, 1 is a heat-resistant cemented carbide according to the present invention.

そして、2は通常のWC−Go 、3が5KH9,4が
5KD61である。この図から明らかなように、本発明
に従った超硬合金は、特に高温における硬度を高く維持
することができる。
2 is normal WC-Go, 3 is 5KH9, and 4 is 5KD61. As is clear from this figure, the cemented carbide according to the present invention can maintain high hardness, especially at high temperatures.

この発明に従って得られた超硬合金は、たとえば熱間ま
たは温間鍛造用塑性加工工具として、ダイ、パンチ、ノ
ックアウト、エジェクタピン、シャー刃、ロールなどに
有利に利用され得る。しかし、必ずしも工具全体がこの
発明に従った超硬合金から作られていなくてもよい。た
とえば、工具のうちワークと接触する部分にのみこの発
明に従った超硬合金を用い、その他の部分には綱を用い
てもよい。この場合、超硬合金の部分と鋼の部分とはた
とえば、電子ビーム溶接やレーザビーム溶接などの溶接
によって互いに接合される。さらに、この発明に従った
超硬合金の表面に、Ti c、−r+ ON、 Ti 
Co、Tt CNO,A fLt Oh 、An N 
N S I s N 4 、S j C−B N 、C
などの1層以上の層を被覆してもよい。
The cemented carbide obtained according to the present invention can be advantageously used as a plastic working tool for hot or warm forging, such as a die, punch, knockout, ejector pin, shear blade, roll, etc. However, it is not necessary that the entire tool be made of cemented carbide according to the invention. For example, the cemented carbide according to the present invention may be used only in the part of the tool that comes into contact with the workpiece, and the other parts may be made of steel. In this case, the cemented carbide part and the steel part are joined together, for example, by welding, such as electron beam welding or laser beam welding. Further, on the surface of the cemented carbide according to the present invention, Ti c, -r+ ON, Ti
Co, Tt CNO, A fLt Oh, An N
N SI s N 4 , S j CB N , C
It may be coated with one or more layers such as.

実施例 実施例1 結合金属相の原料と硬質分散粒子の原料との混合割合を
変え、ざらに硬質分散粒子の種類を変えて、以下の試験
を行なった。
Examples Example 1 The following tests were conducted by changing the mixing ratio of the raw material for the bonded metal phase and the raw material for the hard dispersed particles, and by roughly changing the type of the hard dispersed particles.

まず、1〜2μ−の結合金属相の原料と0.5〜1μ讃
の硬質分散粒子の原料とをアトライタに装入し、Arガ
ス雰囲気の下、乾式で回転数20OrIllIで201
1111メカニカルアロイング処理を行なった。その模
、3〜5μ−の炭化タングステン粉末を装入し、アセト
ンを容′器上部まで入れ湿式で10時間混合した。得ら
れた混合粉末を所要の寸法に成形した俵、真空下で焼結
し、その後HIP処理を行なった。こうして得られた焼
結体を研磨し、高温強度、硬度を測定した。その結果を
、以下の第1表にまとめた。
First, the raw materials for the bonded metal phase of 1 to 2μ and the raw materials for the hard dispersed particles of 0.5 to 1μ are charged into an attritor, and in an Ar gas atmosphere, a dry process is carried out at a rotational speed of 20 or IllI.
1111 mechanical alloying treatment was performed. To simulate this, 3 to 5 micron tungsten carbide powder was charged, and acetone was added to the top of the container and mixed in a wet manner for 10 hours. The obtained mixed powder was molded into bales of required dimensions, sintered under vacuum, and then subjected to HIP treatment. The sintered body thus obtained was polished and its high temperature strength and hardness were measured. The results are summarized in Table 1 below.

比較例として、結合金属相の量が全体の1011m%未
満の試料、結合金属相の量が全体の35重量%を越える
試料および硬質分散粒子を装入しない試料を作り、その
高温強度、硬度を測定した。
As comparative examples, samples were prepared in which the amount of the bonded metal phase was less than 1011 m% of the total weight, a sample in which the amount of the bonded metal phase exceeded 35% by weight of the total weight, and a sample in which no hard dispersed particles were charged, and their high temperature strength and hardness were evaluated. It was measured.

第1表から明らかなように、この発明に従って得られた
超硬合金は、特に高温における硬度および抗折力に優れ
た特性を示している。
As is clear from Table 1, the cemented carbide obtained according to the present invention exhibits excellent properties, particularly in hardness and transverse rupture strength at high temperatures.

(以下余白) 実施例2 実施例1で得られた合金を用いて、熱間鍛造用バンチン
グダイを作った。このバンチングダイは、直径35II
11の棒鋼を1150℃に加熱し、切断することによっ
て得られたワークを、パンチングするのに使用される。
(The following is a blank space) Example 2 Using the alloy obtained in Example 1, a bunching die for hot forging was made. This bunching die has a diameter of 35II.
A workpiece obtained by heating No. 11 steel bar to 1150° C. and cutting it is used for punching.

