JPS61200453A - Method for detecting casting flaw in continuous casting - Google Patents
Method for detecting casting flaw in continuous castingInfo
- Publication number
- JPS61200453A JPS61200453A JP4076785A JP4076785A JPS61200453A JP S61200453 A JPS61200453 A JP S61200453A JP 4076785 A JP4076785 A JP 4076785A JP 4076785 A JP4076785 A JP 4076785A JP S61200453 A JPS61200453 A JP S61200453A
- Authority
- JP
- Japan
- Prior art keywords
- casting
- coefficient
- temperature detection
- time
- casting flaw
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Investigating Or Analyzing Materials Using Thermal Means (AREA)
- Continuous Casting (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は連続鋳造における鋳造欠陥を検出する方法に関
する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for detecting casting defects in continuous casting.
周知の工うに連続鋳造においては鋳型に溶鋼を注入し、
所定断面に成形した後それを鋳型下方1夛連続的に引出
すことに工って鋳片の製造が行われている。而して前記
鋳型内における溶鋼の初期凝固状況は連続鋳造操業に重
要な影響を与える。In the well-known process of continuous casting, molten steel is poured into a mold,
A slab is manufactured by forming a slab into a predetermined cross section and then continuously pulling it out from below a mold. The initial solidification state of the molten steel in the mold has an important influence on the continuous casting operation.
例えば前記鋳型内の初期凝固過程で生成される凝固殻が
鋳型内面に固着し罠り、或いは凝固殻に介在物を捲込む
等の現象?生じると、鋳型直下で凝固殻が破断し、溶鋼
が流出するブレークアウトc以下、BOと言う)が発生
する。又、鋳型内において潤滑剤として用いられるパウ
ダーが不均一に流入する現象が生じると、凝固殻表面に
各種の欠陥が発生する。こσ】工うな鋳造欠陥(前述し
た凝固殻が鋳型内面に固着したル、或いはそれに介在物
を捲込む現象に1って生じるBOや、パウダーの不均一
流入現象に工って生じる表面欠陥等全総称して以下鋳造
欠陥と言う)が生じると、例えば前記BOが発生すると
その復旧に長時間を要し、生産性を著しく低下させる。For example, is there a phenomenon in which the solidified shell generated during the initial solidification process in the mold sticks to the inner surface of the mold and becomes trapped, or inclusions are rolled into the solidified shell? When this happens, the solidified shell breaks just below the mold, causing molten steel to flow out (hereinafter referred to as BO). Furthermore, if powder used as a lubricant flows unevenly into the mold, various defects will occur on the surface of the solidified shell. [σ] Casting defects (such as BO caused by the above-mentioned solidified shell sticking to the inner surface of the mold or the phenomenon in which inclusions are rolled into it, and surface defects caused by uneven inflow of powder, etc.) When a casting defect (hereinafter collectively referred to as a casting defect) occurs, for example, when the above-mentioned BO occurs, it takes a long time to recover from the BO, which significantly reduces productivity.
一方、表面欠陥が発生すると製造された鋳片り手入れが
必要となる。On the other hand, when surface defects occur, the manufactured slab requires maintenance.
特に近年、連続鋳造速度の高速化や連続鋳造と圧延工程
の直結化(以下直接圧延と言う)がS極的に進めらjし
ているが前記鋳造欠陥の発生はそれらを実施する上で大
きな障害となっていた。Particularly in recent years, the speed of continuous casting and the direct connection of continuous casting and rolling processes (hereinafter referred to as direct rolling) have been extremely advanced, but the occurrence of casting defects is a major problem in implementing these processes. It was a hindrance.
このため、従来工す前記鋳造欠陥全早期に予知、或いは
検出する技術が数多く提案されている。例えは、特開昭
57−152356号公報では鋳型壁面に熱電対を埋設
し、該熱電対にLシ検出された温度が通常状態の平均温
度より一旦上昇してから下降し罠ときtBOとして予知
する技術が、又%開昭55−84259号公報では鋳型
σノ相対する各面で温Ill検出し、それらを互いに比
較して七の温度差を指標にしてBO発生の事前現象を検
出する技術が開示されている。更に、特開昭57−11
5960号公報には前記鋳型に埋設した熱電対による検
出@度が平均温度より急激に低下したことから凝固殻の
表面部に大型介在物を捲込んだ現象を検出する技術が開
示きれており、特開昭57−115962号公報には前
記検出温度から時間変化″4全求め、該時間変化率と予
め決められた所定範囲QJ値と全比較することに1って
凝固殻の異常を検出する技術がそれぞれ開示きねている
。For this reason, many conventional techniques have been proposed for predicting or detecting casting defects at an early stage. For example, in JP-A-57-152356, a thermocouple is buried in the wall of the mold, and when the temperature detected by the thermocouple rises once above the average temperature in the normal state and then falls, it is predicted as tBO. In addition, Japanese Patent Publication No. 55-84259 discloses a technology that detects temperatures on each opposing surface of the mold σ, compares them with each other, and uses the temperature difference as an index to detect a prior phenomenon of BO generation. is disclosed. Furthermore, JP-A-57-11
Publication No. 5960 discloses a technique for detecting a phenomenon in which large inclusions are rolled into the surface of a solidified shell based on a sudden drop in temperature from the average temperature detected by a thermocouple embedded in the mold. JP-A-57-115962 discloses that an abnormality in the solidified shell is detected by determining the time change from the detected temperature and comparing the time change rate with a predetermined range QJ value. Each technology is ready to be disclosed.
前記従来技術に基づく鋳造欠陥の検出法は、いずれも熱
電対等の@度検出端に工って検出される11ノ絶対値t
−t: q;まま用いると共に、鋳造方向において1
箇所で検出芒れた温度の絶対値金基準として、前述した
工うに定常状態の平均@度、又は相対する壁面の温度と
比較したり、或いはその上昇率、又は下降率を予め定め
た目標範囲と比較して行うものであった。All of the methods for detecting casting defects based on the prior art described above are based on the absolute value t of
-t: q; used as is and 1 in the casting direction
The absolute value of the temperature detected at a point can be compared with the above-mentioned average temperature in a steady state or the temperature of the opposing wall surface, or the rate of increase or decrease can be determined within a predetermined target range. It was to be compared with.
ところが鋳造欠陥発生時における@度りツ上昇又は下降
量、及びそれらの単位時間当りの変化量は鋳造欠陥の稲
刈やその時の状況等に応じて大きくばらつき、極端な場
合同一の鋳造欠陥でも七の温度変化パターンFi、大き
くばらつくことが普通である。こQJため鋳造欠陥発生
時の@度変化パターンQ) % t M識は複雑となシ
、前記従来法のみでは鋳造欠陥を精度良く検出すること
は期待できなかった。例えば鋳型内における温度σノ変
化は、前述した工うな鋳造欠陥の発生時に加えて鋳造速
度や湯面レベルの急激な変動があった時にも生じる。第
13図it鋳造速度の変化とそれに対応する前記温度の
変化状況?示す線図である。第13図(a)は鋳造速度
か急激に低下し7c場合、第13図(b)は鋳造速度が
急激に上昇した場合を示す。第13図から判るLうに温
度の絶対値を用い、前記従来法rr)判断基準で鋳造欠
陥を認識した場合、前記鋳造速度や湯面レベル等が変化
する操業費atも鋳造欠陥と認識し、誤った+11断、
つまり誤報2発する結果となっていた。However, the amount of rise or fall of the rate when a casting defect occurs, and the amount of change thereof per unit time, vary widely depending on the harvesting of the casting defect and the situation at that time, and in extreme cases, even the same casting defect can cause It is normal for the temperature change pattern Fi to vary widely. Because of this QJ, the degree change pattern Q) % t M when a casting defect occurs is complicated, and it could not be expected to detect casting defects with high accuracy using only the conventional method. For example, a change in temperature σ within the mold occurs not only when the above-mentioned casting defects occur, but also when there is a sudden change in the casting speed or the level of the mold. Figure 13: Changes in casting speed and corresponding changes in temperature? FIG. FIG. 13(a) shows a case where the casting speed suddenly decreases (7c), and FIG. 13(b) shows a case where the casting speed suddenly increases. When a casting defect is recognized using the conventional method (rr) judgment criteria using the absolute value of the temperature shown in FIG. Wrong +11 cut,
This resulted in two false alarms.
鋳造欠陥の発生が検出されると実操業においてVi鋳鋳
造一旦停止するか、鋳造速rIjLを極端に低減する操
業アクションがとられる。このため誤報が多発すると、
例えば鋳片に段注ぎ等の品質欠陥が生じたシ、直接圧延
1に実施する上で重要な高温鋳片の製造に支障金与えた
う、後工程とのマツチ7グに支障を与える等の問題が発
生する。従って前記従来法を実操業に適用することはで
き難い状況にあった。When the occurrence of a casting defect is detected, operational action is taken to temporarily stop the Vi casting in actual operation or to extremely reduce the casting speed rIjL. For this reason, when false alarms occur frequently,
For example, quality defects such as step pouring may occur in the slab, it may cause a hindrance to the production of high-temperature slabs, which is important for direct rolling, or it may interfere with matching with subsequent processes. A problem occurs. Therefore, it was difficult to apply the conventional method to actual operation.
本発明は前記従来技術の問題点全解消し、鋳造欠陥を正
確に検出すると共に、鋳造欠陥検出時における誤判断?
少な(するととにより、#述した鋳片の品質欠陥の発生
、鋳片@叢の降下、後工程とのアノマツチング等の発生
を防止するものである。The present invention solves all the problems of the prior art, accurately detects casting defects, and prevents erroneous judgment when detecting casting defects.
By doing so, it is possible to prevent the above-mentioned quality defects in slabs, dropping of slabs, and anomassing with subsequent processes.
前記問題点を解決するための本発明の手段は、前記連続
鋳造用鋳型に温度検出喝を埋設し、該検出端から得られ
る@度推移パターンより鋳造欠陥を検出する方法におい
て、過去の鋳造欠陥発生時における時系列温度検出値?
フーリエ変換し、その各項係数と酌紀鋳造欠陥発生状況
との相関関係から鋳造欠陥発生閾係数を設定し、次いで
連続鋳造中に実測される@度検出値tフーリエ変換して
各項係数を求め、該各項係数が酌記鋳造欠陥発生閾係数
内となった時を異常発生と判断することを特徴とする連
続鋳造における鋳造欠陥検出方法である。The means of the present invention for solving the above-mentioned problems is a method of embedding a temperature detection hole in the continuous casting mold and detecting casting defects from a temperature transition pattern obtained from the detection end. Time-series temperature detection value at the time of occurrence?
Fourier transform is performed, and a casting defect occurrence threshold coefficient is set from the correlation between each term coefficient and the state of occurrence of casting defects during continuous casting.Fourier transform is then performed to determine each term coefficient. This is a method for detecting casting defects in continuous casting, characterized in that it is determined that an abnormality has occurred when each term coefficient falls within a casting defect occurrence threshold coefficient.
鋳造欠陥の一つとして前述し罠りうに鋳汲内で凝固殻の
一部が鋳型壁面に固着して破断し、七の破断部が鋳型よ
り引抜かれた際にBOとなる拘束性BOがある。まずこ
の拘束性BOi検出する方法について説明する。One of the casting defects mentioned above is the restrictive BO, which occurs when a part of the solidified shell sticks to the mold wall surface and breaks in the trap, and the broken part becomes BO when it is pulled out from the mold. . First, a method for detecting this restrictive BOi will be explained.
8g2図は鋳型lに埋設した温度検出端2の配列状態の
一例?示すもので、温度検出端2は矢印aで示す鋳造方
向及び矢印すで示す幅方向に対してそれぞれ適宜な間隔
で複数個配列されている。第3図ii第2図のX−X断
面図である。同図において3は溶鋼であシ、4は鋳片4
0の凝固殻と示す。Is the figure 8g2 an example of the arrangement of temperature detection terminals 2 embedded in the mold l? In the figure, a plurality of temperature detecting ends 2 are arranged at appropriate intervals in the casting direction indicated by arrow a and in the width direction indicated by arrow 2. FIG. 3 ii is a sectional view taken along line XX in FIG. 2; In the same figure, 3 is molten steel and 4 is slab 4.
0 solidified shell.
何らかの原因で凝固殻4の一部が鋳型lに固着すると、
鋳片40の引抜きにL)固着部57ノ直下で凝固tji
4が破断し、溶鋼3が流出する。従って破断部が通過す
ると温度検出端2で検出される温度検出値は第4図に示
す工う罠一旦上昇する。ところが破断部が通過した鎌は
固着した凝固殻4が移動しないためその厚みが増大し、
温度は下降することが知られている。しかしながら前述
した工うにと’7JLうな温度の変化は凝固殻4の破断
時と同様に鋳造速度が急激に上昇した場合、或いは湯面
レベルが急激に下がった場合に本生じる。本発明者等は
実際にBOが発生した場合の温度推移パターンについて
種々調査、検討を加え、操業条件σノ変枦要因に影響さ
れずにBOによってのみ現れるパターン金求めるために
、温度検出端2に1って検出された温度検出値の也々の
数学的、統計的解析と試みた。この結果1時系列温度検
出値をフーリエ変換して得られる各項係数は拘束性BO
発生状況と密接な相g41胸係を有していることを知見
した。If a part of the solidified shell 4 sticks to the mold l for some reason,
L) When drawing out the slab 40, solidification is performed immediately below the fixed part 57.
4 breaks and molten steel 3 flows out. Therefore, when the broken part passes, the temperature detection value detected by the temperature detection end 2 rises once as shown in FIG. However, the thickness of the sickle through which the broken part has passed increases because the fixed solidified shell 4 does not move.
It is known that the temperature decreases. However, the above-mentioned temperature change occurs when the casting speed suddenly increases or when the molten metal level drops suddenly, similar to when the solidified shell 4 breaks. The present inventors conducted various investigations and studies on the temperature transition pattern when BO actually occurs, and in order to obtain a pattern that appears only due to BO without being affected by the changing factors of operating conditions σ, the temperature detection end 2 We also attempted mathematical and statistical analysis of the detected temperature values. As a result, each term coefficient obtained by Fourier transforming one time-series temperature detection value is a constraint BO
It was found that the G41 breast pattern was closely related to the occurrence situation.
次に1時系列温度検出値をフーリエ変換して各項係数を
求める方法について説明する。Next, a method of obtaining coefficients of each term by Fourier transforming one time-series temperature detection value will be explained.
例えば、第2図における温度検出端2に工って予め定め
7を同期毎に検出された@度検出値ftT(k)とし、
4k = 0.1,2.−・−−−−、n −1)、
りまり TCO辺−らT(n−13までのn個の時系列
温度検出値T(k層;ある場合、T(k)に対するフー
リエ変換の一例として°のsin 、 cos展開は
下記(1)式で表される。For example, set the predetermined value 7 at the temperature detection terminal 2 in FIG.
4k = 0.1,2. -・----, n -1),
Rimari TCO side - T(n - 13 up to n time series temperature detection values T(k layer; if there is, as an example of Fourier transform for T(k), the sin and cos expansion of ° is as follows (1) Expressed by the formula.
((2πに/n)”j)14(Ako/2)−cos
fj (1)T(j) ; T(k
) ′、の7一リエ級数Ao:フーリエ係数
Ak: f
Bk: #
Ako; z
k ;整 数
ko : ’ (ko=n/23
n ;整 数(データ数)
j:I
π ;円周率
前記(1)式において求めるフーリエ係数のcos係数
2 A(j)、gin係数t−s (j)とすると、A
(j)及びB U)は下記421 、 (31式で懺さ
れる。((2π/n)”j) 14(Ako/2)-cos
fj (1)T(j); T(k
)', 7-lier series Ao: Fourier coefficient Ak: f Bk: # Ako; z k ; integer ko: ' (ko=n/23 n ; integer (number of data) j: I π ; pi If the cos coefficient 2 A (j) and the gin coefficient t-s (j) of the Fourier coefficient obtained in the above formula (1) are given, A
(j) and B U) are expressed by the following formula 421, (31).
n;整 数(データ数) 但し〔1≦j≦(n/2 ) −11 n ;整 数(データ数) ml。n; integer (number of data) However, [1≦j≦(n/2) −11 n; Integer (number of data) ml.
T(ホ):温度検出値
本発明において、フーリエ変換に工って得られる各項係
数とは前記(2)及び(31式で表されるAω及びB(
j) を言う。尚、本例ではフーリエ係数としてsin
、cos係数を用いたが1例えば実部、虚部係数等を用
いても良い。T(E): Temperature detection value In the present invention, the coefficients of each term obtained by Fourier transform are Aω and B(
j) say. In this example, the Fourier coefficient is sin
, cos coefficients are used, but for example, real part coefficients, imaginary part coefficients, etc. may be used.
次に実際に拘束性BOが発生した際に温賦検出端2a、
2bに工って検出され友時系列温度検出値をフーリエ変
換し、それにLって得られる前記各項係数と拘束性BO
との相関関係全調査し罠結果り】−例について説明する
。Next, when a restrictive BO actually occurs, the heating detection end 2a,
2b, the time-series temperature detected values are Fourier transformed, and the coefficients of each term and the constraint BO obtained by L are obtained.
We investigated all the correlations with the results and explained the example.
して表したものである。第5図において6及び61は温
度検出端2aから得られる時系列温度検出値(61け6
から設定時間遅れの時系列@度検出値)?、7は温度検
出端2bから得られる時系列温度検出値?示し、又8及
び81V′i時系列@度検出値6及び61のフーリエ変
換に用いた領域を、同様に9は時系列温度検出値7のフ
ーリエ変換に用いた領域?それぞれ表すもので、本例で
は8個の時系列温度検出値を用いてフーリエ変換した。It is expressed as follows. In FIG. 5, 6 and 61 are time-series temperature detection values obtained from the temperature detection terminal 2a (61 and 6
Time series with a set time delay @degree detection value)? , 7 is the time-series temperature detection value obtained from the temperature detection terminal 2b? 8 and 81V'i are the regions used for the Fourier transform of the time series @ temperature detection values 6 and 61, and 9 is the region used for the Fourier transform of the time series temperature detection values 7? In this example, the Fourier transform was performed using eight time-series temperature detection values.
フーリエ変換に用いるデータ数が8個であることから、
前記(2)式に工りcos係数A(j)は5個、(3)
得られるj=oの場合のAoはAa= (2/n )謡
。r(ホ)と表される。つまりAoは温度検出値の絶対
値の平均値に係わるものであシ、温度変化qノ時系列的
変化を認識するために必要なノぐラメータとはならない
ため本例でけAoは除外した。従って@5図の例で得ら
れる各項係数は、cos係数A(j)が4個、 si
n係数B(j)が3個となる。Since the number of data used for Fourier transform is 8,
There are 5 cos coefficients A(j) in the above formula (2), (3)
The obtained Ao in the case of j=o is Aa= (2/n). It is expressed as r (ho). In other words, Ao is related to the average value of the absolute values of the temperature detection values, and is not a parameter necessary for recognizing the time-series change in temperature change q, so Ao is excluded in this example. Therefore, each term coefficient obtained in the example of diagram @5 has 4 cos coefficients A(j), si
There are three n coefficients B(j).
第1図は過去に拘束性BOが発生した際の時系列温度検
出値を前述した方法に基づいてフーリエ変換し、各項係
数r求めた結果を表す図である。FIG. 1 is a diagram showing the results of Fourier transforming the time-series temperature detection values when restrictive BO occurred in the past based on the method described above, and determining the coefficient r of each term.
第1図(a)が前記領域8、第1図(b)が前記領域9
、第1図(c)が前記領域81のそれぞれフーリエ変換
して得られる各項係数を示すもり)で、横軸に各項(A
(j)= At−A4 、BU)=Bs −Bs )を
、縦軸に各項係数を指数として表している。第1図から
明らかな工うに拘束性BOが発生した場合の各項係数は
#1は一定バタ、−ノを有し、かつ各々の項係数は成る
範囲内にばらついている。しかも温度検出端クツ埋設位
置、及びフーリエ変換領域に応じた特有の、eターンを
示すことも確認された。FIG. 1(a) shows the area 8, and FIG. 1(b) shows the area 9.
, FIG. 1(c) shows the coefficients of each term obtained by Fourier transforming each of the regions 81), and the horizontal axis shows each term (A
(j)=At-A4, BU)=Bs-Bs) is expressed with each term coefficient as an index on the vertical axis. As is clear from FIG. 1, when a restrictive BO occurs, each term coefficient #1 has a constant variation and -no, and each term coefficient varies within a range. Furthermore, it was also confirmed that the temperature sensing end showed a characteristic e-turn depending on the buried position of the shoe and the Fourier transform region.
従って、予め過去f)拘束性80発生時の時系列温度検
出値をフーリエ変換し、各項係数のばらつきの範囲を求
めることにLってその上下限値を設定することができる
、この各項係数クツ上下限値クツ範囲内を本発明におい
ては鋳造欠陥発生間係数と定義し、用いたのである。こ
れに工り鋳造欠陥発生時の複雑な@度ノぐターフを一義
的に検出することが可能となった。Therefore, it is possible to set the upper and lower limits of each term by performing Fourier transform on the time-series temperature detection values at the time when f) Restriction 80 occurred in advance and finding the range of dispersion of each term coefficient. In the present invention, the coefficient within the range of upper and lower limit values is defined and used as the casting defect occurrence coefficient. In addition, it has become possible to uniquely detect complex @degree turf when a casting defect occurs.
前記鋳造欠陥発生間係数が設定されると、実際の連続鋳
造中における各項係数全、実測される温度検出値をフー
リエ変換して求め、それ?前記鋳造欠陥発生間係数と比
較する。この比較に1って連続鋳造中の各項係数が総て
前記鋳造欠陥発生閾係数内となった場合、拘束性BOが
発生する可能性が極めて高いことを意味することから鋳
造異常と判断することができる。Once the casting defect occurrence coefficient is set, all the coefficients for each term during actual continuous casting are obtained by Fourier transform of the actually measured temperature detection value, and then the actual temperature detection value is calculated. Compare with the casting defect occurrence coefficient. Based on this comparison, if the coefficients of each term during continuous casting are all within the casting defect generation threshold coefficient, it is determined that there is a casting abnormality because it means that there is an extremely high possibility that a restrictive BO will occur. be able to.
尚、前記比較はいずれか1つの温度検出端2で得られた
時系列温度検出値のフーリエ変換領域、例えは領域8、
又は領域81において鋳造欠陥発生間係数と@度検出端
2aの温度検出値に基つく各項係数金比較することでも
、前述したLうに温度検出端qノ埋設位置、フーリエ変
換領域に応じた特有の値を示すことから鋳造異常?判断
することは可能である。Note that the comparison is made in the Fourier transform region of the time-series temperature detection values obtained at any one of the temperature detection terminals 2, for example, region 8,
Alternatively, by comparing the casting defect generation coefficient and each term coefficient based on the temperature detection value of the temperature detection end 2a in the region 81, the characteristic characteristics according to the buried position of the temperature detection end q and the Fourier transform region can be determined. Casting abnormality from showing the value of? It is possible to judge.
又、第2図の例に示す工うに、鋳造方向に連続する2以
上の複数個の温度検出端2を埋設し、各温度検出端埋設
位置における鋳造欠陥発生閾係数金設定しておき、それ
ぞれの温度検出端2からの温度検出値をフーリエ変換し
て得られる各項係数がいずれも鋳造欠陥発生閾係数内と
なシ、面もそれが所定の時間差をもって生じた時を異常
と判断することや、第5図の例で示した工うに同一の温
度検出端2でもフーリエ変換領域を設定時間遅れで設け
、前述したと同様に各項係数がいずれも鋳造欠陥発生閾
係数内となシ、かつH「定時間差をもって生じた時を異
常と判断する工うI#成すれば。In addition, as shown in the example of Fig. 2, a plurality of two or more temperature detection terminals 2 consecutive in the casting direction are buried, and a casting defect occurrence threshold coefficient is set at each temperature detection terminal embedding position. The coefficients of each term obtained by Fourier transforming the temperature detection value from the temperature detection end 2 are all within the casting defect occurrence threshold coefficient, and when this occurs with a predetermined time difference, it is determined to be abnormal. Alternatively, even with the same temperature detection end 2 as shown in the example of FIG. 5, the Fourier transform region is provided with a set time delay, and each term coefficient is within the casting defect occurrence threshold coefficient as described above. And H: If you create an I# method that determines that an abnormality occurs when there is a fixed time difference.
