JPS61148770A - Fuel cell lamination body - Google Patents
Fuel cell lamination bodyInfo
- Publication number
- JPS61148770A JPS61148770A JP59269987A JP26998784A JPS61148770A JP S61148770 A JPS61148770 A JP S61148770A JP 59269987 A JP59269987 A JP 59269987A JP 26998784 A JP26998784 A JP 26998784A JP S61148770 A JPS61148770 A JP S61148770A
- Authority
- JP
- Japan
- Prior art keywords
- fuel cell
- surface pressure
- laminate
- cell stack
- lamination
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/24—Grouping of fuel cells, e.g. stacking of fuel cells
- H01M8/2465—Details of groupings of fuel cells
- H01M8/247—Arrangements for tightening a stack, for accommodation of a stack in a tank or for assembling different tanks
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Fuel Cell (AREA)
Abstract
Description
【発明の詳細な説明】
(発明の技術分野〕 パ
本発明は燃料電池積層体に係わり、特に積層方向の全て
の単位セルについて適切な面圧を付与することができる
。ようにした燃料電池積層体に関する。DETAILED DESCRIPTION OF THE INVENTION (Technical Field of the Invention) The present invention relates to a fuel cell stack, and in particular to a fuel cell stack that can apply appropriate surface pressure to all unit cells in the stacking direction. Regarding the body.
(発明の技術的背景とその問題点)
゛従来゛・より、比較的高能率のエネルギ変、換装置と
して燃料電池が知られている。燃料電池は、多孔質で導
電性の一対の電極板、即ちアノードとカソードとの間に
電解質層を介在させて構成され、アノ−下側に燃料ガス
を供給し、カソード側に酸化剤ガスを供給することによ
って、電気化学的なプロセスによって直流電力を得るよ
うにしたものである。電解□貫を溶融状態で使用する燃
料電池においては、電゛解質層はイオンの伝導体である
電解質と、これを保持するための保持材料とで構成され
る。このような燃料電池では、動作温度で溶融した電解
質がアノードおよびカソードの孔に侵入し、電極、電解
質および反応ガスからなる三相界面が形成される。そし
て、アノード側に燃料ガスを流し、カソード側に酸化剤
ガスを流すと、酸化剤ガスと燃料ガスは各電極の孔を通
って拡散されて上記三相界面に到達し、ここで電極反応
に供される。(Technical background of the invention and its problems) Fuel cells have been known as a relatively highly efficient energy conversion device. A fuel cell consists of a pair of porous and conductive electrode plates, an anode and a cathode, with an electrolyte layer interposed between them. Fuel gas is supplied to the lower side of the anode, and oxidant gas is supplied to the cathode side. DC power is obtained through an electrochemical process. In a fuel cell that uses an electrolyte in a molten state, the electrolyte layer is composed of an electrolyte that is an ion conductor and a holding material for holding the electrolyte. In such fuel cells, the electrolyte, molten at operating temperatures, enters the pores of the anode and cathode, forming a three-phase interface consisting of electrode, electrolyte and reactant gas. Then, when fuel gas is flowed to the anode side and oxidant gas is flowed to the cathode side, the oxidant gas and fuel gas are diffused through the holes of each electrode and reach the three-phase interface, where an electrode reaction occurs. Served.
この反応で発生したイオンは、電解質を流れ、電子は導
電性の電極から外部回路を流れる。The ions generated in this reaction flow through the electrolyte and the electrons flow from the conductive electrode through an external circuit.
このようなプロセスで生じる単位電池(単セル)当りの
起電力は電気化学的に決定されるが、この電圧は一般に
定格負荷時で高々0.8V程度である。The electromotive force per unit battery (single cell) generated in such a process is determined electrochemically, and this voltage is generally about 0.8V at most at rated load.
したがって、高い電圧を得るためには、単セルを直列に
多数接続する必要がある。そこで、一般には複数の単セ
ルを導電性のセパレータを介して複数積層して燃料電池
を構成するようにしている。Therefore, in order to obtain a high voltage, it is necessary to connect a large number of single cells in series. Therefore, a fuel cell is generally constructed by stacking a plurality of single cells with conductive separators in between.
