Nothing Special   »   [go: up one dir, main page]

JPS61171606A - Freezing device for car air conditioning equipment - Google Patents

Freezing device for car air conditioning equipment

Info

Publication number
JPS61171606A
JPS61171606A JP60011583A JP1158385A JPS61171606A JP S61171606 A JPS61171606 A JP S61171606A JP 60011583 A JP60011583 A JP 60011583A JP 1158385 A JP1158385 A JP 1158385A JP S61171606 A JPS61171606 A JP S61171606A
Authority
JP
Japan
Prior art keywords
compressor
piston
pressure
control valve
receiver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60011583A
Other languages
Japanese (ja)
Inventor
Tatsuhisa Taguchi
辰久 田口
Ryoichi Abe
良一 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP60011583A priority Critical patent/JPS61171606A/en
Publication of JPS61171606A publication Critical patent/JPS61171606A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3205Control means therefor
    • B60H1/3211Control means therefor for increasing the efficiency of a vehicle refrigeration cycle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3205Control means therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3236Cooling devices information from a variable is obtained
    • B60H2001/3239Cooling devices information from a variable is obtained related to flow
    • B60H2001/3242Cooling devices information from a variable is obtained related to flow of a refrigerant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3236Cooling devices information from a variable is obtained
    • B60H2001/3248Cooling devices information from a variable is obtained related to pressure
    • B60H2001/325Cooling devices information from a variable is obtained related to pressure of the refrigerant at a compressing unit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3269Cooling devices output of a control signal
    • B60H2001/3276Cooling devices output of a control signal related to a condensing unit
    • B60H2001/3279Cooling devices output of a control signal related to a condensing unit to control the refrigerant flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3269Cooling devices output of a control signal
    • B60H2001/328Cooling devices output of a control signal related to an evaporating unit
    • B60H2001/3283Cooling devices output of a control signal related to an evaporating unit to control the refrigerant flow

Landscapes

  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)

Abstract

PURPOSE:To enable the cooling capability and a decreasing rate of discharge temperature to be augmented by configurating a device in such a manner that a flow control valve, in which both the inner surface of a case and a piston are tapered with the piston which is forced against the small diameter side, is arranged between a receiver and an inlet port to a compressor with the small diameter side faced against the receiver side. CONSTITUTION:An inlet pressure Ps of a compressor 21 decreases gradually as an engine (22) speed increases allowing a discharge pressure Pd to increase. This causes the difference in pressure between the inlet pressure Pex of an injection piping 29 and a discharge pressure Ps of a discharge port 30 of a flow control valve 27 to increase in proportion to the engine speed. This allows a piston 35 to be displaced depending on the setting force of an adjust spring 37 of the control valve 27 so as to control the fluid flow. In this case, as both the piston 35 and the inner surface of a case 32 are tapered, the opening of the injection passage 38 is increased as the piston is displaced permitting the discharge pressure to be decreased. Thus, a decreasing rate of discharge temperature for a high engine speed range can be augmented.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、自動車冷房用など”に供されるカーエアコン
冷凍装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a car air conditioner refrigeration system used for cooling automobiles.

従来の技術 近年、自動車はターボチャージャー、DOHCなどによ
り、エンジンの馬力向上と共に、最高許容回転数が従来
のesoorp−から最高9000rp−という自動車
も登場している。これに伴い、エンジンによりベルトを
介しI!勅されるコンプレッサが使われることが特徴で
あるカーエアコン冷凍装置では、コンプレッサの回転数
がエンジンの回転数に比例するため、高速回転時にはコ
ンプレッサの吐出容量が過大になり、冷凍サイクル上、
吐出圧力が上昇、吸入圧力が低下し、結果的に吐出温度
が上昇する傾向が著しくなり、ゴム配管の劣化、破損、
冷凍機油のカーボン析出などの弊害を生じている。
BACKGROUND OF THE INVENTION In recent years, automobiles have improved engine horsepower through turbochargers, DOHCs, etc., and automobiles have also appeared whose maximum permissible rotational speed is up to 9000 rpm, up from the conventional esoorp. Along with this, the engine sends I! through the belt! In car air conditioner refrigeration systems, which are characterized by the use of specially designed compressors, the rotational speed of the compressor is proportional to the engine rotational speed, so the discharge capacity of the compressor becomes excessive during high-speed rotation, causing problems in the refrigeration cycle.
The discharge pressure increases, the suction pressure decreases, and as a result, the discharge temperature tends to rise significantly, causing deterioration and damage to the rubber piping.
This causes harmful effects such as carbon precipitation in the refrigerating machine oil.

