Nothing Special   »   [go: up one dir, main page]

JPS61215948A - Particle flocculation discriminating device - Google Patents

Particle flocculation discriminating device

Info

Publication number
JPS61215948A
JPS61215948A JP5788085A JP5788085A JPS61215948A JP S61215948 A JPS61215948 A JP S61215948A JP 5788085 A JP5788085 A JP 5788085A JP 5788085 A JP5788085 A JP 5788085A JP S61215948 A JPS61215948 A JP S61215948A
Authority
JP
Japan
Prior art keywords
light
microplate
camera
image
aggregation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5788085A
Other languages
Japanese (ja)
Inventor
Tomoo Saito
斎藤 智雄
Kyosuke Sakurabayashi
桜林 恭輔
Norihiro Suzuki
鈴木 紀尋
Norio Yokoyama
横山 則夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujirebio Inc
Original Assignee
Fujirebio Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujirebio Inc filed Critical Fujirebio Inc
Priority to JP5788085A priority Critical patent/JPS61215948A/en
Publication of JPS61215948A publication Critical patent/JPS61215948A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/82Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a precipitate or turbidity

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To make possible the quick and exact automatic discrimination of flocculation by disposing a TV camera and light sources on the same side of a microplate and taking in the optical state of the microplate by the TV camera. CONSTITUTION:An image taking-in device 1 is provided with a plate stage 4 which is formed of a light reflective material and on which the microplate is imposed in the lower part thereof. The stage 4 is so formed that the light transmitted through the microplate is reflected and can be made incident again on the microplate 3 if the microplate 3 to be imposed thereon is transparent. The solid-state element TV camera 6 and the two light sources 7 near the same are provided above the stage 4. The light sources 7 irradiate light to the microplate 3 and take the refracted light thereof as the information on the optical state into the TV camera 6. The inputted image signal is processed and the flocculation state is discriminated in an image processing unit 2.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、臨床検査における粒子凝集判定装置、さらに
詳しくはマイクロタイター法における凝集ノソターン判
定装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an apparatus for determining particle aggregation in clinical tests, and more particularly to an apparatus for determining agglutination in microtiter methods.

(従来の技術) 現在、免疫学的測定におけるマイクロタイター法ではマ
イクロプレート上の凝集の有無を検出し、免疫成分の微
量測定を行なうことが広く行なわれている。これらの凝
集の有無は肉眼による目視判定により行なっており、こ
の目視判定においては、凝集の有無をウェル内の粒子の
分布を成る輝度以下の部分の面積としてとらえる、また
標準凝集A?ターン、標準非凝集A?ターンと比較する
、さらくまた隣接するウェルの様子との関連を考慮する
などの判断を総合的に組合せ、判定している。従って、
目視判定には高度な熟練を要し、また、感覚的な試験方
法であるので判定者による個人差が生じ、さらに、同一
判定者でも再現性に欠けるなどの欠点があった。
(Prior Art) Currently, the microtiter method in immunoassay is widely used to detect the presence or absence of agglutination on a microplate and to measure trace amounts of immune components. The presence or absence of these aggregations is determined visually with the naked eye.In this visual judgment, the presence or absence of aggregation is determined as the area of the area below the brightness that constitutes the distribution of particles in the well, and standard aggregation A? Turn, standard non-cohesive A? Judgments are made by comprehensively combining judgments such as comparison with the turn and consideration of the relationship with the appearance of adjacent wells. Therefore,
Visual judgment requires a high degree of skill, and since it is an intuitive testing method, there are individual differences between judges, and there are also drawbacks such as a lack of reproducibility even among the same judge.

この目視判定を機器により自動化することは省力化につ
ながるばかシでなく、判定結果に客観性を持たせ、測定
精度の大巾な向上が期待できる。
Automating this visual judgment using equipment is not a fool's errand that will lead to labor savings, but it will also give objectivity to the judgment results and can be expected to greatly improve measurement accuracy.

粒子凝集反応は適用できる検査項目が多くしかも操作が
簡単で、検出感度も高く、大量検体処理に適している等
の特長を持つにもかかわらず、最終判定が自動化されな
いというのが唯一の欠点であった。従って、この欠点を
解決し凝集反応の精度良い自動判定法を開発することは
臨床検査上極めて重要なことであシ医学の発展に貢献す
るところ大である。
Although the particle agglutination reaction has many applicable test items, is easy to operate, has high detection sensitivity, and is suitable for processing large amounts of samples, the only drawback is that the final judgment cannot be automated. there were. Therefore, solving this drawback and developing a highly accurate automatic determination method for agglutination reactions is extremely important for clinical testing and will greatly contribute to the development of medical science.