ところで、このように構成された燃料電池から効率良く
電力を取り出すためには、起電反応の場である三相界面
の効果的な形成と、電極〜セパレータ間の電子の移動抵
抗、即ち接触抵抗の低減化とを図る必要がある。このよ
うな要求は、積層体を適正な締付は力によって締付け、
積層方向全体に屋って適正な面圧を生じさせることによ
って達成できる。By the way, in order to efficiently extract electric power from a fuel cell configured in this way, it is necessary to effectively form a three-phase interface, which is a site for electromotive reactions, and to reduce the resistance of electron movement between the electrodes and the separator, that is, the contact resistance. It is necessary to aim at reducing the These requirements require that the proper tightening of the laminate be done by force;
This can be achieved by generating appropriate surface pressure throughout the stacking direction.
しかし、この際あまり過大な面圧を加えると、電解質が
電極の孔の中に入りすぎ、有効な三相界面が形成されな
い。しかも、このように電解質が電極の孔の中に入りす
ぎると、反応ガスの通流に伴って電解質が外部に吹飛ば
されて電解質が薄くなり、酸化剤ガスと燃料ガスの交差
混合が発生して両ガスが燃焼してしまい、結局、セル電
圧の大幅な低下、異常な発熱という事態を招く。また、
逆に面圧が少な過ぎる場合には、電解質が電極の孔の中
に入らず、やはり有効な三相界面が形成されないのに加
え、電極〜セパレータ間の接触も十分でない。このため
、接触抵抗が大きくなり、やはりセル電圧の低下を生じ
る。したがって、積層体のそれぞれの単セルに加えられ
る面圧は、所定の適正な範囲内に納まっていなければな
らない。However, if too much surface pressure is applied at this time, the electrolyte will enter the pores of the electrode too much and an effective three-phase interface will not be formed. Moreover, if too much electrolyte enters the pores of the electrode, the electrolyte will be blown out to the outside as the reaction gas flows through, resulting in thinning of the electrolyte and cross-mixing of the oxidizing gas and fuel gas. Both gases are burned, resulting in a significant drop in cell voltage and abnormal heat generation. Also,
Conversely, if the surface pressure is too low, the electrolyte will not enter the pores of the electrode, and an effective three-phase interface will not be formed, and the contact between the electrode and the separator will not be sufficient. Therefore, the contact resistance increases, which also causes a decrease in cell voltage. Therefore, the surface pressure applied to each unit cell of the laminate must fall within a predetermined appropriate range.
そこで、この要求を満たすため、従来、第6因に示すよ
うに、積層体1の最上部と最下部にそれぞれ締付は根2
.3を設け、両締付は板2.3を例えばスプリングを内
在した積層体締付は機構4によって締付ける方法がとら
れてきた。Therefore, in order to meet this requirement, conventionally, as shown in the sixth factor, the top and bottom portions of the laminate 1 are tightened by two roots.
.. For example, a method has been adopted in which a mechanism 4 is used to tighten the plate 2.3, and a mechanism 4 is used to tighten the laminate body containing a spring.
ところが、このような構造の従来の燃料電池積層体にあ
っては次のような問題があった。即ち、いま、実用サイ
ズの溶融炭酸塩型燃料電池を例にとると、積層単位であ
る単セルの重量は数Kgもあり、実用積層体では100
セル以上積層される。このため、下部におけるその重量
は数百Klに達する。However, the conventional fuel cell stack having such a structure has the following problems. In other words, if we take a practical-sized molten carbonate fuel cell as an example, a single cell, which is a stacked unit, weighs several kilograms, and a practical stack weighs 100 kg.
More than one cell is stacked. Its weight in the lower part therefore amounts to several hundred kiloliters.
さらに一般には、積層体内部を冷却するための冷却板が
数セル毎に積層されるため、この重量も加わり、実際の
積層体の下部における面圧は、上部の面圧をかなり上回
る。このよ゛うな積層体において、従来のような積層体
全体に亙る同一の締付は圧を加えた場合、積層体の上部
、中部、下部でそれぞれ面圧が異なったものとなり、い
ずれかの面圧を最適値に合わせようとすると、必然的に
他の部分の面圧は過大または過少となり、積層体の局所
的な性能低下を招くという問題があった。Furthermore, since cooling plates for cooling the inside of the laminate are generally stacked every few cells, this weight is also added, and the actual surface pressure at the bottom of the laminate considerably exceeds the surface pressure at the top. In such a laminate, when pressure is applied to the entire laminate as in the past, the surface pressure will be different at the top, middle, and bottom of the laminate, and the pressure on any one surface will be different. If an attempt is made to adjust the pressure to an optimum value, the surface pressure in other parts will inevitably become too large or too small, resulting in a problem that local performance deterioration of the laminate will occur.