こうして得られたバンチングダイの性能を、以下の第2
表にまとめた。
The performance of the bunching die obtained in this way was evaluated by the following second method.
It is summarized in the table.

第2表から明らかなように、結合金属相を有し、かつそ
の結合金属相内に硬質分散粒子を分散させた超硬合金か
らなるバンチングダイは、その性能が良好であることが
認められる。
As is clear from Table 2, it is recognized that the performance of the bunching die made of cemented carbide having a bonding metal phase and having hard dispersed particles dispersed in the bonding metal phase is good.

なお、本実施例では、HIP処理を行なった場合を例に
挙げたが、HIP処理を行なわない場合にも同様の効果
が得られる。
In this embodiment, the case where the HIP process is performed is taken as an example, but the same effect can be obtained even when the HIP process is not performed.

(以下余白) 第2表 実施例3 実施例1の試料番号3の粒度をいろいろと変えて、実施
例1と同一方法で合金を作り、実施例2と同一の評価を
進めた。得られた結果を第3表にまとめた。
(Margin below) Table 2 Example 3 Alloys were made in the same manner as in Example 1 by varying the grain size of sample number 3 in Example 1, and the same evaluation as in Example 2 was carried out. The results obtained are summarized in Table 3.

第3表から明らかなように、0.01μll〜3μ+m
以下の硬質分散粒子径のものが性能が良好であることが
認められる。
As is clear from Table 3, 0.01μll~3μ+m
It is recognized that the following hard dispersion particle diameters have good performance.

第3表Table 3

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来の合金および本発明に従った合金の高温
硬度変化を示す図である。 図において、1は本発明に従った合金、2は従来のWC
−Co合金、3は工員鋼5KI−19,4は工具J11
SKD61である。 (ほか2名)
FIG. 1 is a diagram showing the high temperature hardness changes of a conventional alloy and an alloy according to the present invention. In the figure, 1 is an alloy according to the present invention, 2 is a conventional WC
-Co alloy, 3 is worker steel 5KI-19, 4 is tool J11
It is SKD61. (2 others)

Claims (5)

【特許請求の範囲】[Claims] (1)硬質相と結合金属相とからなり、前記結合金属相
に粒径0.01μm以上3μm以下の硬質分散粒子を均
一微細に分散させていることを特徴とする、高耐熱性超
硬合金。
(1) A highly heat-resistant cemented carbide consisting of a hard phase and a bonded metal phase, characterized in that hard dispersed particles with a particle size of 0.01 μm or more and 3 μm or less are uniformly and finely dispersed in the bonded metal phase. .
(2)前記硬質分散粒子は、ThO_2、Al_2O_
3、ZrO_2、Y_2O_3、SiO_2、Al_4
C_3、WC、SiC、Si_3N_4、AlN、YN
、TiB_2、ZrB_2からなる群から選択された1
種または2種以上の物質であることを特徴とする、特許
請求の範囲第1項に記載の高耐熱性超硬合金。
(2) The hard dispersed particles include ThO_2, Al_2O_
3, ZrO_2, Y_2O_3, SiO_2, Al_4
C_3, WC, SiC, Si_3N_4, AlN, YN
, TiB_2, ZrB_2
The highly heat-resistant cemented carbide according to claim 1, characterized in that it is a species or two or more kinds of substances.
(3)前記硬質相は、炭化タングステンからなることを
特徴とする、特許請求の範囲第1項または第2項に記載
の高耐熱性超硬合金。
(3) The highly heat-resistant cemented carbide according to claim 1 or 2, wherein the hard phase is made of tungsten carbide.
(4)前記結合金属相は、Ni、Co、Fe、Cr、M
o、Wからなる群から選択された1種または2種以上の
物質からなることを特徴とする、特許請求の範囲第1項
ないし第3項のいずれかに記載の高耐熱性超硬合金。
(4) The binding metal phase is Ni, Co, Fe, Cr, M
The highly heat-resistant cemented carbide according to any one of claims 1 to 3, characterized in that it is made of one or more substances selected from the group consisting of O, W, and W.
(5)前記結合金属相の量は、全体の10重量%以上3
5重量%以下の範囲内にあり、前記硬質分散粒子の量は
、前記結合金属相の10体積%以上40体積%以下の範
囲内にあることを特徴とする、特許請求の範囲第1項な
いし第4項のいずれかに記載の高耐熱性超硬合金。
(5) The amount of the binding metal phase is 10% or more by weight of the total3
5% by weight or less, and the amount of the hard dispersed particles is in the range of 10% by volume or more and 40% by volume or less of the binding metal phase. High heat-resistant cemented carbide according to any one of Item 4.
JP7476885A 1985-04-08 1985-04-08 High heat resistant sintered hard alloy Pending JPS61235533A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7476885A JPS61235533A (en) 1985-04-08 1985-04-08 High heat resistant sintered hard alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7476885A JPS61235533A (en) 1985-04-08 1985-04-08 High heat resistant sintered hard alloy

Publications (1)