(発明が解決しようとする問題点) しかし、現在性なわれている複雑な因子の組合せによる
目視判定と同一の判断を機器化することは装置が極めて
複雑となり経済的にも高価になシ冥用性に乏しい。そこ
で機器による自動判定においては判定因子の数を限定し
、かついかにして目視判定の結果と一致させるかが技術
的なポイントとなる。従来試みられた自動判定装置はい
ずれもフォトメーターを使用しておシ各ウェルの中心部
の吸光度と凝集を対応させようとしたもの、あるいはウ
ェル中心部と中心周縁部との光量比を凝集と対応させよ
うとしたもの等があるが、いずれも目視判定の補助的手
段としての能力しかなく、目視判定にとってかわる性能
のものは無かった。
(Problem to be solved by the invention) However, it would be difficult to implement the same judgment as the visual judgment based on a complex combination of factors, which is currently being done, because the equipment would be extremely complicated and economically expensive. It is of little use. Therefore, in automatic determination by equipment, the technical point is to limit the number of determination factors and how to match the results of visual determination. All of the automatic determination devices that have been attempted so far have either used a photometer to correlate the absorbance at the center of each well with aggregation, or have tried to correlate the light intensity ratio between the center of the well and the periphery of the well to determine aggregation. There have been attempts to make it compatible, but all of them have the ability to only serve as an auxiliary means to visual judgment, and none have the ability to replace visual judgment.

また従来の装置はウェルを1個づつ測定していくため、
測定に時間を要し、かつ、プレートの移動装置が必ず必
、要であった。
In addition, since conventional equipment measures wells one by one,
Measurements take time and require a plate moving device.

さらに、従来の自動判定装置では透過光を利用して行な
われるが、この方法では以下に説明するように極めて不
充分な測定しか達成できなかった。
Further, conventional automatic determination devices utilize transmitted light, but this method can only achieve extremely insufficient measurements, as will be explained below.

すなわち、粒子凝集反応の試料には血清をはじめ、種々
の蛋白等が含まれており、これらの成分が粒子凝集反応
とは別に析出し、溶液全体が白濁する場合が少くない。
That is, a sample for a particle aggregation reaction contains various proteins such as serum, and these components often precipitate separately from the particle agglutination reaction, making the entire solution cloudy.

本発明者らは極めて多数の試験、猪果を注意深く観察し
た結果、この現象は試料血清、試薬溶液の極めて複雑な
組合せによって引起こされており、特に試薬混合後、長
時間を経たもの、蛋白や塩濃度の高いものについて無視
しえない程多く起ることをはじめて見出した。
As a result of careful observation of numerous tests and boars, the present inventors have found that this phenomenon is caused by extremely complex combinations of sample serum and reagent solutions, especially those that have been mixed for a long time, For the first time, we discovered that this phenomenon occurs so frequently that it cannot be ignored in foods with high salt concentrations.

しかるに、従来の装置においては、この白濁に対する対
策が全くとられておらず不充分な測定しかできなかった
。すなわち、透過光の測定では析出物による乱反射によ
って著しく光量が減するため、透過光量と粒子凝集反応
は対応せず、粒子濃度を明るさに変換する凝集自動判定
装置においては凝集の正確な判定ができなかった。
However, in the conventional apparatus, no measures were taken to prevent this clouding, and only insufficient measurements were possible. In other words, when measuring transmitted light, the amount of light is significantly reduced due to diffuse reflection from precipitates, so the amount of transmitted light does not correspond to the particle aggregation reaction, and automatic aggregation determination equipment that converts particle concentration into brightness cannot accurately determine aggregation. could not.

さらに、また、従来の装置では、凝集の判定を透過光の
測定によシ行なっていたので、透過光がウェル内を下方
から上方に通過する際の1度しか粒子から吸光を受けず
コントラストが不明瞭であった。
Furthermore, in conventional devices, aggregation was determined by measuring transmitted light, so the transmitted light was absorbed by the particles only once when passing through the well from the bottom to the top, resulting in poor contrast. It was unclear.

本発明は、以上のような問題点を解消し、従来の装置よ
シ簡単で、かつ目視判定以上の精度を有する粒子凝集判
定装置を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems and provide a particle aggregation determination device that is simpler than conventional devices and has higher accuracy than visual determination.

(問題点を解決するための手段) 本発明は、上記目的を達成するために、TVカメラと光
源をマイクロプレートの同一側に配設し、このTVカメ
ラでマイクロプレートの光学的状態を取込むようにして
、迅速かつ正確に凝集の自動判定を可能にしたものであ
る。
(Means for Solving the Problems) In order to achieve the above object, the present invention disposes a TV camera and a light source on the same side of a microplate, and captures the optical state of the microplate using the TV camera. This makes it possible to quickly and accurately automatically determine aggregation.

すなわち、マイクロプレートが載置されるプレート置台
と、該プレート置台の上方に配設されたTVカメラ及び
光源とを有し、前記プレート置台は載置されるマイクロ
プレートが光源からの入射光をマイクロプレート下方に
まで透過させるときは該透過光を反射自在に形成される
画像取込装置と、前記TVカメラから入力した画像信号
を処理して凝集状態を判定する画像処理装置とからなる
ことを特徴とする粒子凝集判定装置。
That is, it has a plate holder on which a microplate is placed, a TV camera and a light source arranged above the plate holder, and the plate holder allows the microplate to be placed to receive incident light from the light source. It is characterized by comprising an image capturing device configured to freely reflect the transmitted light when the transmitted light is transmitted below the plate, and an image processing device that processes the image signal input from the TV camera and determines the state of aggregation. Particle aggregation determination device.