(発明の目的)
この発明はこのような問題に基づきなされたものであり
、その目的とするところは、多数のセルを垂直方向に積
層した場合でも、上下方向に亙っで、積層体の各セルに
一様な面圧を与えることができ、もって各単セルから均
一な電気エネルギを得ることができるようにした燃料電
池積層体を提供することにある。(Objective of the Invention) This invention was made based on the above-mentioned problem, and its purpose is to ensure that even when a large number of cells are stacked vertically, each layer of the stack is It is an object of the present invention to provide a fuel cell stack that can apply uniform surface pressure to the cells, thereby making it possible to obtain uniform electric energy from each single cell.
本発明は、アノード電極とカソード電極との間に電解賀
層を介在させて構成された単位電池を、導電性のセパレ
ータを介して複数積層してなる燃料電池積層体において
、前記燃料電池積層体を積層方向に複数の゛積層体ブロ
ックに分割するとともに、前記各積層体ブロック毎に積
層方向の圧力を調整可能な積層体面圧調整手段を備えた
ことを特徴としている。The present invention provides a fuel cell stack in which a plurality of unit cells each having an electrolytic layer interposed between an anode electrode and a cathode electrode are stacked with a conductive separator in between. The present invention is characterized in that it is divided into a plurality of laminate blocks in the stacking direction, and is provided with a laminate surface pressure adjusting means that can adjust the pressure in the stacking direction for each of the laminate blocks.
本発明によれば、燃料電池積層体を複数の積層体ブロッ
クに分割し、かつ各積層体ブロックをそれぞれ異なる締
付は力で締付けることができるので、積層体ブロックの
うち上方に位置するブロックはど高い締付は力を付与し
、同下方に位置するブロックはどその締付は力を弱める
ようにすれば、燃料電池積層体全体に亙って単セルの面
圧を均一にすることができる。したがって、この発明に
よれば、燃料電池積層体全体に1って適正な三相界面が
形成でき、効率良く電気エネルギを取出すことが可能に
なる。According to the present invention, the fuel cell stack is divided into a plurality of stack blocks, and each stack block can be tightened with a different force, so that the upper block of the stack blocks is By applying force by tightening the block higher and weakening the force by tightening the block located below, it is possible to equalize the surface pressure of the single cell throughout the fuel cell stack. can. Therefore, according to the present invention, an appropriate three-phase interface can be formed in the entire fuel cell stack, and electric energy can be extracted efficiently.
〔発明の実施例〕 ・
以下、図面を参照しながら、本発明の一実gMNについ
て説明する。[Embodiments of the Invention] - Hereinafter, an example gMN of the present invention will be described with reference to the drawings.
実施例1
第1図〜第3図に示すような溶融炭酸塩型燃料電池の燃
料電池積層体を組立てた。この燃料電池積層体は、第1
図に示すように積層方向に分割された5つの積層体ブロ
ック11と、これら積層体ブロック11問および上下端
に設けられた導電性材料からなる締付は根12と、隣接
する上記締付は板12の相互間に介在されて相互の′締
付は力を調整する積層体面圧調整機構13とで構成され
ている。Example 1 A fuel cell stack of a molten carbonate fuel cell as shown in FIGS. 1 to 3 was assembled. This fuel cell stack includes the first
As shown in the figure, there are five laminate blocks 11 divided in the stacking direction, 11 of these laminate blocks and the clamps made of conductive material provided at the upper and lower ends are roots 12, and the adjacent clamps are A laminated body surface pressure adjustment mechanism 13 is provided between the plates 12 to adjust the force for mutual tightening.