Publication Number Publication Date
JPS61235533A true JPS61235533A (en) 1986-10-20

Family

ID=13556789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7476885A Pending JPS61235533A (en) 1985-04-08 1985-04-08 High heat resistant sintered hard alloy

Country Status (1)

Country Link
JP (1) JPS61235533A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009074173A (en) * 2007-09-19 2009-04-09 Ind Technol Res Inst Ultra-hard composite material and method for manufacturing the same
CN102140591A (en) * 2011-03-08 2011-08-03 深圳市格林美高新技术股份有限公司 ThO2-contained cobalt-base bonding phase ultrafine hard alloy powder as well as preparation method and application thereof
CN102373357A (en) * 2010-08-19 2012-03-14 比亚迪股份有限公司 Composition composed of metal and ceramic and its preparation method, cermet and Raymond mill
CN104630590A (en) * 2015-02-12 2015-05-20 成都邦普合金材料有限公司 Composite hard alloy material and preparation method thereof
CN104630589A (en) * 2015-02-12 2015-05-20 成都邦普合金材料有限公司 Tungsten carbide coated composite hard alloy material and preparation method thereof
CN105154743A (en) * 2015-08-21 2015-12-16 上海海事大学 WC/Co-ZrB2 hard alloy and preparation method thereof
WO2017073712A1 (en) * 2015-10-30 2017-05-04 住友電気工業株式会社 Sintered compact and method for producing same
WO2018198414A1 (en) * 2017-04-26 2018-11-01 住友電気工業株式会社 Cutting tool
CN111979469A (en) * 2020-07-31 2020-11-24 青岛理工大学 Preparation method of oxide dispersion strengthened steel based on powder forging

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009074173A (en) * 2007-09-19 2009-04-09 Ind Technol Res Inst Ultra-hard composite material and method for manufacturing the same
CN102373357A (en) * 2010-08-19 2012-03-14 比亚迪股份有限公司 Composition composed of metal and ceramic and its preparation method, cermet and Raymond mill
CN102140591A (en) * 2011-03-08 2011-08-03 深圳市格林美高新技术股份有限公司 ThO2-contained cobalt-base bonding phase ultrafine hard alloy powder as well as preparation method and application thereof
CN104630590A (en) * 2015-02-12 2015-05-20 成都邦普合金材料有限公司 Composite hard alloy material and preparation method thereof
CN104630589A (en) * 2015-02-12 2015-05-20 成都邦普合金材料有限公司 Tungsten carbide coated composite hard alloy material and preparation method thereof
CN105154743A (en) * 2015-08-21 2015-12-16 上海海事大学 WC/Co-ZrB2 hard alloy and preparation method thereof
WO2017073712A1 (en) * 2015-10-30 2017-05-04 住友電気工業株式会社 Sintered compact and method for producing same
CN108350529A (en) * 2015-10-30 2018-07-31 住友电气工业株式会社 Agglomerated material and its manufacturing method
WO2018198414A1 (en) * 2017-04-26 2018-11-01 住友電気工業株式会社 Cutting tool
WO2018198719A1 (en) * 2017-04-26 2018-11-01 住友電気工業株式会社 Cutting tool
JPWO2018198719A1 (en) * 2017-04-26 2020-02-27 住友電気工業株式会社 Cutting tools
CN111979469A (en) * 2020-07-31 2020-11-24 青岛理工大学 Preparation method of oxide dispersion strengthened steel based on powder forging

Similar Documents

Publication Publication Date Title
US5482670A (en) Cemented carbide
JP2006513119A (en) Composition for cemented carbide and method for producing cemented carbide
JP2010514933A (en) Corrosion resistant tool for cold forming
EP0815277A1 (en) Corrosion resistant cermet wear parts
JP2009543696A (en) High performance friction stir welding tool
JP2008503650A (en) High performance cemented carbide material
JPS61235533A (en) High heat resistant sintered hard alloy
JP3025601B2 (en) Forging die and method of manufacturing the same
EP0202886B1 (en) Canless method for hot working gas atomized powders
US5380482A (en) Method of manufacturing ingots for use in making objects having high heat, thermal shock, corrosion and wear resistance
JP2775810B2 (en) Cemented carbide with composite area
JP4537501B2 (en) Cemented carbide and method for producing the same
JPS61194147A (en) Sintered hard alloy
JPS62146237A (en) Highly heat-resistant sintered hard alloy
JPS5857502B2 (en) Sintered material with toughness and wear resistance
JPH02179843A (en) Tool material for hot tube making
JPS6335706B2 (en)
JPS6260461B2 (en)
JPH0426554A (en) Sintering material for tool
JPS63216942A (en) Tool for warm and hot forgings
JPS609849A (en) Sintered hard alloy with high strength and oxidation resistance
JPS6360253A (en) Warm-and hot-forging tool
JPH08319532A (en) Sintered hard alloy for punching tool
JPH07138690A (en) Hyperfine-grained hard alloy and parts
JPS6350443A (en) Warm-and hot-forging tool