プレート置台は、マイクロプレートを所定個所に載置す
るためのものであり、載置されるマイクロプレートが透
明であるときは、マイクロプレートの透過光を反射して
再びマイクロプレートに入射できるように形成される。
The plate holder is used to place the microplate at a predetermined location, and when the microplate to be placed is transparent, it is designed to reflect the transmitted light of the microplate and re-enter the microplate. be done.

これは、プレート置台を光反射性材料で形成したり、ま
たプレート置台表面に反射部材を設けたりし1行なわれ
る。また、プレート置台はマイクロプレートのウェルの
底面に可及的に近接して設けられることが好ましく、ウ
ェルの底面に密着しτいることが最も好ましい。これに
より、マイクロプレートで複雑に屈折した光がプレート
置台で反射されてTVカメラに到達する割合が減少する
のを防止する。
This is accomplished by forming the plate holder from a light-reflecting material or by providing a reflective member on the surface of the plate holder. Further, it is preferable that the plate stand is provided as close as possible to the bottom surface of the well of the microplate, and most preferably, it is in close contact with the bottom surface of the well. This prevents a decrease in the proportion of light that is complicatedly refracted by the microplate and is reflected by the plate stand and reaches the TV camera.

マイクロプレートを透明でなく、光を反射可能に形成し
たとき、例えば、マイクロプレート自体を光反射性不透
明材料で形成したときまだは透明プレートに光反射性不
透明材料を塗装したときには、プレート置台は光を反射
可能に形成される必要性はない。
When the microplate is not transparent and is made to reflect light, for example, when the microplate itself is made of a light-reflecting opaque material, but when the transparent plate is coated with a light-reflecting opaque material, the plate holder will be able to reflect light. There is no need for it to be made reflective.

このプレート置台の上方にTVカメラが設けられている
。このTVカメラは、各ウェルの光学的状態を取込むた
めのものであり、全ウェルの光学的状態を1度で取込む
ことができるだけ上方子位置させられることが必要であ
る。このTVカメラには、正確さ及び動作の安定性の点
から固体素子カメラが好ましい。TVカメラのレンズは
幾何学的歪みの少ないレンズが用いられ、また、フィル
ターを装着することもでき、このフィルターの色は粒子
の色と補色関係にある色を使用することが、凝集像を他
と効率よく区別できるので好ましい。
A TV camera is provided above this plate holder. This TV camera is for capturing the optical state of each well, and needs to be positioned as upwardly as possible to capture the optical state of all wells at once. A solid-state camera is preferable for this TV camera from the viewpoint of accuracy and stability of operation. TV camera lenses use lenses with little geometric distortion, and can also be equipped with filters.The color of this filter should be complementary to the color of the particles, so that the agglomerated images can be This is preferable because it can be efficiently distinguished from the other.

また、前記プレート置台の上方には光源も設けられてい
る。この光源は、マイクロプレートに光を照射しその反
射光を光学的状態の情報としてTVカメラに取込ませる
だめのものである。光源は、適宜選択使用されるが、粒
子の多様な色の測定に対応できるので色温度の高い螢光
燈が好ましく、まだちらつきが少なく画像の再現性が良
いので、トランノヌターインバーターを電源部に持つ高
周波螢光燈を使用することが好ましい。
Further, a light source is also provided above the plate holder. This light source is used to irradiate light onto the microplate and capture the reflected light into a TV camera as information on the optical state. The light source is selected and used as appropriate, but a fluorescent light with a high color temperature is preferable because it can measure a variety of colors of particles, and a tranno-nutar inverter is used as a power source because it has less flicker and has good image reproducibility. It is preferred to use a high frequency fluorescent light with a

前記プレート置台の周囲には、乳白の反射板を設けるこ
とができる。この反射板は、透明のマイクロプレートに
おいて、相対的に中心部が明るく周縁部が暗くなること
を防止し、各ウェル内の明るさを実質的に均一にするだ
めのものである。
A milky white reflector may be provided around the plate holder. The purpose of this reflective plate is to prevent the center from becoming relatively bright and the periphery to become dark in a transparent microplate, and to make the brightness within each well substantially uniform.

前記TVカメラには、画像処理装置が接続されている。An image processing device is connected to the TV camera.

この画像処理装置は、TVカメラから入力した画像信号
を処理して凝集状態を判定するための装置である。そし
て、この画像処理装置は、TVカメラからの出力を受取
るビデオ入力部、各々の画素のデーターを記録するデジ
タル画像メモIJ一部、その内容を必要に応じてコンピ
ー−ターに送るビデオ出力部、及びこの出力を計算処理
するマイクロコンピュータからなシ、さらに、ビデオ入
力のモニターテレビ、計算結果を記録するグリンタが設
けられている。
This image processing device is a device for processing image signals input from a TV camera and determining the state of aggregation. This image processing device includes a video input section that receives the output from the TV camera, a part of the digital image memo IJ that records the data of each pixel, and a video output section that sends the contents to a computer as necessary. A microcomputer for calculating and processing the output, a monitor television for video input, and a printer for recording the calculation results are provided.