各積層体ブロック11は、第2図に示すように、単位電
池21を、セパレータ22を介して複数積層して構成さ
れている。単位電池21は、ニッケル合金系からなる一
対の多孔質電極板、即ちアノード23とカンード24の
間に°電解質板25を介挿して構成されている。電解質
板25は、炭酸リチウムと炭酸カリウムとを混合してな
る炭酸塩電解質をリチウムアルミネートで形成された保
持材で保持してなるものである。セパレータ22は、導
電性材料で形成された板状体の両面に互いに直交する方
向に延びる複数本の溝26a 、 26bを形成し、こ
れら溝268゜26bをそれぞれ酸化剤ガスQと燃料ガ
スPの流路としたものである。As shown in FIG. 2, each laminate block 11 is constructed by stacking a plurality of unit batteries 21 with separators 22 in between. The unit battery 21 is constructed by interposing an electrolyte plate 25 between a pair of porous electrode plates made of a nickel alloy, that is, an anode 23 and a cand 24. The electrolyte plate 25 is made by holding a carbonate electrolyte made of a mixture of lithium carbonate and potassium carbonate with a holding material made of lithium aluminate. The separator 22 has a plurality of grooves 26a and 26b extending in directions perpendicular to each other on both sides of a plate-like body formed of a conductive material, and these grooves 268 and 26b are used for oxidizing gas Q and fuel gas P, respectively. This is a flow path.
締付は根12は、全体が四角形状をしており、その四隅
に対角方向に延びる腕部21を一体的に突設したものと
なっている。この腕部27の先端部には後述する積層体
面圧調整機構13を取付けるための孔28が形成されて
いる。The tightening base 12 has a rectangular shape as a whole, and has arm portions 21 integrally protruding from the four corners thereof extending in a diagonal direction. A hole 28 is formed at the tip of the arm portion 27 for attaching a layered body surface pressure adjustment mechanism 13, which will be described later.
前記積層体面圧調整機構13はこれら腕部21Mに介在
し、具体的には、第3図に示すように構成さの接続ロッ
ド31は、上端部および中間部に鍔部32゜33を一体
的に形成し、上記中間の輝部33から下端側をねじ部−
34としたものである。この接続ロッド31は、ねじ部
34が前記腕部27の孔28に挿入され、ねじ部34に
螺合されたナット35ム鐸部33とで前記腕部27を挟
持することにより締付は根12に固定される。、なお、
“接続ロッド31は、導電部材であるため、積層方向の
電気的な絶縁を図るため、輝部33と腕部21との間お
よびナツト35と腕部27との間にアルミナで形成され
た絶縁座36.”37を介在させている。そし′て、−
接する接続ロッド31同士は両者の間の引張り力を調整
−する筒状体41によって接続されている。この筒状体
41は両端部に同軸孔42゜43を有し、゛上端部の同
軸孔42には上方の接続ロッド31のねじ−34が螺合
し得るねじが形成されている。一方下方の接続ロッド3
1は筒状体41の下部の同軸孔43に対して緩挿されて
おり、その上部の鍔部32が筒状体41の内部に配置さ
れている。そして、鍔部32と筒状体41の下端壁内面
との間にはコイルスプリング44が介挿されている。The laminated body surface pressure adjustment mechanism 13 is interposed in these arm portions 21M, and specifically, a connecting rod 31 configured as shown in FIG. The lower end side from the intermediate bright part 33 is formed into a threaded part.
34. This connecting rod 31 has a threaded portion 34 inserted into the hole 28 of the arm portion 27, and a nut 35 screwed into the threaded portion 34. The arm portion 27 is held between a ring portion 33 and tightened. It is fixed at 12. ,In addition,
"Since the connecting rod 31 is a conductive member, insulating material made of alumina is used between the bright part 33 and the arm part 21 and between the nut 35 and the arm part 27 in order to achieve electrical insulation in the stacking direction." A seat 36."37 is interposed. Then, -
The connecting rods 31 that are in contact with each other are connected by a cylindrical body 41 that adjusts the tensile force between them. This cylindrical body 41 has coaxial holes 42 and 43 at both ends, and a thread is formed in the coaxial hole 42 at the upper end into which the thread 34 of the upper connecting rod 31 can be screwed. On the other hand, the lower connecting rod 3
1 is loosely inserted into the coaxial hole 43 at the bottom of the cylindrical body 41, and the flange 32 at the top thereof is disposed inside the cylindrical body 41. A coil spring 44 is interposed between the flange 32 and the inner surface of the lower end wall of the cylindrical body 41.