この問題に対し、従来はEPR(エバポレータ圧力レギ
ュレータ)と呼ばれる補器をエバポレータとコンプレッ
サの間に挿入し連結することにより、コンプレッサに液
成分を吸入させて吐出温度を低下させる方法が採用され
ていた。
To solve this problem, the conventional method was to insert and connect an auxiliary device called an EPR (evaporator pressure regulator) between the evaporator and the compressor to draw liquid components into the compressor and lower the discharge temperature. .

第5図、第6図は従来のカーエアコン冷凍装置を例示し
、第5図において、1はコンプレッサで、これはエンジ
ン1aによりベルトを介し駆動される。2はコンデンサ
で放熱機能を有し、高温冷媒ガスは出口では液冷媒とな
る。3はレシーバで、これにより、液冷媒量が調節され
る。4は膨張弁で、この膨IN弁4で減圧された冷媒は
エバポレータ5で外気の熱を奪って気化する。6はEP
R(エバポレータ圧力レギュレータ)で、エバポレータ
内の冷媒蒸発圧力を一定に保つ補器である。
5 and 6 illustrate a conventional car air conditioner refrigeration system. In FIG. 5, 1 is a compressor, which is driven by an engine 1a via a belt. 2 is a condenser which has a heat dissipation function, and the high temperature refrigerant gas becomes liquid refrigerant at the outlet. 3 is a receiver, which adjusts the amount of liquid refrigerant. Reference numeral 4 denotes an expansion valve, and the refrigerant whose pressure is reduced by the expansion IN valve 4 is vaporized by absorbing heat from the outside air in an evaporator 5. 6 is EP
R (evaporator pressure regulator) is an auxiliary device that keeps the refrigerant evaporation pressure in the evaporator constant.

EPR6は、制御弁7とバネ8および、これらを内蔵し
、冷媒ガスの入口9、出口10を有するケース11から
構成されている。
The EPR 6 includes a control valve 7, a spring 8, and a case 11 that houses these and has an inlet 9 and an outlet 10 for refrigerant gas.

以上のように構成されたカーエアコン冷凍装置について
、以下その動作を説明する。
The operation of the car air conditioner refrigeration system configured as described above will be explained below.

コンプレッサ1の回転数が上昇すると、サイクル内を循
環する冷媒量は徐々に増加し、コンプレッサ1の吸入圧
力は低下する。それに伴い、EPRの入口部9の圧力が
下がるが、この時、ある力に設定されたバネ8とのバラ
ンスにおいて、制御弁7が通路12を狭くする方向(第
6図において左方向)に移動し、冷媒流量を減少せしめ
る。その結果、EPR6の上流側であるエバポレータ5
の圧力は所定の一定値に保たれ、蒸発温度は一定となる
。この作用により、エバポレータ5では冷媒循環量が回
転数の増加に従い増加するが、外気との温度差が変わら
ない為、高速回転域はど充分な熱交換ができず、液冷媒
の未蒸発分が多くなる。
When the rotational speed of the compressor 1 increases, the amount of refrigerant circulating within the cycle gradually increases, and the suction pressure of the compressor 1 decreases. Along with this, the pressure at the inlet 9 of the EPR decreases, but at this time, the control valve 7 moves in the direction of narrowing the passage 12 (to the left in Fig. 6) in balance with the spring 8 set to a certain force. and reduce the refrigerant flow rate. As a result, the evaporator 5 on the upstream side of the EPR 6
The pressure is kept at a predetermined constant value, and the evaporation temperature is kept constant. Due to this effect, the amount of refrigerant circulated in the evaporator 5 increases as the rotation speed increases, but since the temperature difference with the outside air does not change, sufficient heat exchange is not possible in the high speed rotation range, and the unevaporated portion of the liquid refrigerant increases. There will be more.