(作用) 本発明の粒子凝集判定装置は、光源がマイクロプレート
の各ウェルに均一な強さの光を照射し、この照射された
光はウェル内の希釈液内に入射する。この入射光は希釈
液に白濁があっても判定可能な粒子濃度の領域が白濁が
生じない場合の粒子濃度の領域と同一範囲を維持する。
(Function) In the particle aggregation determination device of the present invention, a light source irradiates each well of a microplate with light of uniform intensity, and this irradiated light enters the diluent in the well. With this incident light, even if the diluted solution has cloudiness, the range of particle concentration that can be determined remains the same as the range of particle concentration when no cloudiness occurs.

一方、入射光は、粒子で吸光を受けつつ希釈液内を通過
した後、ウェルの底部または反射板で反射され再び粒子
で吸光を受けつつ希釈液内を通過する。従って粒子の濃
淡によシ各部を通過する光のコントラスが強調されてい
る。各ウェルから出た光はTVカメラに入射し、TVカ
メラに全ウェルの光学的状態が取込まれる。この取込ま
れた光学的状態は、画像信号として画像処理装置に送ら
れ、この画像処理装置が所定の処理を行い凝集の判定を
行う。
On the other hand, the incident light passes through the diluted solution while being absorbed by the particles, is reflected by the bottom of the well or the reflecting plate, and passes through the diluted solution while being absorbed by the particles again. Therefore, the contrast of light passing through each part is emphasized depending on the density of the particles. The light emitted from each well is incident on a TV camera, which captures the optical state of all wells. This captured optical state is sent as an image signal to an image processing device, and this image processing device performs predetermined processing to determine aggregation.

(実施例) 以下、本発明の粒子凝集判定装置の一実施例を第1図及
び第2図に基づいて説明する。
(Example) Hereinafter, an example of the particle aggregation determination device of the present invention will be described based on FIGS. 1 and 2.

第1図は粒子凝集判定装置の概略を示す図、第2図は同
上のプレート置台部分の拡大断面図であ、”る。   
                 、・第1図におい
て、lは画像取込装置、2は画像処理装置である。画像
取込装置lは、その下部にマイクロプレート3が載置さ
れる光反射性材料で形成されたプレート置台4が設けら
れ、このプレート置台4の周囲には上方へ行くに従って
拡開する断面曲線状の反射板5が設けられている。また
、プレート置台4の上方には、固体素子TVカメラ6が
設けられ、このTVカメラ6のレンズは16m5TVレ
ンズが標準装備され、さらにフィルターが設けられτい
る。このTVカメラ6の近傍には2個の光源7.7が設
けられている。この光源7,7は色温度の高い高周波螢
光燈が使用されている。また光源7,7とプレート置台
4間には、光源7,7からの光を均一にするため、乳白
半透明プラスチック板より成るディフューザー8が設け
られている。
FIG. 1 is a diagram schematically showing a particle aggregation determination device, and FIG. 2 is an enlarged sectional view of the plate mounting portion of the same.
, - In FIG. 1, 1 is an image capturing device, and 2 is an image processing device. The image capture device 1 is provided with a plate mount 4 made of a light-reflecting material on which a microplate 3 is placed at the bottom thereof, and around the plate mount 4 there is a cross-sectional curve that widens upward. A reflecting plate 5 having a shape is provided. Further, a solid-state TV camera 6 is provided above the plate holder 4, and the TV camera 6 is equipped with a 16m5 TV lens as standard, and is further provided with a filter. Two light sources 7.7 are provided near the TV camera 6. The light sources 7, 7 are high-frequency fluorescent lights with a high color temperature. Further, a diffuser 8 made of a milky-white translucent plastic plate is provided between the light sources 7, 7 and the plate holder 4 in order to make the light from the light sources 7, 7 uniform.

前記画像処理装置2は、TVカメラ6の出力を受取るビ
デオ入力部9と、各々の画素のデータを記録するデノタ
ル画像メモリ一部10と、その内容を必要に応じコンピ
ューターに送るビデオ出力部11と、この出力を計算処
理するマイクロコンピュータ−12とから成り、さらに
モニターテレビ13及びプリンター14が設けられてい
る。
The image processing device 2 includes a video input section 9 that receives the output of the TV camera 6, a digital image memory section 10 that records data of each pixel, and a video output section 11 that sends the contents to a computer as necessary. , and a microcomputer 12 for calculating and processing the output, and is further provided with a monitor television 13 and a printer 14.

次に、以上のような粒子凝集判定装置を使用して凝集の
自動判定をする方法について説明する。
Next, a method for automatically determining aggregation using the above particle aggregation determination device will be described.

(1)  マイクロプレート置台4に凝集を判定するた
めのマイクロプレート3を設置する。
(1) The microplate 3 for determining aggregation is installed on the microplate holder 4.

(2)  照明7およびTV左カメラのフィルターを選
択し、しぼシを調節して画像を取込む。
(2) Select the illumination 7 and TV left camera filters, adjust the grain, and capture the image.

(3)取込んだ画像はそのまま画像処理するか、いった
ん70ツピーデイスクに記録し、必要に応じコンピュー
ター12にロードして画像処理および計算処理を行なう
(3) The captured image can be processed as it is, or it can be recorded on a 70-tup disk and loaded into the computer 12 as necessary for image processing and calculation processing.

画像処理の内容は種々考えられるが、以下その1例につ
いて説明する。
Various types of image processing are possible, and one example will be described below.

■ TVカメラからの信号を画像メモリーに人力する。■ Manually input signals from TV cameras into image memory.

■ 画像中の輝度0を輝度lに変換する・・・メモリー
上の画像データーの輝度階調を変換する。輝度0は黒で
Fは白である。
■ Convert luminance 0 in the image to luminance 1...Convert the luminance gradation of the image data on memory. Luminance 0 is black and F is white.

■ マイクロプレートのウェル内の部分だけが輝度Fで
それ以外の部分は輝度Oであるマスク画像を重ね合わせ
、二つの画像間で画素単位に演算し新たな画像を合成す
る。これはTV左カメラによって取込んだ画像の内子必
要なデータが含まれている部分が取除かれ、凝集パター
ンの存在する場所だけのデータを残すためである。
(2) Superimpose mask images in which only the part inside the well of the microplate has a brightness of F and the other part has a brightness of O, and calculate pixel by pixel between the two images to synthesize a new image. This is because the inner part of the image captured by the TV left camera that contains necessary data is removed, leaving only the data where the agglomeration pattern exists.

■ 画像中の輝度0をFに変換する。これによりウェル
の画像のみが残ることになる。
■ Convert luminance 0 in the image to F. This leaves only the image of the well.

■ 画像中の輝度8以上をFに変換する。(輝度値は測
定対象物である粒子の色調、濃度等によって選択する) ■ 画像中の輝度1〜8を輝度0に変換する。
■ Convert luminance of 8 or higher in the image to F. (The brightness value is selected depending on the color tone, density, etc. of the particles to be measured.) (1) Convert brightness 1 to 8 in the image to brightness 0.

■ 画像計算の順番を指定するための画面を重ね合せる コンピューターの画像計算は画面の上から下、左から右
の順序で行なわれる。すなわちyの値の大きい順に計算
し若しyの値が等しければXの小さい方から計算される
。すなわち第3図に示す画面Aに於ては、左から2.4
,1.3の順序で計算される。第4図は画像計算の順序
を指定するための画面Bを示すものでありこれを画面A
と重ねると第5図に示す画面Cが合成される。この計算
の順序は左から1.2,3.4となる。本装置ではウェ
ルの順序と計算の順序を一致させるためにこの方法を採
用している。なお画面Bによって加わる面積は画面に比
して充分小さく、陽性、陰性の判定には影響しない。
■ Overlapping screens to specify the order of image calculations Computer image calculations are performed in the order from top to bottom and left to right of the screen. That is, the calculations are performed in descending order of the y values, or if the y values are equal, the calculations are performed in the order of the smaller X values. That is, in screen A shown in Fig. 3, 2.4 from the left
, 1.3. Figure 4 shows screen B for specifying the order of image calculation, which is called screen A.
When superimposed, screen C shown in FIG. 5 is synthesized. The order of this calculation is 1.2, 3.4 from the left. This method is adopted in this device to match the order of wells and the order of calculation. Note that the area added by screen B is sufficiently small compared to the screen, and does not affect the determination of positive or negative.

■ 画面中の96個のパターンについて面積を計算する
■ Calculate the area of 96 patterns on the screen.

■ 設定した基準値に比較し、凝集反応の陽性陰性を判
断する。
■ Compare with the set standard value and judge whether the agglutination reaction is positive or negative.

[F] 結果を記録する。[F] Record the results.

次に、透過光を測定する場合と反射光を測定する場合の
、白濁による影響を比較した測定結果について説明する
Next, a description will be given of measurement results comparing the influence of cloudiness when measuring transmitted light and when measuring reflected light.

透過光を測定した場合の、粒子濃度と明るさの関係の測
定結果を第6図に示す。この図で、白濁を生じない試料
においてウェルの明るさと粒子濃度の関係はABCで表
わされる。ABは粒子濃度と明るさが対応する領域であ
り、BCは粒子濃度が大きく光の通らない部分で粒子濃
度と明るさが対応しない部分である。Kはウェル内に生
じた濁りによる乱反射によって減少した透過の量を表わ
している。従って濁りを伴うウェル内の明るさと粒子濃
度の関係はDECで表される。この結果粒子濃度の変化
によってウェル内の明るさが変るのはOEの領域だけと
な、9 EB間は粒子濃度が変っても明るさは変らなく
なる。このように透過光を用いた場合析出物を伴う試料
では粒子濃度の変化が測定できない領域が拡がシ凝集判
定に誤シを導くことになる。
FIG. 6 shows the measurement results of the relationship between particle concentration and brightness when transmitted light was measured. In this figure, the relationship between the brightness of the well and the particle concentration in a sample that does not produce cloudiness is represented by ABC. AB is a region where particle concentration and brightness correspond, and BC is a region where particle concentration is high and light does not pass through, and where particle concentration and brightness do not correspond. K represents the amount of transmission reduced by diffused reflection due to turbidity generated within the well. Therefore, the relationship between brightness and particle concentration in a turbid well is expressed as DEC. As a result, the brightness in the well changes only in the OE region as the particle concentration changes, and the brightness does not change during 9 EB even if the particle concentration changes. In this way, when transmitted light is used, in a sample with precipitates, the area where changes in particle concentration cannot be measured expands, leading to errors in determining aggregation.

これに対し、反射光を測定した場合の、粒子濃度と明る
さの関係の測定結果を第7図に示す。この反射光の測定
においては白濁を伴わない試料につい又は第6図と同様
ABCで表わされるが、白濁を伴う試料ではこれがDE
C’となる。この結果かられかるように反射光の測定に
おいては白濁によって粒子濃g変化に対し、明るさが変
化しない領域は増加しない。
On the other hand, FIG. 7 shows the measurement results of the relationship between particle concentration and brightness when reflected light was measured. In the measurement of this reflected light, samples without white turbidity are expressed by ABC as in Figure 6, but samples with white turbidity are expressed as DE.
It becomes C'. As can be seen from this result, in the measurement of reflected light, the area where the brightness does not change does not increase with respect to the change in particle concentration due to clouding.

まだ第1図の装置による測定においてはウェルを通過し
た光はプレート置台4により反射を受けその光は透過光
測定となる。従って第6図と第7図の加わったものが$
1図の装置での測定となシ、白濁の影響は大巾に相殺さ
れ事実上消去されている。このため透過のみを利用する
従来技術に対し゛本発明は反射光と透過光の両方が関与
する測定法であり、これが濁りのある試料にも安定した
判定を下せる要因となっている。
In the measurement using the apparatus shown in FIG. 1, the light passing through the well is reflected by the plate holder 4, and that light is measured as transmitted light. Therefore, the addition of figures 6 and 7 is $
When measuring with the apparatus shown in Figure 1, the influence of cloudiness is largely offset and virtually eliminated. For this reason, unlike the conventional technology that uses only transmission, the present invention is a measurement method that involves both reflected light and transmitted light, and this is a factor that allows stable judgments to be made even in turbid samples.

さらに次に、透過光のみの測定の場合と、本発明の装置
の透過光と反射光の両方を測定する場合のコントラスト
を比較した測定結果について説明する。i@8図がこの
測定結果を示した図である。
Next, the results of comparing the contrast between the case of measuring only transmitted light and the case of measuring both transmitted light and reflected light of the apparatus of the present invention will be explained. Figure i@8 shows the results of this measurement.

この結果より、透過光のみを測定した場合のコントラス
トはA部分で、透過光と反射光の両方を測定した場合の
コントラストはB部分であるので、透過光と反射光の両
方を測定する場合の方がC部分だけコントラストが強調
されている。
From this result, the contrast when only transmitted light is measured is part A, and the contrast when both transmitted light and reflected light is measured is part B. Therefore, when measuring both transmitted light and reflected light, In this case, the contrast is emphasized only in the C portion.

(発明の効果) 本発明は以上のように構成し、TVカメラでウェルの光
学的状態を取込むようにしたので、1枚のマイクロプレ
ートの全ウェルのデーターを極めてを迅速に処理できる
。まだ、1度に全ウェルの光学的状態を取込むので、f
V−ト移動装置が必要でなく操作の簡易化が図れる。さ
らに、ウェル内の粒子濃度に関するフォトメーターとし
ての情報ばかりでなく、粒子凝集の2次元的広が9に関
する情報を同時に得ることができ、従来のフォトメータ
ーを使用した場合に比較し、多種類のデータが高速で得
られる。また本発明は、光源とTVカメラがマイクロプ
レートに対して同一側にあり、反射光とウェル内の希釈
液に入射した後プレート置台等で反射して再び希釈液を
透過した光を取込み凝集の判定をするので、白濁による
影響を受けることなくかつコントラストの強調された光
となっておシ、常に正確に粒子の凝集が判定できる。
(Effects of the Invention) The present invention is configured as described above, and the optical state of the wells is captured using a TV camera, so that data of all wells in one microplate can be processed extremely quickly. Still, since the optical state of all wells is captured at once, f
No V-t moving device is required, and the operation can be simplified. Furthermore, it is possible to obtain not only information about the particle concentration in the well as a photometer, but also information about the two-dimensional spread9 of particle aggregation, which allows for a greater variety of types of information than when using a conventional photometer. Data can be obtained at high speed. Further, in the present invention, the light source and the TV camera are on the same side with respect to the microplate, and the reflected light and the light that enters the diluent in the well, is reflected by a plate stand, etc., and passes through the diluent again, and the light is collected and used for aggregation. Since the determination is made, the light is not affected by cloudiness and the contrast is enhanced, so that particle aggregation can always be accurately determined.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の粒子凝集判定装置の一実施例概略図、
第2図は同上プレート置台部分の拡大断面図、第3図か
ら第5図面像計算の際の画面を示−す図、第6図は透過
光を測定した場合の粒子濃度と明るさの関係を示す図、
第7図は反射光を測定した場合の粒子濃度と明るさの関
係を示す図そして第8図はコントラストの測定結果を示
す図である。 l・・・画像取込装置、2・・・画像処理装置、3・・
・マイクロプレート、4・・・プレート置台、5・・・
反射板、6・・・TVカメラ、7・・−光源、9・・・
ビデオ入力部、10・・・デヅタル画像メモリ一部、1
1・−・ビデオ出力部、12・・・コンピューター。 特許出願人  富士レビオ株式会社 代理人 弁理士  1)中 政 浩 第1因 第3因   第4因 工面A          晶面B 第5凶 第6図 第7図 7tJltf−L!う濯1気 第8図
FIG. 1 is a schematic diagram of an embodiment of the particle aggregation determination device of the present invention;
Figure 2 is an enlarged cross-sectional view of the same plate placement part, Figures 3 to 5 are screens showing the image calculations, and Figure 6 is the relationship between particle concentration and brightness when measuring transmitted light. A diagram showing
FIG. 7 is a diagram showing the relationship between particle concentration and brightness when reflected light is measured, and FIG. 8 is a diagram showing the measurement results of contrast. l...image capture device, 2...image processing device, 3...
・Microplate, 4...Plate stand, 5...
Reflector, 6...TV camera, 7...-light source, 9...
Video input section, 10...Digital image memory part, 1
1.--Video output unit, 12.--Computer. Patent Applicant Fujirebio Co., Ltd. Agent Patent Attorney 1) Masahiro Naka 1st cause 3rd cause 4th cause A Crystal plane B 5th cause 6th figure 7th figure 7tJltf-L! Rinse 1 ki Figure 8

Claims (1)

【特許請求の範囲】[Claims] マイクロプレートが載置されるプレート置台と、該プレ
ート置台の上方に配設されたTVカメラ及び光源とを有
し前記プレート置台は載置されるマイクロプレートが光
源からの入射光をマイクロプレート下方にまで透過させ
るときは該透過光を反射自在に形成されている画像取込
装置と、前記TVカメラから入力した画像信号を処理し
て凝集状態を判定する画像処理装置とからなることを特
徴とする粒子凝集判定装置
The plate mount includes a plate holder on which a microplate is placed, and a TV camera and a light source arranged above the plate holder. The invention is characterized by comprising an image capturing device that is configured to freely reflect the transmitted light when the transmitted light is transmitted, and an image processing device that processes the image signal input from the TV camera and determines the state of aggregation. Particle aggregation determination device
JP5788085A 1985-03-22 1985-03-22 Particle flocculation discriminating device Pending JPS61215948A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5788085A JPS61215948A (en) 1985-03-22 1985-03-22 Particle flocculation discriminating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5788085A JPS61215948A (en) 1985-03-22 1985-03-22 Particle flocculation discriminating device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP4355395A Division JPH05256764A (en) 1992-12-21 1992-12-21 Particle aggregation judging method

Publications (1)

Publication Number Publication Date
JPS61215948A true JPS61215948A (en) 1986-09-25

Family

ID=13068299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5788085A Pending JPS61215948A (en) 1985-03-22 1985-03-22 Particle flocculation discriminating device

Country Status (1)

Country Link
JP (1) JPS61215948A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6435373A (en) * 1987-07-31 1989-02-06 Fujirebio Kk Method and device for high-sensitivity immunoassay
JPH02103446A (en) * 1988-10-12 1990-04-16 Maruzen Petrochem Co Ltd Density-pattern analyzing apparatus
DE4015930A1 (en) * 1989-05-17 1990-11-22 Suzuki Motor Co METHOD FOR Distinguishing Particle Aggregation Patterns
EP0433005A2 (en) * 1989-12-11 1991-06-19 Olympus Optical Co., Ltd. Automatic particle pattern judging method
US5225350A (en) * 1989-08-17 1993-07-06 Olympus Optical Co., Ltd. Particle agglutination pattern judgment method
JPH05297001A (en) * 1992-04-15 1993-11-12 Fujirebio Inc Method and device for automatic immunity measurement using magnetic particle
US5389555A (en) * 1989-12-21 1995-02-14 Olympus Optical Co., Ltd. Particle pattern judging method
EP0640828A1 (en) * 1993-08-27 1995-03-01 F. Hoffmann-La Roche AG Monitoring multiple reactions simultaneously and analyzing same
DE4042523C2 (en) * 1989-12-21 1995-05-24 Olympus Optical Co Investigation of particle patterns formed
US6814934B1 (en) 1991-05-02 2004-11-09 Russell Gene Higuchi Instrument for monitoring nucleic acid amplification
US8926905B2 (en) 2004-06-07 2015-01-06 Fluidigm Corporation Optical lens system and method for microfluidic devices

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4873143A (en) * 1971-09-22 1973-10-02
JPS4943685A (en) * 1972-08-30 1974-04-24
JPS50128537A (en) * 1974-03-29 1975-10-09
JPS562559A (en) * 1979-06-21 1981-01-12 Olympus Optical Co Ltd Detector for particle coagulation pattern
JPS56154647A (en) * 1980-05-02 1981-11-30 Hitachi Ltd Image treatment device
JPS5895248A (en) * 1981-11-02 1983-06-06 Olympus Optical Co Ltd Vessel for judging flocculation of particles and judging method for flocculation of particles using said vessel
JPS58102157A (en) * 1981-12-15 1983-06-17 Olympus Optical Co Ltd Judging method for particle agglomeration pattern
JPS59105543A (en) * 1982-12-08 1984-06-18 Matsushita Electric Ind Co Ltd Detector for antigen-antibody reaction

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4873143A (en) * 1971-09-22 1973-10-02
JPS4943685A (en) * 1972-08-30 1974-04-24
JPS50128537A (en) * 1974-03-29 1975-10-09
JPS562559A (en) * 1979-06-21 1981-01-12 Olympus Optical Co Ltd Detector for particle coagulation pattern
JPS56154647A (en) * 1980-05-02 1981-11-30 Hitachi Ltd Image treatment device
JPS5895248A (en) * 1981-11-02 1983-06-06 Olympus Optical Co Ltd Vessel for judging flocculation of particles and judging method for flocculation of particles using said vessel
JPS58102157A (en) * 1981-12-15 1983-06-17 Olympus Optical Co Ltd Judging method for particle agglomeration pattern
JPS59105543A (en) * 1982-12-08 1984-06-18 Matsushita Electric Ind Co Ltd Detector for antigen-antibody reaction

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6435373A (en) * 1987-07-31 1989-02-06 Fujirebio Kk Method and device for high-sensitivity immunoassay
JPH02103446A (en) * 1988-10-12 1990-04-16 Maruzen Petrochem Co Ltd Density-pattern analyzing apparatus
DE4015930A1 (en) * 1989-05-17 1990-11-22 Suzuki Motor Co METHOD FOR Distinguishing Particle Aggregation Patterns
US5096835A (en) * 1989-05-17 1992-03-17 Suzuki Jidosha Kogyo Kabushiki Kaisha Method of discriminating particle aggregation pattern
US5225350A (en) * 1989-08-17 1993-07-06 Olympus Optical Co., Ltd. Particle agglutination pattern judgment method
EP0433005A2 (en) * 1989-12-11 1991-06-19 Olympus Optical Co., Ltd. Automatic particle pattern judging method
US5162234A (en) * 1989-12-11 1992-11-10 Olympus Optical Co., Ltd. Automatic blood cell particle pattern judging method
US5389555A (en) * 1989-12-21 1995-02-14 Olympus Optical Co., Ltd. Particle pattern judging method
DE4042523C2 (en) * 1989-12-21 1995-05-24 Olympus Optical Co Investigation of particle patterns formed
US6814934B1 (en) 1991-05-02 2004-11-09 Russell Gene Higuchi Instrument for monitoring nucleic acid amplification
JPH05297001A (en) * 1992-04-15 1993-11-12 Fujirebio Inc Method and device for automatic immunity measurement using magnetic particle
EP0640828A1 (en) * 1993-08-27 1995-03-01 F. Hoffmann-La Roche AG Monitoring multiple reactions simultaneously and analyzing same
US8926905B2 (en) 2004-06-07 2015-01-06 Fluidigm Corporation Optical lens system and method for microfluidic devices
US9234237B2 (en) 2004-06-07 2016-01-12 Fluidigm Corporation Optical lens system and method for microfluidic devices
US9663821B2 (en) 2004-06-07 2017-05-30 Fluidigm Corporation Optical lens system and method for microfluidic devices
US10106846B2 (en) 2004-06-07 2018-10-23 Fluidigm Corporation Optical lens system and method for microfluidic devices
US10745748B2 (en) 2004-06-07 2020-08-18 Fluidigm Corporation Optical lens system and method for microfluidic devices

Similar Documents

Publication Publication Date Title
JP4402733B2 (en) Method and apparatus for calibrating an imaging device for analyzing agglutination reactions
CN110044405B (en) Automatic automobile instrument detection device and method based on machine vision
CN102279263A (en) CCD-type quantitative analysis system of colloidal gold immunity chromatography diagnosis test papers
CN213933620U (en) Polarized light source and surface defect detection device
JPS61215948A (en) Particle flocculation discriminating device
CN112595711A (en) Titration end point determination device
JPS6358237A (en) Particle aggregation deciding device
KR101006983B1 (en) detecting apparatus for panel
JPS62105031A (en) Decision device for particle flocculation
JPH0579999A (en) Inspecting device for precipitated foreign object in bottle
JP2628302B2 (en) Aggregation determination method and apparatus
JP3222727B2 (en) Optical member inspection device
JPH05256764A (en) Particle aggregation judging method
JPH08178855A (en) Method for inspecting light-transmissive object or specular object
JPH0472547A (en) Method for judging cohesive image
JPH0933342A (en) Method for controlling lighting luminance, and optical member inspecting device
JPH0943097A (en) Color filter defect inspection device
JP7482257B2 (en) Inspection device, information processing method, and program
JPH03180742A (en) Automatic coagulation image deciding method
JPH08136876A (en) Substrate inspecting device
JP4536968B2 (en) Blood test equipment
JPH08334470A (en) Optical member inspecting device
KR0152885B1 (en) Classifying method of soldering for pcb
JPH10170519A (en) Agglutination image automatic judging device
JPH08334433A (en) Optical member inspection device