このように構成された燃料電池積層体は、各積層体ブロ
ック毎に設けられた前記筒状体41を回転させることに
より筒状体41が図中上下に移動する。In the fuel cell stack constructed in this manner, the cylindrical body 41 is moved up and down in the figure by rotating the cylindrical body 41 provided for each stacked body block.
この結果、コイルスプリング44が圧縮また伸長されて
締付は根12I11の締付は力を任意の値に設定できる
この時、コイルスプリング44は、温度上昇による電解
質層25の変形に対しても積層体の面圧を一定に保つよ
うに作用する。As a result, the coil spring 44 is compressed or expanded, and the tightening force of the roots 12I11 can be set to an arbitrary value. It acts to maintain constant surface pressure on the body.
本実施例では積層体ブロック11として20セルの単位
電池を用い、合計100セルの積層体とした。In this example, 20 unit batteries were used as the laminate block 11, resulting in a laminate of 100 cells in total.
20セル分の重量は約10(ljであったため、積層体
面圧調整機構13による締付は力は図中上方から順に1
つの゛積層体面圧調整機構当り約25 lfずつ少なく
なるように設定した。Since the weight of 20 cells was approximately 10 lj, the tightening force by the laminate surface pressure adjustment mechanism 13 was 1 in order from the top in the figure.
The pressure was set to decrease by approximately 25 lf for each laminate surface pressure adjustment mechanism.
実施例2
第4図に示すような溶融炭酸塩型燃料電池の燃料電池積
層体を組立てた。この燃料電池積層体は、積層体ブロッ
ク11の各両端面に締付は根12を配置し、両締付は板
12をを積層体面圧調整機41113で締付けて構成さ
れた分割ブロック51を、導電板52を介して積層して
構成されている。各分割ブロック51は、隣接する締付
は板12の腕部21間に介挿されたブロック接続機構5
3によって接続されている。Example 2 A fuel cell stack of a molten carbonate fuel cell as shown in FIG. 4 was assembled. This fuel cell stack includes a split block 51 configured by arranging clamping roots 12 on each end face of the stack block 11, and tightening both clamping plates 12 with a stack surface pressure regulator 41113. They are constructed by laminating them with conductive plates 52 in between. Each divided block 51 has a block connecting mechanism 5 inserted between the arm portions 21 of the plate 12 for tightening adjacent blocks.
Connected by 3.
このブロック接続機構53も前述した積層体面圧調整機
構13と略同様の構造となっている。This block connection mechanism 53 also has substantially the same structure as the laminate surface pressure adjustment mechanism 13 described above.
この場合においても、1ブロツクの重量は約100Kg
であるため、積層体面圧調整機構13による締付は圧力
は、上方の分割ブロック51から順に1つの調整機構当
り約25 Kgずつ少なくなるように、上から順に60
0.500.400.300.200 Kgの締付は力
で締付け、発電試験を行なった。その結果、単セル電圧
のバラツキは4%であった。In this case, the weight of one block is approximately 100Kg.
Therefore, the tightening pressure by the laminate surface pressure adjustment mechanism 13 is 60 kg from the top so that the pressure decreases by about 25 kg per adjustment mechanism from the upper divided block 51.
A power generation test was performed by tightening with a force of 0.500.400.300.200 Kg. As a result, the variation in single cell voltage was 4%.
これに対し、比較のために、上記実施例2の調整機構を
有する570ツク積層の溶融炭酸塩型燃料電池積層体を
用い、各ブロックの個別締付けを行なわずに積層体全体
に8oo Ky (各締付は機構当り20(Ig)の締
付けを行なって発電試験を行なったところ、積層体の単
セル電圧のバラツキは7%であった。On the other hand, for comparison, a 570-layer molten carbonate fuel cell stack having the adjustment mechanism of Example 2 was used, and 8oo Ky (each When a power generation test was conducted with a tightening force of 20 (Ig) per mechanism, the variation in single cell voltage of the laminate was 7%.
以上の結果から、実施例2の燃料電池積層体は従来のも
のに比べ、積層方向に均一にしかも効率良く電気エネル
ギを取出すことが可能であることが確認された。From the above results, it was confirmed that the fuel cell stack of Example 2 was able to extract electrical energy more uniformly and efficiently in the stacking direction than the conventional fuel cell stack.
なお、以上は溶融炭酸塩型燃料電池に本発明を適用した
例であるが、本発明はリン酸型など、垂直方向に複数の
単セルを積層する構造の他の燃料電池にも応用できるこ
とは言うまでもない。また、積層体面圧調整機構は、各
積層ブロック毎にそれぞれ締付は力を調整し得ることに
加えて、積層体全体の締付は力を調整できるようにして
も良い。The above is an example in which the present invention is applied to a molten carbonate fuel cell, but the present invention can also be applied to other fuel cells, such as a phosphoric acid type, that have a structure in which a plurality of single cells are vertically stacked. Needless to say. In addition to being able to adjust the tightening force for each stacked block, the stacked body surface pressure adjustment mechanism may be configured to be able to adjust the tightening force for the entire stack.
また、例えば第5図に示すようにケース41の内部に収
容されるコイルスプリング60が、互いに連結された接
続ロッド31に対し圧縮方向および引張り方向に所定の
バネ力を付与するように構成しても良い。このような構
成であれば、隣接ブロックの熱変形の影響をより受は難
い。その他、積層体面圧調整機構の構成は本発明の要旨
を逸脱しない範囲で種々変更して実施することができる
。 ”Further, as shown in FIG. 5, for example, a coil spring 60 housed inside the case 41 is configured to apply a predetermined spring force in the compression direction and the tension direction to the connecting rods 31 connected to each other. Also good. With such a configuration, it is less susceptible to thermal deformation of adjacent blocks. In addition, the configuration of the layered body surface pressure adjustment mechanism can be modified and implemented in various ways without departing from the gist of the present invention. ”
第1図は本発明の第1の実施例に係る溶融炭酸塩型燃料
電池積層体の斜視図、第2図は同積層体の積層体ブロッ
クの一部の構成を示す斜視図、第3図は同積層体の積層
体調整機構を示す断面図、第4図は本発明の第2の実施
例に係る溶融炭酸塩型燃料電池積層体の斜視図、第5図
は積層体面圧調整手段の変形例を示す部分断面図、第6
図は従来の燃料電池積層体の斜視図である。
1・・・積層体、2,3,12・・・締付は板、4,1
3゜53・・・積層体面圧調整機構、11・・・積層体
ブロック、21・・・単位電池、22セパレータ、23
・・・アノード、24・・・カソード、25・・・電解
質板、21・・・腕部、31・・・接続ロッド、41・
・・筒状体、44. Go・・・コイルスプリング、5
1・・・分割ブロック、P・・・燃料ガス、Q・・・酸
化剤ガス。
出願人代理人 弁理士 鈴江武彦
第1図
第2図
第3図
第4図
第6図FIG. 1 is a perspective view of a molten carbonate fuel cell stack according to a first embodiment of the present invention, FIG. 2 is a perspective view showing the structure of a part of a stack block of the same stack, and FIG. 4 is a perspective view of a molten carbonate fuel cell stack according to a second embodiment of the present invention, and FIG. 5 is a sectional view showing a stack adjustment mechanism of the same stack. FIG. Partial sectional view showing a modification, No. 6
The figure is a perspective view of a conventional fuel cell stack. 1... Laminated body, 2, 3, 12... Tightening is a plate, 4, 1
3゜53... Laminated body surface pressure adjustment mechanism, 11... Laminated body block, 21... Unit battery, 22 Separator, 23
... Anode, 24... Cathode, 25... Electrolyte plate, 21... Arm portion, 31... Connection rod, 41...
...Cylindrical body, 44. Go...Coil spring, 5
1...Divided block, P...fuel gas, Q...oxidizer gas. Applicant's Representative Patent Attorney Takehiko Suzue Figure 1 Figure 2 Figure 3 Figure 4 Figure 6
Claims (4)
て構成された単位電池を、導電性のセパレータを介して
複数積層してなる燃料電池積層体において、前記燃料電
池積層体を積層方向に複数の積層体ブロックに分割する
とともに、前記各積層体ブロック毎に積層方向の圧力を
調整可能な積層体面圧調整手段を備えたことを特徴とす
る燃料電池積層体。(1) In a fuel cell stack in which a plurality of unit cells each having an electrolyte layer interposed between an anode and a cathode are stacked with conductive separators in between, the fuel cell stack is stacked in the stacking direction. 1. A fuel cell stack which is divided into a plurality of stacked blocks and further comprises a stacked body surface pressure adjusting means capable of adjusting the pressure in the stacking direction for each of the stacked blocks.
全体の面圧も調整可能であることを特徴とする特許請求
の範囲第1項記載の燃料電池積層体。(2) The fuel cell stack according to claim 1, wherein the stack surface pressure adjusting means is also capable of adjusting the surface pressure of the entire fuel cell stack.
のうち前記燃料電池積層体の積層方向上部に位置する積
層体ブロック程高い圧力を付与するものであることを特
徴とする特許請求の範囲第1項記載の燃料電池積層体。(3) The laminate surface pressure adjusting means applies a higher pressure to a laminate block located at an upper position in the stacking direction of the fuel cell laminate among the laminate blocks. 2. The fuel cell laminate according to item 1.
て圧力を付与するものであることを特徴とする特許請求
の範囲第1項記載の燃料電池積層体。(4) The fuel cell stack according to claim 1, wherein the stack surface pressure adjusting means applies pressure by the elastic force of a spring.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59269987A JPH0760693B2 (en) | 1984-12-21 | 1984-12-21 | Fuel cell stack |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59269987A JPH0760693B2 (en) | 1984-12-21 | 1984-12-21 | Fuel cell stack |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61148770A true JPS61148770A (en) | 1986-07-07 |
JPH0760693B2 JPH0760693B2 (en) | 1995-06-28 |
Family
ID=17479988
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59269987A Expired - Fee Related JPH0760693B2 (en) | 1984-12-21 | 1984-12-21 | Fuel cell stack |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0760693B2 (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6212071A (en) * | 1985-07-10 | 1987-01-21 | Hitachi Ltd | Fuel cell |
JPH01281681A (en) * | 1988-04-15 | 1989-11-13 | Hitachi Ltd | Stack for fuel cell |
JP2001129884A (en) * | 1999-09-16 | 2001-05-15 | Basf Ag | Composite structural material |
JP2001236937A (en) * | 1999-12-15 | 2001-08-31 | Toyota Motor Corp | Battery pack |
WO2002019456A1 (en) * | 2000-08-31 | 2002-03-07 | Fuelcell Energy, Inc. | Fuel cell stack compression system |
WO2004045010A2 (en) | 2002-11-14 | 2004-05-27 | 3M Innovative Properties Company | Fuel cell stack |
JP2006269334A (en) * | 2005-03-25 | 2006-10-05 | Hitachi Ltd | Fuel cell unit, fuel cell unit assembly, and electronic apparatus |
JP2007273097A (en) * | 2006-03-30 | 2007-10-18 | Nissan Motor Co Ltd | Fuel cell stack structure and manufacturing method therefor |
JP2009009912A (en) * | 2007-06-29 | 2009-01-15 | Nissan Motor Co Ltd | Assembling system and assembling method for fuel cell, and fuel cell assembled by the same assembly method |
JP2009093970A (en) * | 2007-10-11 | 2009-04-30 | Fuji Electric Holdings Co Ltd | Fuel cell stack and exchange method of single cell of fuel cell stack |
JP2011049181A (en) * | 1999-12-15 | 2011-03-10 | Toyota Motor Corp | Vehicular battery pack |
JP2012038709A (en) * | 2010-08-10 | 2012-02-23 | Sb Limotive Co Ltd | Battery module |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58115772A (en) * | 1981-12-26 | 1983-07-09 | Toshiba Corp | Fuel cell equipment |
-
1984
- 1984-12-21 JP JP59269987A patent/JPH0760693B2/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58115772A (en) * | 1981-12-26 | 1983-07-09 | Toshiba Corp | Fuel cell equipment |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6212071A (en) * | 1985-07-10 | 1987-01-21 | Hitachi Ltd | Fuel cell |
JPH01281681A (en) * | 1988-04-15 | 1989-11-13 | Hitachi Ltd | Stack for fuel cell |
JP2001129884A (en) * | 1999-09-16 | 2001-05-15 | Basf Ag | Composite structural material |
JP2001236937A (en) * | 1999-12-15 | 2001-08-31 | Toyota Motor Corp | Battery pack |
JP2011049181A (en) * | 1999-12-15 | 2011-03-10 | Toyota Motor Corp | Vehicular battery pack |
WO2002019456A1 (en) * | 2000-08-31 | 2002-03-07 | Fuelcell Energy, Inc. | Fuel cell stack compression system |
US6413665B1 (en) * | 2000-08-31 | 2002-07-02 | Fuelcell Energy, Inc. | Fuel cell stack compression system |
CN100362687C (en) * | 2002-11-14 | 2008-01-16 | 3M创新有限公司 | Fuel cell stack |
WO2004045010A2 (en) | 2002-11-14 | 2004-05-27 | 3M Innovative Properties Company | Fuel cell stack |
WO2004045010A3 (en) * | 2002-11-14 | 2005-01-20 | 3M Innovative Properties Co | Fuel cell stack |
US7163761B2 (en) | 2002-11-14 | 2007-01-16 | 3M Innovative Properties Company | Fuel cell stack |
JP2006269334A (en) * | 2005-03-25 | 2006-10-05 | Hitachi Ltd | Fuel cell unit, fuel cell unit assembly, and electronic apparatus |
JP4664714B2 (en) * | 2005-03-25 | 2011-04-06 | 株式会社日立製作所 | FUEL CELL UNIT, FUEL CELL UNIT ASSEMBLY, AND ELECTRONIC DEVICE |
JP2007273097A (en) * | 2006-03-30 | 2007-10-18 | Nissan Motor Co Ltd | Fuel cell stack structure and manufacturing method therefor |
US8377604B2 (en) | 2006-03-30 | 2013-02-19 | Nissan Motor Co., Ltd. | Fuel cell stack structure with tie rod including inner shaft and outer cylinder fastened together with joining material and manufacturing method |
JP2009009912A (en) * | 2007-06-29 | 2009-01-15 | Nissan Motor Co Ltd | Assembling system and assembling method for fuel cell, and fuel cell assembled by the same assembly method |
JP2009093970A (en) * | 2007-10-11 | 2009-04-30 | Fuji Electric Holdings Co Ltd | Fuel cell stack and exchange method of single cell of fuel cell stack |
JP2012038709A (en) * | 2010-08-10 | 2012-02-23 | Sb Limotive Co Ltd | Battery module |
US9203065B2 (en) | 2010-08-10 | 2015-12-01 | Samsung Sdi Co., Ltd. | Battery module |
Also Published As
Publication number | Publication date |
---|---|
JPH0760693B2 (en) | 1995-06-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4603093A (en) | Lead-acid battery | |
EP0104892B1 (en) | Compact fuel cell stack | |
KR100559326B1 (en) | Compresstion structure for fuel cell stack | |
US10008732B2 (en) | Solid oxide fuel cell stack | |
JPS61148770A (en) | Fuel cell lamination body | |
JPH0888018A (en) | Solid polymer fuel cell | |
US20030162078A1 (en) | Fuel cell | |
JPH07122252A (en) | Set battery | |
EP2109903B1 (en) | Fuel cell stack having an integrated end plate assembly | |
JPH0317186B2 (en) | ||
JP2566757B2 (en) | Fuel cell | |
JP4118123B2 (en) | Fuel cell stack | |
CN113130960A (en) | Packaging structure of fuel cell stack and fuel cell stack system | |
US3331706A (en) | Battery of fuel cells | |
JPH11121025A (en) | Secondary battery | |
EP1394880A1 (en) | Fuel cell stack assembly load frame with compression springs | |
JPH10261426A (en) | Block structure of fuel cell stack | |
EP1162681B1 (en) | Cooling of a fuel cell system | |
KR101353839B1 (en) | Solid oxide fuel cell haivng excellent maintaining surface pressure uniformity and durability | |
JP2004079246A (en) | Assembling method of fuel cell stack | |
JPH10270066A (en) | Fuel cell | |
JPS62243259A (en) | End plate structure of fuel cell | |
JPH05151979A (en) | Solid electrolyte fuel cell | |
KR102529939B1 (en) | Hybrid power generation system | |
JPS62271366A (en) | Stack clamping structure for fuel cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |