JPS61187502A - Blade construction of axial flow turbo-machine - Google Patents
Blade construction of axial flow turbo-machineInfo
- Publication number
- JPS61187502A JPS61187502A JP2654185A JP2654185A JPS61187502A JP S61187502 A JPS61187502 A JP S61187502A JP 2654185 A JP2654185 A JP 2654185A JP 2654185 A JP2654185 A JP 2654185A JP S61187502 A JPS61187502 A JP S61187502A
- Authority
- JP
- Japan
- Prior art keywords
- blade
- leading edge
- axial flow
- flow
- end wall
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Turbine Rotor Nozzle Sealing (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は、軸流ターボ機械における二次流れによる損失
を軽減し、性能向上を図る技術分野で利用される。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is used in the technical field of reducing losses due to secondary flow in axial flow turbomachinery and improving performance.
従来の技術
軸流ターボ機械は、例えば第3図にその主要部を示すよ
うに、ケーシング03a内に回転軸に固定したボス03
bに取付けた動翼01と静翼02を交互に配置している
。A conventional axial flow turbomachine, for example, as shown in FIG. 3, has a boss 03 fixed to a rotating shaft within a casing 03a.
The rotor blades 01 and stationary blades 02 attached to b are alternately arranged.
この軸流ターボ機械が作動している時には、第4図に動
翼01の例を示すように、その端壁、すなわち、第3図
中、ケーシング03a及びボス03bの表面に沿って馬
蹄形筒06および流路渦05による二次流れが生じる。When this axial flow turbomachine is in operation, as shown in FIG. 4, an example of the rotor blade 01, the horseshoe-shaped cylinder 06 is moved along its end wall, that is, along the surfaces of the casing 03a and the boss 03b in FIG. A secondary flow is generated due to the flow path vortex 05.
すなわち、第5図に示すように、端壁に発達する壁面境
界層内の流線の曲率が翼間通路の主流08の曲率を等し
いとすれば、端壁境界層内の流れは主流08より流速が
小さく、遠心力が小さい。That is, as shown in Fig. 5, if the curvature of the streamlines in the wall boundary layer that develops on the end wall is equal to the curvature of the main stream 08 of the interblade passage, the flow in the end wall boundary layer will be smaller than the main stream 08. The flow velocity is low and the centrifugal force is low.
このため、翼列ピッチ方向の圧力勾配は、境界層内では
主流08より小さく、流体は、端壁壁面を、翼腹面側0
1aから背面側01bに流れる。これは流路渦05と呼
ばれる。Therefore, the pressure gradient in the pitch direction of the blade row is smaller than that of the main flow 08 in the boundary layer, and the fluid moves along the end wall surface toward the blade ventral surface 08.
It flows from 1a to the back side 01b. This is called a flow path vortex 05.
一方、前流壁面では、第6図に示すように、境界層08
が発達しており、これが翼前縁01cに突き当った時、
壁により離れた翼高さ位置の速度による動圧が、速度が
より小さい壁面近傍の動圧よりも太きいだめに、流体は
動圧の低い壁面方向に流れ、その流体が壁面に当たり、
端壁上の翼前縁01cを廻り込む、いわゆる馬蹄形筒0
6を生じる。On the other hand, on the front wall surface, as shown in Fig. 6, the boundary layer 08
has developed, and when it hits the wing leading edge 01c,
Because the dynamic pressure due to the velocity at the blade height position separated by the wall is greater than the dynamic pressure near the wall where the velocity is lower, the fluid flows toward the wall where the dynamic pressure is lower, and the fluid hits the wall.
A so-called horseshoe-shaped tube 0 that goes around the wing leading edge 01c on the end wall
yields 6.
これらの渦が、いわゆる二次流れを構成しており、第7
図に示すごとく、ケーシング03aおよびボス031〕
側には、低エネルギの流体が集積し、軸流ターボ機械の
性能を低下させる主因となっている。These vortices constitute the so-called secondary flow, and the seventh
As shown in the figure, casing 03a and boss 031]
Low-energy fluid accumulates on the side, which is the main cause of degrading the performance of axial flow turbomachinery.
この対策として、例えば、第8図に示すように、ケーシ
ング03a又はボス03bの壁面通路内に、ある高さの
フィン09を設け、流路渦05による損失を防止する考
えがある。しかし、このものは損失の支配的要因とみら
れる馬蹄形渦06の成長には何の効果もなく、矢張り著
しい性能低下をもたらす。As a countermeasure against this, for example, as shown in FIG. 8, there is an idea to provide fins 09 of a certain height in the wall passage of the casing 03a or the boss 03b to prevent losses due to the flow passage vortices 05. However, this has no effect on the growth of the horseshoe-shaped vortex 06, which is considered to be the dominant cause of loss, and results in a significant drop in performance.
発明が解決しようとする問題点
本発明は、作動流体が、翼前縁部から流入し、後縁部近
傍に抜け出るべく、端壁近傍の翼断面において、翼前縁
から翼後力に通じる流路を設ける事によって、端壁の翼
前方より発達する馬蹄型渦、及び翼列通路間で生ずる流
路渦の成長を抑止し、性能向上を図ることにある。Problems to be Solved by the Invention The present invention provides a flow path from the leading edge of the blade to the trailing force of the blade in the cross section of the blade near the end wall so that the working fluid flows in from the leading edge of the blade and exits near the trailing edge. By providing the passage, the purpose is to suppress the growth of the horseshoe-shaped vortex that develops from the front of the blade on the end wall and the flow path vortex that occurs between the blade row passages, thereby improving performance.
問題点を解決するだめの手段
本発明は、上述の問題を解決するために、次のような手
段を採っている。すなわち、
軸流ターボ機械の端壁近傍壁断面の前縁に流入孔を設け
、流入した気流を翼断面内の流路を通り、翼後縁近傍に
設けた排出孔より抜け出すようにする。Means for Solving the Problems The present invention employs the following means to solve the above-mentioned problems. That is, an inflow hole is provided at the leading edge of the wall section near the end wall of the axial flow turbomachine, and the incoming airflow passes through a flow path in the blade section and exits from the exhaust hole provided near the trailing edge of the blade.
作用
以上述べた手段によれば、したがって、端壁に沿う流れ
の一部は、翼前縁部より流入し、翼腹面側に流出するの
で馬蹄型渦の発達を抑止する。Effect: According to the means described above, a portion of the flow along the end wall enters from the leading edge of the wing and flows out toward the ventral surface of the wing, thereby suppressing the development of a horseshoe-shaped vortex.
実施例
次に、本発明の実施例について、第1図、第2図を参照
して詳述する。Embodiment Next, an embodiment of the present invention will be described in detail with reference to FIGS. 1 and 2.
翼1の端壁近傍を第2図の断面図に示す如く、端壁に沿
って流れる低エネルギ流体を、翼前縁ICに設けた流入
孔10より吸引し、翼断面内を通り、翼腹面後方に設け
た排出孔11より抜け出る通路を設けた構造とする。こ
の実施例では、腹面後方に排出孔11を設けたが、背面
側16及び両面la、lbに設けても良い。一般には、
翼腹面1aに排出孔11を設けるのが好適である。As shown in the sectional view of the vicinity of the end wall of the blade 1 in FIG. 2, the low-energy fluid flowing along the end wall is sucked through the inlet hole 10 provided at the leading edge IC of the blade, passes through the cross section of the blade, and flows into the ventral surface of the blade. The structure is such that a passage is provided for exiting from a discharge hole 11 provided at the rear. In this embodiment, the discharge hole 11 is provided on the rear side of the ventral surface, but it may be provided on the back side 16 and both surfaces la and lb. In general,
It is preferable to provide the discharge hole 11 in the blade vent surface 1a.
また、流入口10および排出孔11は、1個以上で、か
つスリット状でも良い。さらに、従来技術である第8図
に示したフィン09と併用することも有り得る。Moreover, the inflow port 10 and the discharge hole 11 may be one or more and may be slit-shaped. Furthermore, it is also possible to use the fin 09 shown in FIG. 8, which is a conventional technique, in combination.
端壁に沿う流れの一部は、翼前縁部より流入し、翼腹面
側に流出する。A part of the flow along the end wall enters from the leading edge of the blade and flows out to the ventral surface of the blade.
発明の効果
本発明によるターボ機械の翼構造を採用することにより
、次に列記するごとき効果を発揮する。Effects of the Invention By employing the blade structure of a turbomachine according to the present invention, the following effects can be achieved.
a、損失の主要因である翼前縁より成長する馬蹄型渦の
発達を抑止する事により、損失が低下し、性能向上が図
れる。a. By suppressing the development of horseshoe-shaped vortices that grow from the leading edge of the blade, which is the main cause of loss, loss can be reduced and performance can be improved.
b、後縁側の排出孔より流出する流体は、翼通路間に成
長ず石流路渦の成長を妨げ、損失を軽減するので性能向
上が図れる。b. The fluid flowing out from the discharge hole on the trailing edge side does not grow between the blade passages and prevents the growth of stone passage vortices, reducing loss and improving performance.
第1図、第2図は本発明の実施例を示し、第1図は翼の
斜視図、第2図は第1図の■−■線断面図、第3図以降
は従来例に係シ、第3図は動翼、静翼を示すケーシング
の断面図、第4図は渦発生を示す斜視図、第5図は壁面
境界層内の流線を示す断面図、第6図は二次流れの発生
を示す斜視図。
第7図は低エネルギの流体が集積し、性能の低下を来す
場合を示す図表、第8図はフィンを設けた他の寿眞例の
断面図である。
1・・翼、1a・・翼腹面、lb・・背面側、1c・・
翼前縁、10・・流入孔、11・・排出孔。
復代理人 木村正巳、:゛〕]。
(ほか7名)”′
第1図
第2図
II−II断面図
第3図
第5図
第6図
第7図
第6図
手続Iff正書(自発)
昭和60年 5月 21日
特許庁長官 志 賀 学 殿
l ・l<件の表示 特願昭60年26541号2
発明の名称 軸流ターボ機械の翼構造3、hli
正をする者 事件との関係 出願人名称 三菱重
工業株式会社
4 復代理人 〒100東京都千代田区有楽町−丁目
8番1号゛ 5 補正の対象 明細書の「発明の詳
細な説明」の欄および図面
〔Δ〕明細吉を次のように訂正します。
(1)第2 Llにおいて、第6行「曲率をJを「曲率
と」と訂正、第13行「08」を「04」と訂正。
(2)第4頁第6行「したがって、」を削除。
〔13〕図面中第6図において、別紙コピーに赤で示す
ように、符号「08」を「04」と訂正。1 and 2 show an embodiment of the present invention, FIG. 1 is a perspective view of a wing, FIG. 2 is a sectional view taken along the line ■-■ in FIG. 1, and FIGS. , Fig. 3 is a cross-sectional view of the casing showing the rotor blades and stationary blades, Fig. 4 is a perspective view showing vortex generation, Fig. 5 is a cross-sectional view showing streamlines in the wall boundary layer, and Fig. 6 is a secondary cross-sectional view. FIG. 3 is a perspective view showing the generation of flow. FIG. 7 is a diagram showing a case where low-energy fluid accumulates and performance deteriorates, and FIG. 8 is a sectional view of another example of a fin provided with a fin. 1... wing, 1a... wing ventral surface, lb... back side, 1c...
Blade leading edge, 10...inflow hole, 11...discharge hole. Sub-agent Masami Kimura, :゛〕]. (and 7 others)'' Figure 1 Figure 2 Cross-sectional view of II-II Figure 3 Figure 5 Figure 6 Figure 7 Figure 6 Procedure Iff official document (spontaneous) May 21, 1985 Commissioner of the Japan Patent Office Manabu Shiga l・l< Display of patent application No. 26541 of 1986 2
Title of the invention Axial flow turbomachinery blade structure 3, hli
Person making the correction Relationship to the case Name of applicant Mitsubishi Heavy Industries, Ltd. 4 Sub-agent 8-1-chome, Yurakucho, Chiyoda-ku, Tokyo 100゛ 5 Subject of amendment The column of “Detailed description of the invention” in the specification and The details of drawing [Δ] will be corrected as follows. (1) In the 2nd Ll, the 6th line "curvature" was corrected to "J" and the 13th line "08" was corrected to "04". (2) Delete “Therefore,” on page 4, line 6. [13] In Figure 6 of the drawings, the code “08” has been corrected to “04” as shown in red on the attached copy.
Claims (1)
、流入した気流を翼断面内の流路を通り、翼後縁近傍に
設けた排出孔より抜け出させるようにした、軸流ターボ
機械の翼構造。Axial flow is an axial flow system in which an inflow hole is provided at the leading edge of the wall cross section near the end wall of an axial flow turbomachine, and the incoming airflow passes through a flow path within the blade cross section and exits through a discharge hole provided near the trailing edge of the blade. Turbomachinery wing structure.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2654185A JPS61187502A (en) | 1985-02-15 | 1985-02-15 | Blade construction of axial flow turbo-machine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2654185A JPS61187502A (en) | 1985-02-15 | 1985-02-15 | Blade construction of axial flow turbo-machine |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61187502A true JPS61187502A (en) | 1986-08-21 |
Family
ID=12196357
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2654185A Pending JPS61187502A (en) | 1985-02-15 | 1985-02-15 | Blade construction of axial flow turbo-machine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61187502A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04362928A (en) * | 1991-09-03 | 1992-12-15 | Casio Comput Co Ltd | Liquid crystal projector |
KR20000065319A (en) * | 1999-04-01 | 2000-11-15 | 윤영석 | Stationary blade of steam turbine for power plant |
KR100916354B1 (en) * | 2009-02-27 | 2009-09-11 | 한국기계연구원 | Turbine blade and turbine using it |
EP3940199A1 (en) * | 2020-07-13 | 2022-01-19 | Honeywell International Inc. | System and method for air injection passageway integration and optimization in turbomachinery |
-
1985
- 1985-02-15 JP JP2654185A patent/JPS61187502A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04362928A (en) * | 1991-09-03 | 1992-12-15 | Casio Comput Co Ltd | Liquid crystal projector |
KR20000065319A (en) * | 1999-04-01 | 2000-11-15 | 윤영석 | Stationary blade of steam turbine for power plant |
KR100916354B1 (en) * | 2009-02-27 | 2009-09-11 | 한국기계연구원 | Turbine blade and turbine using it |
EP3940199A1 (en) * | 2020-07-13 | 2022-01-19 | Honeywell International Inc. | System and method for air injection passageway integration and optimization in turbomachinery |
US11608744B2 (en) | 2020-07-13 | 2023-03-21 | Honeywell International Inc. | System and method for air injection passageway integration and optimization in turbomachinery |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4063938B2 (en) | Turbulent structure of the cooling passage of the blade of a gas turbine engine | |
JP5289694B2 (en) | Turbine airfoil curved squealer tip with tip shelf | |
JP4993726B2 (en) | Cascade tip baffle airfoil | |
JP3880639B2 (en) | Air-cooled airfoil structure of a gas turbine engine | |
JP4785511B2 (en) | Turbine stage | |
JPH0370084B2 (en) | ||
JPH0424524B2 (en) | ||
US5816777A (en) | Turbine blade cooling | |
JP2003074306A (en) | Axial flow turbine | |
JP2001234702A (en) | Coriolis turbulator moving blade | |
JPH0353442B2 (en) | ||
JPH10274001A (en) | Turbulence promotion structure of cooling passage of blade inside gas turbine engine | |
GB2164098A (en) | Improvements in or relating to aerofoil section members for turbine engines | |
JP2005337251A (en) | Rotor blade | |
JPH02115596A (en) | Radial flow rotor | |
KR101889212B1 (en) | Turbine blade | |
JPH0424523B2 (en) | ||
JPH09195705A (en) | Axial-flow turbine blade | |
JPS61187502A (en) | Blade construction of axial flow turbo-machine | |
JP3697296B2 (en) | Turbine blade | |
JPH09112203A (en) | Turbine nozzle | |
JP2004263602A (en) | Nozzle blade, moving blade, and turbine stage of axial-flow turbine | |
JPH0110401Y2 (en) | ||
JPH0738641Y2 (en) | Multi-stage axial turbine | |
JPS5951104A (en) | Internal structure of turbine stage |