このため、高速回転域ではEPR6の出口10は液バツ
ク気味となり、コンプレッサ1に流入するため、コンプ
レッサ1のシリンダ内で液冷媒の蒸発がおこり、吸熱作
用により、コンプレッサ1の吐出温度は低下する。この
結果、EPR6の挿入により、高速回転域でも急激な温
度上昇が発生しないカーエアコン冷凍装置が構成できて
いた(冷凍空調便覧(基礎編) p 491〜P 49
3)。
Therefore, in the high speed rotation range, the liquid refrigerant at the outlet 10 of the EPR 6 tends to back up and flows into the compressor 1, so that the liquid refrigerant evaporates within the cylinder of the compressor 1, and the discharge temperature of the compressor 1 decreases due to endothermic action. As a result, by inserting EPR6, a car air conditioner refrigeration system was constructed that did not cause a sudden temperature rise even in the high-speed rotation range (Refrigerating and Air Conditioning Handbook (Basic Edition) p. 491 to p. 49)
3).

□□8.よう、□□       1 しかしながら、上記のような構成においては、EPR6
の制御弁7の作動は前後の圧力差を利用しているため、
低速回転域でも、通路抵抗が存在し、圧力損失により冷
房能力が劣下する問題点があった。さらには、EPR6
による吐出温度低下率は高々10%程度であり、それ以
上の低下率は望めないという欠点も有していた。
□□8. 1 However, in the above configuration, EPR6
Since the operation of the control valve 7 uses the pressure difference between the front and rear,
Even in the low-speed rotation range, there was a problem that passage resistance existed and the cooling capacity deteriorated due to pressure loss. Furthermore, EPR6
The rate of decrease in the discharge temperature caused by this method was approximately 10% at most, and a further decrease rate could not be expected.

本発明は、上記問題点を解消するもので、低速回転域で
通路の損失がなく、高速回転域で20%以上の吐出温度
低下率が得られるカーエアコン冷凍5A@を提供するこ
とを目的とする。
The present invention solves the above-mentioned problems, and aims to provide a car air conditioner refrigeration 5A@ that has no passage loss in the low speed rotation range and achieves a discharge temperature reduction rate of 20% or more in the high speed rotation range. do.

問題点を解決するための手段 上記問題点を解決するため、本発明のカーエアコン冷凍
装置は、エンジンで駆動されるコンプレッサと、放熱を
行なうコンデンサと、液冷媒を溜めるレシーバと、膨張
弁と、吸熱作用を行なうエバポレータを順次配管で連結
して構成されるカーエアコン冷凍装置において、前記レ
シーバもしくはその前後の配管と、前記コンプレッサも
しくはこのコンプレッサの入口側5配管との間に流I1
1御弁を介装し、前記流量制御弁を、前記コンプレッサ
側程径大となる内周面を有するケースと、該ケースに内
装され前記コンプレッサ側程径大となるテーパ状外周面
を有するピストンと、該ピストンを前記レシーバ側に付
勢して前記ケース内面の弁座側に押圧する調整用バネと
から構成したものである。
Means for Solving the Problems In order to solve the above problems, the car air conditioner refrigeration system of the present invention includes a compressor driven by an engine, a condenser for dissipating heat, a receiver for storing liquid refrigerant, an expansion valve, In a car air conditioner refrigeration system configured by sequentially connecting evaporators that perform an endothermic action with piping, a flow I1 is created between the receiver or the piping before and after the receiver and the compressor or the 5 piping on the inlet side of the compressor.
A case having an inner circumferential surface whose diameter becomes larger toward the compressor, and a piston housed in the case and having a tapered outer circumferential surface whose diameter becomes larger toward the compressor. and an adjustment spring that urges the piston toward the receiver and presses it toward the valve seat on the inner surface of the case.

作用 本発明は上記した構成によって、インジェクション配管
の入口と流量制御弁の出口の圧力差が調節用バネの設定
圧力相当以下の場合(低速回転域)には制御弁は閉塞状
態となって、通常の、流路損失のない冷凍装置とし、高
速回転域で圧力差が校定値以上に大きくなった場合には
、制御弁はその圧力差に応じたインジェクション通路を
開口し、液冷媒コンプレッサに注入させることにより、
大幅な吐出温度低下率を達成できる。
Effect of the present invention With the above-described configuration, when the pressure difference between the inlet of the injection pipe and the outlet of the flow rate control valve is equal to or less than the set pressure of the adjustment spring (in a low speed rotation range), the control valve is in a closed state, and the control valve is normally closed. This is a refrigeration system with no flow path loss, and when the pressure difference becomes larger than the calibrated value in the high-speed rotation range, the control valve opens the injection passage according to the pressure difference and injects liquid refrigerant into the compressor. By this,
A significant discharge temperature reduction rate can be achieved.

実施例 以下、本発明の一実施例を第1図〜第4図に基づいて説
明する。
EXAMPLE Hereinafter, an example of the present invention will be described based on FIGS. 1 to 4.

第1図は本発明のカーエアコン冷凍装置に用いられる流
量制御弁の断面図、第2図はカーエアコン冷凍@霞の構
成図、第3図は回転数に対する圧力とインジェクション
■の変化を示す図、第4図は回転数に対する吐出温度の
変化を示す図である。
Fig. 1 is a sectional view of the flow control valve used in the car air conditioner refrigeration system of the present invention, Fig. 2 is a block diagram of the car air conditioner refrigeration @ Kasumi, and Fig. 3 is a diagram showing changes in pressure and injection ■ with respect to rotation speed. , FIG. 4 is a diagram showing changes in discharge temperature with respect to rotation speed.

21はコンプレッサ、22はコンプレッサ21を駆動す
るエンジン、23は放熱機能を有するコンデンサで、ガ
ス状の高温冷媒は該コンデンサの出口では液冷媒となる
。24は液冷煤層を調整するレシーバ、25は膨張弁で
、該弁25で減圧された冷媒は、エバポレータ26で外
気の熱を奪って気化する。27は流l制御弁で、該流量
制御弁27の入口28は、インジェクション配管29を
介してレシーバ24に連通接続され、出口30は、コン
プレッサ21の入口側に連通接続されている。
21 is a compressor, 22 is an engine that drives the compressor 21, and 23 is a condenser having a heat dissipation function, and the gaseous high-temperature refrigerant becomes liquid refrigerant at the outlet of the condenser. 24 is a receiver for adjusting the liquid-cooled soot layer; 25 is an expansion valve; the refrigerant whose pressure is reduced by the valve 25 is vaporized by taking heat from the outside air in an evaporator 26; Reference numeral 27 designates a flow control valve, and an inlet 28 of the flow control valve 27 is connected to the receiver 24 via an injection pipe 29, and an outlet 30 is connected to the inlet side of the compressor 21.

31は、流量制御弁270円筒状ケースで、該ケース3
1の内周面32はコンプレッサ21に接続される出口3
0側程径大のテーパ状に形成されており、ケース31の
入口28側に設けた底壁33には入口28に通じる弁座
34が形成されている。35はケース31に内装された
ピストンで、該ピストン35のテーパ状外周面3Gは、
コンプレッサ21側程径大に形成されている。37はピ
ストン35を弁!!34に押圧付勢する調節用バネで、
該バネ31により、ピストン35の頂壁38が弁座34
に当接して入口2Bを閉塞可能となっている。
31 is a cylindrical case of the flow control valve 270;
The inner peripheral surface 32 of 1 is the outlet 3 connected to the compressor 21
The valve seat 34 is formed in a tapered shape with a larger diameter toward the 0 side, and a valve seat 34 communicating with the inlet 28 is formed on a bottom wall 33 provided on the inlet 28 side of the case 31 . 35 is a piston housed in the case 31, and the tapered outer circumferential surface 3G of the piston 35 is as follows:
The diameter becomes larger toward the compressor 21 side. 37 valves the piston 35! ! 34 with an adjustment spring that presses and biases the
The spring 31 causes the top wall 38 of the piston 35 to press against the valve seat 34.
The inlet 2B can be closed by coming into contact with it.

以上のように構成されたカーエアコン冷凍giW1の流
−制御弁について、その動作を説明する。
The operation of the flow control valve of the car air conditioner refrigeration giW1 configured as described above will be explained.

コンプレッサ21がエンジン22により駆動され、徐々
に回転数が増加する場合を想定すると、コンプレッサ2
1の吸入側圧力psは次第に低下する一方、吐出側圧力
Pdも徐々に上昇するため、インジェクション配!!2
9の入口圧力pexと1111 n弁27の出口30圧
力psとの圧力差は回転数の増加に比例して大きくなる
。そこで、この現象を利用し、流量制御弁27の調節用
バネ31を、ある圧力差相当のバネ力FOに設定するこ
とにより、インジェクションの開始点が設定される。例
えば、第3図では3000rp−以上でピストン35が
移動を開始し、1カ。よ4.っゎ、12.ア。□□□1
   イる。この時、ケースのテーパ状内周面32とピ
ストンのテーパ状外周面36との間に形成された429
19212通路38の開口度はピストンの移動量に比例
して徐々に大きくなるため、インジェクションl G 
iは圧力差に比例して増大する。この結果、第4図に示
すように、コンプレッサ21の吐出温度は、一般の冷凍
装置では回転数に比例して上昇し、’   5000r
pmで約ieo℃に達していたものが、本発明の冷凍装
置では液冷媒を圧力差に比例してインジェクションする
ことにより5000rp−で140℃(12,5%) 
、60GOrpmで148℃(20%)に吐出温度を低
減することができる。
Assuming that the compressor 21 is driven by the engine 22 and the rotation speed gradually increases, the compressor 2
1, the suction side pressure ps gradually decreases, while the discharge side pressure Pd also gradually increases, so the injection arrangement! ! 2
The pressure difference between the inlet pressure pex of 9 and the outlet 30 pressure ps of the 1111 n valve 27 increases in proportion to the increase in rotational speed. Therefore, by utilizing this phenomenon and setting the adjustment spring 31 of the flow rate control valve 27 to a spring force FO corresponding to a certain pressure difference, the injection starting point is set. For example, in FIG. 3, the piston 35 starts moving at 3000 rpm or more, and the piston 35 starts moving by one force. Yo4. Wow, 12. a. □□□1
I'm coming. At this time, 429 formed between the tapered inner peripheral surface 32 of the case and the tapered outer peripheral surface 36 of the piston
19212 Since the opening degree of the passage 38 gradually increases in proportion to the amount of movement of the piston, the injection l G
i increases in proportion to the pressure difference. As a result, as shown in FIG. 4, the discharge temperature of the compressor 21 increases in proportion to the rotational speed in a general refrigeration system, and reaches a temperature of 5000 rpm.
In the refrigeration system of the present invention, the temperature at 5000 rpm was reduced to 140°C (12.5%) by injecting liquid refrigerant in proportion to the pressure difference.
, the discharge temperature can be reduced to 148° C. (20%) at 60 GO rpm.

以上のように本実施例によれば、低速域で、レシーバ2
4とコンプレッサ21の入口部との圧力差が小さな場合
には流路損失のない通常の冷凍装置として作動し、前記
圧力差がある設定値以上となる比較的高速回転域では、
その圧力差に応じた液冷媒をコンプレッサ21に注入す
るため、高速回転域で高い吐出温度低下率を達成するこ
とができる。
As described above, according to this embodiment, in the low speed range, the receiver 2
When the pressure difference between the compressor 4 and the inlet of the compressor 21 is small, the refrigeration system operates as a normal refrigeration system without flow path loss, and in a relatively high-speed rotation range where the pressure difference exceeds a certain set value,
Since liquid refrigerant is injected into the compressor 21 according to the pressure difference, a high discharge temperature reduction rate can be achieved in the high speed rotation range.

なお本実施例において、インジェクション配管29の入
口部はレシーバ24に接続したが、コンデンサ21とレ
シーバ24の接続配管、またはレシーバ24と膨張弁2
5を結ぶ配管でもよく、さらには、流量制御弁27の出
口30は、コンプレッサ21の入口部としたが、コンプ
レッサ21とエバポレータ23の接続配管、またはコン
プレッサ21の圧縮行程部でもよい。
In this embodiment, the inlet of the injection pipe 29 is connected to the receiver 24, but the connection pipe between the condenser 21 and the receiver 24, or the receiver 24 and the expansion valve 2 is connected to the receiver 24.
Further, although the outlet 30 of the flow rate control valve 27 is the inlet of the compressor 21, it may be a pipe connecting the compressor 21 and the evaporator 23, or a compression stroke part of the compressor 21.

発明の効果 以上のように本発明のカーエアコン冷凍装置は、流量制
御弁の入口と出口との圧力差がある設定値以下では損失
のない通常の冷凍装置を形成し、設定値以上では圧力差
に比例した液冷媒をコンプレッサ内にインジェクション
させることにより、大幅な吐出温度低下率を得ることが
でき、ゴム配管の損傷、冷凍機油の劣下等がなく、高速
回転時にもトラブルのないカーエアコンシステムを組む
ことができる。
Effects of the Invention As described above, the car air conditioner refrigeration system of the present invention forms a normal refrigeration system with no loss when the pressure difference between the inlet and outlet of the flow control valve is below a certain set value, and when the pressure difference exceeds the set value, the pressure difference is reduced. By injecting a liquid refrigerant proportional to can be assembled.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第4図は本発明の一実施例を示し、第1図
はカーエアコン冷凍装置に使用される流」制御弁の断面
図、第2図はカーエアコン冷凍装置の構成図、第3図は
カーエアコン冷凍装置における回転数に対する圧力、イ
ンジェクション量の変化を示す図、第4図は回転数に対
するコンプレッサの吐出濃度の変化を示す図、第5図お
よび第6図は従来例を示し、第5@はカーエアコン冷凍
袋りよ 胃の構成図、第6図AEPR(エバポレータ圧力レギュ
レータ)の断面図である。 21・・・コンプレッサ、
22・・・エンジン、23−・・コンデンサ、24・・
・レシーバ、25・・・膨張弁、26・・・エバポレー
タ、27・・・流量制御弁、31・・・ケース、32・
・・テーパ状内周面、34・・・弁座、35・・・ピス
トン、36・・・テーパ状外周面、37・・・調節用バ
ネ 代理人   森  本  義  弘 21−−−フ;70L・ソ”す′ 32−1−ノで−わ(−11−−道b X−・−弁座 〃 第3図 回転43L (rp耐 第4図 回転数rr”pm)
1 to 4 show an embodiment of the present invention, in which FIG. 1 is a cross-sectional view of a flow control valve used in a car air conditioner refrigeration system, FIG. 2 is a block diagram of the car air conditioner refrigeration system, and FIG. Figure 3 shows changes in pressure and injection amount with respect to rotation speed in a car air conditioner refrigeration system, Figure 4 shows changes in compressor discharge concentration with respect to rotation speed, and Figures 5 and 6 show conventional examples. , 5th @ is a configuration diagram of a car air conditioner freezing bag and a sectional view of the AEPR (evaporator pressure regulator). 21...Compressor,
22... Engine, 23-... Capacitor, 24...
・Receiver, 25... Expansion valve, 26... Evaporator, 27... Flow rate control valve, 31... Case, 32...
...Tapered inner circumferential surface, 34...Valve seat, 35...Piston, 36...Tapered outer circumferential surface, 37...Adjustment spring agent Yoshihiro Morimoto21---F;70L・S' 32-1-no-wa (-11--way b

Claims (1)

【特許請求の範囲】[Claims] 1.エンジンで駆動されるコンプレッサと、放熱を行な
うコンデンサと、液冷媒を溜めるレシーバと、膨張弁と
、吸熱作用を行なうエバポレータを順次配管で連結して
構成されるカーエアコン冷凍装置において、前記レシー
バもしくはその前後の配管と、前記コンプレッサもしく
はこのコンプレツサの入口側配管との間に流量制御弁を
介装し、前記流量制御弁を、前記コンプレッサ側程径大
となるテーパ状内周面を有するケースと、このケースに
内装され前記コンプレッサ側程径大となるテーパ状外周
面を有するピストンと、このピストンを前記レシーバ側
に付勢して前記ケース内面の弁座側に押圧する調節用バ
ネとから構成したカーエアコン冷凍装置。
1. In a car air conditioner refrigeration system that is configured by sequentially connecting a compressor driven by an engine, a condenser that radiates heat, a receiver that stores liquid refrigerant, an expansion valve, and an evaporator that absorbs heat through piping, the receiver or its A case in which a flow control valve is interposed between the front and rear piping and the compressor or the inlet side piping of the compressor, and the flow control valve has a tapered inner peripheral surface whose diameter increases toward the compressor; The piston is housed in the case and includes a piston having a tapered outer circumferential surface whose diameter increases toward the compressor, and an adjustment spring that biases the piston toward the receiver and presses it toward the valve seat on the inner surface of the case. Car air conditioner refrigeration system.
JP60011583A 1985-01-24 1985-01-24 Freezing device for car air conditioning equipment Pending JPS61171606A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60011583A JPS61171606A (en) 1985-01-24 1985-01-24 Freezing device for car air conditioning equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60011583A JPS61171606A (en) 1985-01-24 1985-01-24 Freezing device for car air conditioning equipment

Publications (1)

Publication Number Publication Date
JPS61171606A true JPS61171606A (en) 1986-08-02

Family

ID=11781924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60011583A Pending JPS61171606A (en) 1985-01-24 1985-01-24 Freezing device for car air conditioning equipment

Country Status (1)

Country Link
JP (1) JPS61171606A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023140249A1 (en) * 2022-01-24 2023-07-27 株式会社デンソー Refrigeration cycle device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023140249A1 (en) * 2022-01-24 2023-07-27 株式会社デンソー Refrigeration cycle device

Similar Documents

Publication Publication Date Title
US3899897A (en) By-pass suction throttling valve in a refrigeration system
US5435148A (en) Apparatus for maximizing air conditioning and/or refrigeration system efficiency
JPS58108361A (en) Controller for air conditioner for car
JP2007240041A (en) Expansion valve
CN109612141B (en) Refrigerating unit and control method and control device thereof
US6289924B1 (en) Variable flow area refrigerant expansion device
JP2006189240A (en) Expansion device
JPS61171606A (en) Freezing device for car air conditioning equipment
KR840000974B1 (en) Oil return device
JP2002022299A (en) Cooling cycle
JPS62280549A (en) Refrigerator adjusting capacity
JPH0379959A (en) Refrigeration apparatus
JP2002061571A (en) Variable displacement swash plate compressor
JPH07260262A (en) Refrigerating device
JP3949223B2 (en) Automotive cooling system
JPH0413580Y2 (en)
WO1995009335A2 (en) Apparatus for maximizing air conditioning and/or refrigeration system efficiency
JPH0413558B2 (en)
JPS603994Y2 (en) refrigerant compressor
JPH0854148A (en) Refrigerating device
JP2002022297A (en) Refrigeration cycle
JPH11201560A (en) Supercritical refrigerating cycle
JPH11230643A (en) Temperature actuated expansion valve
JPH0346749B2 (en)
JPH07301461A (en) Cooling cycle