鋳造欠陥発生の検出a度を極めて高くすることが可能で
ある。It is possible to extremely increase the degree of detection of the occurrence of casting defects.
時系列温度検出値をフーリエ変換する領域及び温度検出
値の数等は、鋳造欠陥の種別、発生頻度。The area in which the time-series temperature detection values are Fourier transformed, the number of temperature detection values, etc. are determined by the type of casting defect and the frequency of occurrence.
その他種々の操業条件に応じて適宜設定すれば良いつ例
えば設定時間遅れの連続的な領域を設け、時々刻々変化
する温度検出値から常時フーリエ変換演算を行って前記
判断を行うことでもよい。又、常時演算する際の演算負
荷を軽減させる罠めに。It may be set as appropriate depending on various other operating conditions. For example, the determination may be made by providing a continuous range of set time delays and constantly performing Fourier transform calculations from the temperature detection values that change from time to time. Also, it is a trap to reduce the calculation load when performing constant calculations.
温度検出値が通常の平均温度より上昇又は下降全開始す
る時点は従来法の偏差検出等の簡単なロジックで検出し
、温度上昇又は下降9J検出tトリガーとして前記領域
を設定してフーリエ変換演算を行うことも可能である。The point in time when the temperature detection value starts to rise or fall from the normal average temperature is detected using simple logic such as conventional deviation detection, and the above region is set as a temperature rise or fall 9J detection trigger to perform Fourier transform calculation. It is also possible to do so.
温度検出端2の埋設位置は鋳型内の溶鋼レベル10Lシ
下方で2%に溶鋼レベル10より100鱈以上下方にす
ることは溶鋼のレベル変動による影響を受けることなく
正確な鋳型温度を検出できることから好ましい。又、鋳
造方向に複数個埋設するときは、七の上下間隔は50■
以上離隔することが凝固殻破断箇所の移動を的確に把握
する上で効果的である。The buried position of the temperature detection end 2 is 2% below the molten steel level 10L in the mold, which is more than 100L below the molten steel level 10, because it is possible to accurately detect the mold temperature without being affected by changes in the molten steel level. preferable. Also, when burying multiple pieces in the casting direction, the vertical interval of 7 is 50cm.
This separation is effective in accurately understanding the movement of the solidified shell fracture location.
ところで前記説明は拘束9BOについて述べたが、本発
明者等は鋳型内f)凝固殻4に大型介在物を捲込み、七
の捲込み部が鋳型より引抜かれた際にBOとなる捲込み
性BOについても前記拘束性BOと同様にその発生状況
と各項係数との相関について調査した。By the way, the above description has been about the restraint 9BO, but the present inventors have investigated f) the rolling-in property in which large inclusions are rolled into the solidified shell 4 in the mold, and when the rolled-in part 7 is pulled out from the mold, it becomes BO. As for BO, the correlation between its occurrence and each term coefficient was investigated in the same way as for the above-mentioned restrictive BO.
捲込み性BO発生時の一般的な温度変化は第6図に示す
通シである。従って前記拘束性BOと同様の方法で過去
に捲込み性BOが発生した時の時系列温度検出値をフー
リエ変換し、各項係数を求めると共に鋳造欠陥発生閾係
数を求めた。第7図はその結果の一例を示すもので、拘
束性BOと同様に両者には密接な関係qノあることが確
認された。A typical temperature change when entrainment BO occurs is shown in FIG. Therefore, in the same manner as for the above-mentioned restrictive BO, the time-series temperature detection values when the engraved BO occurred in the past were subjected to Fourier transformation, and the coefficients of each term were determined, as well as the casting defect generation threshold coefficient. FIG. 7 shows an example of the results, and it was confirmed that there is a close relationship between the two, similar to the restrictive BO.
次に第8図はパウダーの不均一流入に起因する表面縦割
れ発生時の時系列温度検出値をフーリエ変換して得られ
た各項係数を表す図であシ、第9図がそり代表的な温度
変化ノ々ターンを示す図である。又、第10図はノミウ
ダーの不均一流入に起因する湯皺発生時の時系列@度検
出値をフーリエ変換して得られた各項係数を衣す図であ
シ、第11図がその代表的な温度変化パターンを示す図
である。第8図及び@lO図から判る工うに、フーリエ
変換して得られた各項係数Vi前記拘束性BO。Next, Figure 8 is a diagram showing the coefficients of each term obtained by Fourier transforming the time-series temperature detection values at the time of occurrence of vertical cracks on the surface due to uneven inflow of powder, and Figure 9 is a diagram showing representative warping. FIG. In addition, Figure 10 is a diagram showing the coefficients of each term obtained by Fourier transforming the time series @ degree detection values when hot water wrinkles occur due to uneven inflow of fleas, and Figure 11 is a representative diagram. FIG. 3 is a diagram showing typical temperature change patterns. As can be seen from FIG. 8 and the @lO diagram, each term coefficient Vi obtained by Fourier transformation is the constraint BO.
捲込性BOと同様に縦割れ、湯皺吟の表面欠陥とも密接
な相関関係を有している。Similar to the embossed BO, it also has a close correlation with vertical cracks and surface defects of Yujigin.
従って、鋳造欠陥の種別毎に鋳造欠陥発生閾係数を予め
求め、設定しておき、実際の連続鋳造中に実測される時
系列温度検出値をフーリエ変換して得られた各項係数t
−6述した鋳造欠陥発生閾係数と比較することに工って
、鋳造欠陥の発生に加えて七σJ株別を検出することも
可能である。又。Therefore, a casting defect occurrence threshold coefficient is determined and set in advance for each type of casting defect, and each term coefficient t is obtained by Fourier transforming the time-series temperature detection values actually measured during continuous casting.
-6 By making a comparison with the casting defect occurrence threshold coefficient described above, it is also possible to detect the occurrence of seven σJ stocks in addition to the occurrence of casting defects. or.
鋳造欠陥発生閾係数の上下限値金柑いて逆に鋳造欠陥発
生時の温度変化パターンの上下限値を高精度に定量化す
ることも可能であシ、この温度変化ノターンの上下限値
内に実測の温度変化ノ七ターンが入るか否かを判断する
ことによっても異常発生?検出することができる。Upper and lower limits of the casting defect occurrence threshold coefficient On the other hand, it is also possible to quantify with high precision the upper and lower limits of the temperature change pattern when a casting defect occurs, and it is possible to actually measure the upper and lower limits of this temperature change pattern. Does abnormality also occur by determining whether or not seven turns of temperature change occur? can be detected.
第12図は本発明に基づいて異常発生を判断する具体的
方法の一例を示すブロック図である。鋳型1に埋設され
た温度検出端2a〜2cの温度検出値はそれぞれ鋳造異
常発生確認部11及び各項係数演算部13に入力される
。FIG. 12 is a block diagram showing an example of a specific method for determining the occurrence of an abnormality based on the present invention. The temperature detection values of the temperature detection ends 2a to 2c embedded in the mold 1 are input to the casting abnormality occurrence confirmation section 11 and each term coefficient calculation section 13, respectively.
前記BOや表面欠陥等の鋳造欠陥発生が実際に確認され
たら欠陥確認指令装置110t−介して鋳造異常発生確
認部11に指令を発し、七の時の各温度検出端2の時系
列温度検出値が鋳造欠陥発生閾係数設定部12に入力さ
れる。鋳造欠陥発生閾係数設定部12では前述しπ1う
に過去に発生した鋳造欠陥毎にその時系列温度検出値を
フーリエ変換し、各項係数倉求めると共に鋳造欠陥発生
閾係数を設定する。When the occurrence of casting defects such as BO or surface defects is actually confirmed, a command is issued to the casting abnormality occurrence confirmation section 11 via the defect confirmation command device 110t, and the time-series temperature detection values of each temperature detection terminal 2 at the time of 7 are sent. is input to the casting defect occurrence threshold coefficient setting section 12. The casting defect occurrence threshold coefficient setting unit 12 Fourier transforms the time-series temperature detection values for each casting defect that has occurred in the past as described above, calculates coefficients for each term, and sets the casting defect occurrence threshold coefficient.
一方、温度検出端2で連続鋳造中に実測される温度検出
値は各項係数演算部13に入力され、各項係数演算部1
3において時々刻々各項係数の演算が行われ、その結果
は比較部14に入力する。On the other hand, the temperature detection value actually measured during continuous casting by the temperature detection end 2 is input to each term coefficient calculation unit 13, and each term coefficient calculation unit 1
3, the coefficients of each term are calculated from time to time, and the results are input to the comparison section 14.
比較部14では鋳造欠陥発生閾係数設定部12t・ら入
力される鋳造欠陥発生閾係数と各項係数演算部13から
入力される連続鋳造中の各項係数を比較して、連fi、
鋳造中’73各項係数が鋳造欠陥発生閾係数を総て満足
、つまシ鋳造欠陥発生閾係数内となったら指令部15に
異常発生の指令を発する。The comparison unit 14 compares the casting defect occurrence threshold coefficient inputted from the casting defect occurrence threshold coefficient setting unit 12t with each term coefficient during continuous casting inputted from the each term coefficient calculation unit 13, and calculates the series fi,
During casting, when each term coefficient satisfies the casting defect occurrence threshold coefficient and falls within the casting defect occurrence threshold coefficient, an abnormality occurrence command is issued to the command unit 15.
従って作業者は指令部15による指令内容に工り鋳造欠
陥の発生及びセqJ稲刈を確認することができ、直ちに
適切な操業アクション?とることができる。尚、指令部
15の指令に基づいて自動的に各種の操業アクションを
実行するシーケンス制御を行わせることも可能である。Therefore, the operator can confirm the occurrence of machining defects and seqJ rice harvesting based on the commands issued by the command unit 15, and immediately take appropriate operational action. You can take it. Note that it is also possible to perform sequence control in which various operational actions are automatically executed based on commands from the command unit 15.
鋳片のサイズが、厚250諺×幅1000鴎の低次ht
−キルド鋼を連続鋳造する際に本発明を実施した。本実
施例における鋳型l及び温度検出端2り】埋設位置は第
14図に示す通シであシ、温度検出端としては熱電対を
粗い、鋳型内面工り15■の深づに埋め込んだ。The size of the slab is 250mm thick x 1000mm wide.
- The invention was implemented during continuous casting of killed steel. Mold 1 and Temperature Sensing End 2 in this Example] The embedding position was a hole shown in FIG. 14, and a thermocouple was embedded as the temperature sensing end at a depth of 15 cm in the rough inner surface of the mold.
鋳造速度1.6 m/minで鋳造を実施中に鋳型長辺
ty)イ列に埋設された温度検出端2a、2bで実測さ
れた温度検出値が第15図に示すような変化?総ての各
項係数が予め設定しておいた拘束性BO時の鋳造欠陥発
生閾係数内となった。従って拘束性BOに基づく異常と
判断し、鋳造速IJj を0.2m/m i nまで低
下させ、その状態230秒間保持した結果BOの発生を
完全に防止できた。During casting at a casting speed of 1.6 m/min, did the temperature detection values actually measured at the temperature detection terminals 2a and 2b embedded in the long side of the mold in row A change as shown in Fig. 15? All the coefficients of each term fell within the preset casting defect generation threshold coefficient during restrictive BO. Therefore, it was determined that the abnormality was caused by restrictive BO, and the casting speed IJj was lowered to 0.2 m/min, and this state was maintained for 230 seconds, thereby completely preventing the occurrence of BO.
本発明Q)実施に工す鋳造欠陥を正確に、かつ確実に検
出できる工うKなる。この結果、従来多発していた鋳造
欠陥発生検出の誤判断全皆無にすることができ、高温鋳
造の製造や後工程のスケジュールにマツチングした連続
鋳造操業が可能となり。The present invention Q) is a method that allows casting defects to be detected accurately and reliably. As a result, it is possible to completely eliminate the misjudgment of detection of casting defects that occurred frequently in the past, and it becomes possible to perform continuous casting operations that match the schedule of high-temperature casting production and post-processing.
又製造された鋳片も段注ぎ等の表面欠陥のない優れたも
qノとなる。Also, the manufactured slab has excellent surface defects such as step pouring and no surface defects.
第1図は本発明に基づいて拘束性BOO生時の鋳造欠陥
発生間係数を求めた結果クツ−例を示す図、第2図は本
発明の実施に用いる鋳型の一例を示す斜視図、
第3図ii第2図のX−X断面図、
第4図は拘束性BOO生時の温健変化ノにター/を示す
図、
第5図は本発明に基づき時系列@度検出値をフIJ工変
換する領域を示す図、
第6図は捲込み性BO発発生時コノ代表的@間食化パタ
ーンを示す図、
第7図は本発明に基づき捲込み性BOO生時の鋳造欠陥
発生間係数に求めた結果+77−例を示す図。
第8図は本発明に基づき縦割れ発生時の鋳造欠陥発生間
係数を求めた結果σノー例を示す図、第9図は縦割れ発
生時q)代表的な温度変化パターンを示す図、
第10図は本発明に基づき湯皺発生時の鋳造欠陥発生間
係数を求めた結果の一例を示す図。
第11図は湯駿発生時の代表的な温度変化パターンを示
す図、
第12図は本発明に基づいて異常発生を判断する具体的
方法の一例を示すブロック図。
第131/は一般的な鋳造速度の変化とそれに対する鋳
型の温度変化(1)関係を示す図。
第14図〜第16図は本発明の実施例を示すもので第1
4図は鋳型の斜視図、
第15図は温度変化パターンを示す図、第工6図Fi第
15図の時系列温度検出値ftフーリエ変換して求め罠
各項係数?示す図である。
l:鋳型、2 、2 II 〜2 c :温度検出端、
3;溶鋼、4;凝固殻、40:鋳片、5;固着部、6.
61:温度検出端2aから得られる時系列温度検出値、
7;@度検出端2bから得られる時系列@度検出値、8
:時系列温度検出値6 q)フーリエ変換に用いた領域
、81:時系列温度検出値61のフーリエ変換に用いた
領域、9:時系列温度検出値7 fyフーリエ変換に用
いた領域、10;溶鋼レベル、ll:鋳造異常発生確認
部、110;欠陥5M指令装置、12;鋳造欠陥発生間
係数設定部、13;各項係数演算部、14;比較部。
15;指令部
代理人 弁理士 秋 沢 政 光
他2名
b−二り噸祭(ゆ贅噸麟)
駅 鷺 −
ゆgこ鶴
恨慨
煕セ
唱豪
首1?FA
稟割N@、vIR訪懸〈
(0>
井16
(b)
図FIG. 1 is a diagram showing an example of the results of determining the coefficient of occurrence of casting defects when a restrictive BOO is produced based on the present invention, and FIG. 2 is a perspective view showing an example of a mold used for carrying out the present invention. Figure 3ii is a sectional view taken along the line X-X in Figure 2, Figure 4 is a diagram showing temperature changes during the formation of restrictive BOO, and Figure 5 is a graph showing the time series of temperature detection values based on the present invention. Figure 6 is a diagram showing the area to be converted into IJ process. Figure 6 is a diagram showing a typical snacking pattern when BO is generated due to intrusion. Figure 7 is a diagram showing the area where casting defects are generated when BOO is generated based on the present invention. The figure which shows the result +77- example calculated for a coefficient. Fig. 8 is a diagram showing an example of no σ as a result of determining the casting defect occurrence coefficient when a vertical crack occurs based on the present invention, and Fig. 9 is a diagram showing a typical temperature change pattern when a vertical crack occurs. FIG. 10 is a diagram showing an example of the results of determining the casting defect occurrence coefficient when wrinkling occurs based on the present invention. FIG. 11 is a diagram showing a typical temperature change pattern at the time of occurrence of hot water, and FIG. 12 is a block diagram showing an example of a specific method for determining the occurrence of an abnormality based on the present invention. 131/ is a diagram showing the relationship between general casting speed changes and mold temperature changes (1); Figures 14 to 16 show embodiments of the present invention.
Figure 4 is a perspective view of the mold, Figure 15 is a diagram showing the temperature change pattern, Figure 6 Fi is the time-series temperature detection value in Figure 15, ft is Fourier transformed, and is the coefficient of each term determined? FIG. l: mold, 2, 2 II to 2 c: temperature detection end,
3; Molten steel, 4; Solidified shell, 40: Slab, 5; Fixed part, 6.
61: Time-series temperature detection values obtained from the temperature detection end 2a,
7; @time series @degree detection value obtained from degree detection end 2b, 8
: Time series temperature detection value 6 q) Region used for Fourier transformation, 81: Region used for Fourier transformation of time series temperature detection value 61, 9: Time series temperature detection value 7 fy Region used for Fourier transformation, 10; Molten steel level, 11: Casting abnormality occurrence confirmation section, 110; Defect 5M command device, 12: Casting defect occurrence coefficient setting section, 13: Each term coefficient calculation section, 14: Comparison section. 15; Directive Department Agent, Patent Attorney Masamitsu Akizawa, and 2 others b - Yu Haku Rin Station Sagi - Yug Kotsuru Resentment Heise Shou Goshu 1? FA Minwari N@, vIR visit〈 (0> I16 (b) Fig.
Claims (1)
から得られる温度推移パターンより鋳造欠陥を検出する
方法において、過去の鋳造欠陥発生時における時系列温
度検出値をフーリエ変換し、その各項係数と前記鋳造欠
陥発生状況との相関関係から鋳造欠陥発生閾係数を設定
し、次いで連続鋳造中に実測される温度検出値をフーリ
エ変換して各項係数を求め、該各項係数が前記鋳造欠陥
発生閾係数内となつた時を異常発生と判断することを特
徴とする連続鋳造における鋳造欠陥検出方法。(1) In a method of embedding a temperature detection end in a continuous casting mold and detecting casting defects from the temperature transition pattern obtained from the detection end, the time-series temperature detection values at the time of past casting defects are Fourier transformed, A casting defect occurrence threshold coefficient is set from the correlation between each term coefficient and the casting defect occurrence situation, and then the temperature detection value actually measured during continuous casting is Fourier transformed to obtain each term coefficient. A method for detecting casting defects in continuous casting, characterized in that it is determined that an abnormality has occurred when the value falls within the casting defect occurrence threshold coefficient.
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4076785A JPS61200453A (en) | 1985-03-01 | 1985-03-01 | Method for detecting casting flaw in continuous casting |
AU52846/86A AU562731B2 (en) | 1985-02-01 | 1986-01-30 | Preventtion of casting defects in continuous casting |
ES551523A ES8704369A1 (en) | 1985-02-01 | 1986-01-31 | Method for preventing a casting defect in a continuous casting operation |
DE8686300689T DE3671851D1 (en) | 1985-02-01 | 1986-01-31 | METHOD AND DEVICE FOR PREVENTING CASTING ERRORS IN A CONTINUOUS CASTING SYSTEM. |
EP86300689A EP0196746B1 (en) | 1985-02-01 | 1986-01-31 | Method and apparatus for preventing cast defects in continuous casting plant |
CA000500908A CA1270618A (en) | 1985-02-01 | 1986-01-31 | Method and apparatus for preventing cast defects in continuous casting plant |
BR8600427A BR8600427A (en) | 1985-02-01 | 1986-02-03 | PROCESS AND APPARATUS TO AVOID A FOUNDATION DEFECT IN A CONTINUOUS FOUNDATION |
US07/143,270 US4774998A (en) | 1985-02-01 | 1988-01-04 | Method and apparatus for preventing cast defects in continuous casting plant |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4076785A JPS61200453A (en) | 1985-03-01 | 1985-03-01 | Method for detecting casting flaw in continuous casting |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61200453A true JPS61200453A (en) | 1986-09-05 |
JPH0344658B2 JPH0344658B2 (en) | 1991-07-08 |
Family
ID=12589775
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4076785A Granted JPS61200453A (en) | 1985-02-01 | 1985-03-01 | Method for detecting casting flaw in continuous casting |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61200453A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2755385A1 (en) * | 1996-11-07 | 1998-05-07 | Usinor Sacilor | METHOD FOR DETECTING DEFECTS DURING A CONTINUOUS CASTING BETWEEN CYLINDERS |
JP2002143997A (en) * | 2000-11-10 | 2002-05-21 | Nippon Steel Corp | Instrument and method for detecting state of cast slab in mold, and storage medium readable-out from computer |
-
1985
- 1985-03-01 JP JP4076785A patent/JPS61200453A/en active Granted
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2755385A1 (en) * | 1996-11-07 | 1998-05-07 | Usinor Sacilor | METHOD FOR DETECTING DEFECTS DURING A CONTINUOUS CASTING BETWEEN CYLINDERS |
EP0841112A1 (en) * | 1996-11-07 | 1998-05-13 | USINOR SACILOR Société Anonyme | Process for casting between cylinders |
US5927375A (en) * | 1996-11-07 | 1999-07-27 | Usinor Of Puteaux | Continuous casting process between rolls |
JP2002143997A (en) * | 2000-11-10 | 2002-05-21 | Nippon Steel Corp | Instrument and method for detecting state of cast slab in mold, and storage medium readable-out from computer |
Also Published As
Publication number | Publication date |
---|---|
JPH0344658B2 (en) | 1991-07-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108580827B (en) | A method of Crystallizer bleed-out is forecast based on Agglomerative Hierarchical Clustering | |
CN108705058B (en) | A method of forecast Crystallizer bleed-out is clustered based on K-Means | |
CN102941330A (en) | Control method for online predication of surface crack of continuous casting sheet billet | |
JP5673100B2 (en) | Breakout prediction method | |
Kumar et al. | Development of intelligent mould for online detection of defects in steel billets | |
JP5407987B2 (en) | Method for detecting longitudinal cracks in slabs | |
JPS61200453A (en) | Method for detecting casting flaw in continuous casting | |
JP4112783B2 (en) | Breakout detection method in continuous casting equipment | |
CN117548639A (en) | Process monitoring method for thick plate blank continuous casting production | |
JP7115240B2 (en) | Breakout prediction method in continuous casting | |
CN111496211B (en) | Method for tracking and identifying bonding point on surface of casting blank | |
JP3093586B2 (en) | Vertical crack detection method for continuous cast slab | |
JPH06154982A (en) | Method and device for monitoring mold temperature in continuous casting | |
JP2950188B2 (en) | Method of controlling surface defects in continuous casting | |
JPH03138057A (en) | Method for detecting longitudinal crack on cast slab in continuous casting | |
JPS5929353B2 (en) | Breakout prediction method | |
JP6358199B2 (en) | Method and apparatus for determining surface defects of continuous cast slab, and method for producing steel slab using the surface defect determination method | |
JP7165955B1 (en) | Secondary cooling water distribution method based on surface temperature recovery control of continuously cast slab | |
JPS63256250A (en) | Method for predicting breakout in continuous casting | |
KR100501459B1 (en) | Rolling method for dividing of hot bar | |
WO2021256063A1 (en) | Breakout prediction method, method for operating continuous casting apparatus, and breakout prediction device | |
JPH0751263B2 (en) | Breakout prediction method in continuous casting mold | |
JPS63119963A (en) | Method for predicting breakout in continuous casting | |
JPH0957413A (en) | Method for preventing cracking and breakout of cast slab in continuous casting | |
JPH09108801A (en) | Method for predicting and preventing breakout in continuous casting |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |