JPS61145322A - Control device in combined cycle plant for producing coal gas - Google Patents
Control device in combined cycle plant for producing coal gasInfo
- Publication number
- JPS61145322A JPS61145322A JP26634184A JP26634184A JPS61145322A JP S61145322 A JPS61145322 A JP S61145322A JP 26634184 A JP26634184 A JP 26634184A JP 26634184 A JP26634184 A JP 26634184A JP S61145322 A JPS61145322 A JP S61145322A
- Authority
- JP
- Japan
- Prior art keywords
- coal
- gasifier
- turbine
- gas
- load
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E20/00—Combustion technologies with mitigation potential
- Y02E20/16—Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
- Y02E20/18—Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]
Landscapes
- Engine Equipment That Uses Special Cycles (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の技術分野〕
本発明は石炭ガス化コンバインドサイクルプラントの制
御装置に係り、特にプラントのシステム圧力を変圧とし
て運転するのに適したプラントの制御装置に関する。DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a control device for a coal gasification combined cycle plant, and more particularly to a control device for a plant suitable for operating the plant with a system pressure of variable pressure.
石炭ガス化コンパインドチイクルシステムは石炭をガ、
ス化し、そのガスを燃料ガスとしてガスタンをも回し、
発電を行なう高効率な発電システムである。Coal gasification combined cycle system converts coal into gas,
The gas is used as fuel gas to run the gas tank.
It is a highly efficient power generation system that generates electricity.
このシステムは石炭の有効利用、脱硫の簡易性などの環
境対策の優位性からも近年注目されてし)る。This system has attracted attention in recent years due to its superiority in environmental measures, such as the effective use of coal and the ease of desulfurization).
第5図に石炭ガス化複合発電システムの一例を示し、以
下本図を使って装置の説明及び負荷制御の方法を説明す
る。An example of a coal gasification combined cycle power generation system is shown in FIG. 5, and the device and load control method will be explained below using this figure.
燃料の石炭はスラリー発生装置lで水と混合されスラリ
ー状の石炭流となり空気を酸化剤としてガス化炉2でガ
ス化反応をおこし粗ガスを発生する。この粗ガスは高温
であるので、ガスクーラー3で脱硫に可能な温度まで温
度を下げられ脱硫装置4に流入する。この際、水と熱交
換をし蒸気を発生させこの蒸気はガスクーラドラム5に
貯えられる。上記脱硫装置4にて精製されたガスはガス
ヒータ6で昇温され燃焼器7でコンプレッサ8で与えら
れる圧縮空気と混合されて燃焼し、ガスタービン9に送
られガスタービンを回転させ発電を行なう。このガスタ
ービン9からの排ガスは排熱回収ボイラ10へ導かれ、
スーパーヒーター11、エバポレータ12、エコノマイ
ザ−13と順次熱交換をして大気に放出される。エバポ
レータ12で発生した蒸気は蒸気ドラム14に貯えられ
スーパーヒーター 11でガスクーラードラム5からの
蒸気とあわせて過熱され、蒸気タービン15に流入しそ
の発生トルクにより発電が行なわれる。蒸気タービン1
5で仕事をした蒸気は復7x器16で水となり給水加熱
器17、脱気器18を通って排熱回収ボイラ10に導か
れる。排熱回収ボイラlOのエコノマイザ13で加熱さ
れた水は一方がガスクーラードラム5に他方は蒸気ドラ
ム14に辱かれる。The fuel coal is mixed with water in a slurry generator 1 to form a slurry-like coal flow, and a gasification reaction is caused in a gasifier 2 using air as an oxidizing agent to generate crude gas. Since this crude gas has a high temperature, the temperature is lowered by the gas cooler 3 to a temperature that can be desulfurized, and the crude gas flows into the desulfurization device 4 . At this time, heat is exchanged with water to generate steam, which is stored in the gas cooler drum 5. The gas purified by the desulfurization device 4 is heated by a gas heater 6, mixed with compressed air provided by a compressor 8 in a combustor 7, combusted, and sent to a gas turbine 9, which rotates the gas turbine to generate electricity. The exhaust gas from this gas turbine 9 is led to an exhaust heat recovery boiler 10,
The heat is exchanged sequentially with the super heater 11, evaporator 12, and economizer 13, and then released into the atmosphere. Steam generated by the evaporator 12 is stored in a steam drum 14, superheated by a superheater 11 together with steam from the gas cooler drum 5, flows into a steam turbine 15, and generates electricity using the generated torque. steam turbine 1
The steam that has done work in step 5 becomes water in the converter 16 and is led to the exhaust heat recovery boiler 10 through the feed water heater 17 and the deaerator 18. The water heated by the economizer 13 of the exhaust heat recovery boiler IO is subjected to a gas cooler drum 5 on one side and a steam drum 14 on the other side.
一方、ガス化炉2に纒かれる空気はコンブレラf8から
抽気されに空気を昇圧空気圧縮al19で更に圧縮して
から流入させている。On the other hand, the air to be fed into the gasification furnace 2 is extracted from the combiner f8, further compressed by a booster air compressor al19, and then allowed to flow into the gasifier 2.
この様なプラントを負荷運転する際は負荷偏差にみあう
制御信号を制御装置器から出力しガスタービン9に流入
する燃料流盪を調整する燃料流量調整弁20を動作させ
たり、ガス化炉2に流入する燃料である石炭スラリーt
を調整する石炭(スラリー)流量調整弁21と酸化剤で
ある空気を調整する空気流量調整弁22を動作させて行
なり”でいる。When such a plant is operated under load, a control signal corresponding to the load deviation is output from the control device to operate the fuel flow regulating valve 20 that adjusts the flow of fuel flowing into the gas turbine 9, and the gasifier 2 is operated. Coal slurry t, which is the fuel flowing into
This is done by operating the coal (slurry) flow rate adjustment valve 21 that adjusts the flow rate of the coal (slurry) and the air flow rate adjustment valve 22 that adjusts the air that is the oxidizing agent.
蒸気タービン出力はガスタービンの排ガスのエネルギー
によって決まるので、複合発電の負荷はガスタービン(
:流入する燃料流址によって決まる。Since the steam turbine output is determined by the energy of the gas turbine exhaust gas, the load of combined power generation is determined by the gas turbine (
: Determined by the inflowing fuel flow.
上記のように構成された石炭ガス化コンバインドサイク
ルプラントにあっては、負荷制御は従来ガス化炉2の内
圧を一定に保持した状態で燃料流量調整弁20を開閉制
御することにより行われていた。すなわち、高負荷のと
きには燃料流量調整弁加の開度な大きく保ち、逆に負荷
が低いときには開度な小さくし、こうして弁開度の調節
により燃焼器7に流入する燃料量を制御していた。In the coal gasification combined cycle plant configured as described above, load control has conventionally been performed by controlling the opening and closing of the fuel flow rate regulating valve 20 while keeping the internal pressure of the gasifier 2 constant. . That is, when the load was high, the opening of the fuel flow control valve was kept large, and when the load was low, the opening was made small, and in this way, the amount of fuel flowing into the combustor 7 was controlled by adjusting the valve opening. .
しかしながら、上記のようにガス化炉内圧を負荷C二か
かわらず一定ζ二保持することとすると、低負荷の場合
(=ガス流量が減少するためガス流速が遅くなり、この
ためガス化炉内におけるガス化C;必要な流動層高さお
よび脱硫装置:二おける流動層高さがともに確保できな
くなって、ガス化反応および脱硫反応の効率が低下する
という不都合がある。またガス化炉にはガスタービン圧
縮機吐出突気の一部が昇圧圧縮機で昇圧されて導かれる
ようになっているが、タービン負荷が低下するとこれ毫
二伴なって上記圧縮機吐出圧も低下するため、上記のよ
うにガス化炉内圧を高負荷の場合と同等(:保持しよう
とすれば負荷低下に伴ない昇圧圧縮機の仕事量を増大し
なければならず、余分な動力を必要とする。さらに低負
荷運転を実現するため燃料流量調整弁の開度な小さくす
ると、抜弁における絞り損失が増大する等、ガス化炉内
を負荷(=かかわらず一定;:保持する方式では種々の
不具合がある。However, if the internal pressure of the gasifier is kept constant ζ2 regardless of the load C2 as described above, in the case of low load (= gas flow rate decreases, the gas flow rate slows down, Gasification C: The necessary fluidized bed height and desulfurization equipment: Both the required fluidized bed heights cannot be secured, and the efficiency of the gasification reaction and desulfurization reaction decreases.In addition, the gasification furnace has a gas A part of the turbine compressor discharge rush is boosted and guided by the step-up compressor, but when the turbine load decreases, the compressor discharge pressure also decreases, so as described above. In order to maintain the internal pressure of the gasifier at the same level as under high load, the work of the boost compressor must increase as the load decreases, requiring extra power. In order to achieve this, if the opening degree of the fuel flow rate adjustment valve is reduced, there are various problems with the system that maintains the load inside the gasifier (constant regardless of the load), such as an increase in throttling loss when the valve is removed.
本発明は上記の点に謹みなされたもので、低負荷の場合
にも高い効率を維持してプラントの運転を行うことがで
きる石炭ガス化コンパインドナイクルプラントの制御装
置を提供することを目的とする。The present invention has been made in consideration of the above points, and an object of the present invention is to provide a control device for a coal gasification combined nitrite plant that can operate the plant while maintaining high efficiency even under low load. shall be.
本発明は、石炭を空気で酸化してガス化するガス化炉と
、該ガス化炉で得られたガスを圧縮機から送給される空
気と共に燃焼する燃焼器と、該燃焼器の燃焼ガスC二よ
り駆動されるガスタービンと、該ガスタービンの排ガス
および上記ガス化炉で得られたガスを熱源(二蒸気を発
生する排熱回収ポイラと、該排熱回収ボイラで得られた
蒸気により駆動される蒸気タービンと、上記圧縮機から
得られる空気の一部を加圧して上記ガス化炉に供給する
昇田田縮機とを有する石炭ガス化コンバインドサイクル
プラントの制御装置であり、その構成は、大きく分けて
二つの部分からなる8すなわち、一つは負荷設定値とタ
ービンの実出力および実回転数に基いて上記燃焼器に流
入する燃料量を調整するタービン速度負荷制御系であり
、他の一つは上記負荷設定値に応じて可変に設定される
圧力と上記ガス化炉内圧力の偏差に基いて上記ガス化炉
に流入する石炭tおよび空気量を調整すると共に前記昇
圧圧縮機回転数を制御するガス化炉変圧制御系であり、
本発明はこれら二つの部分から構成される。ここで負荷
設定値に応じて可変に設定された圧力は、関数発生器等
により当該プラントに適するように設定される。しかし
て、ガス化炉内圧力は負荷設定値に応じて変化すること
になり、タービンが低負荷の場合にもプラントを高い効
率で運転することができる。The present invention relates to a gasifier that oxidizes coal with air and gasifies it, a combustor that burns the gas obtained in the gasifier together with air supplied from a compressor, and a combustion gas of the combustor. A gas turbine driven by C2, the exhaust gas of the gas turbine and the gas obtained from the gasification furnace are used as heat sources (two heat recovery boilers that generate steam, and the steam obtained from the waste heat recovery boiler). A control device for a coal gasification combined cycle plant that has a driven steam turbine and a Shimoda compressor that pressurizes a part of the air obtained from the compressor and supplies it to the gasifier, and its configuration is roughly divided into two parts: one is a turbine speed load control system that adjusts the amount of fuel flowing into the combustor based on the load setting value and the actual output and rotation speed of the turbine; The other one is to adjust the amount of coal t and air flowing into the gasification furnace based on the deviation between the pressure variably set according to the load setting value and the pressure inside the gasification furnace, and also to adjust the amount of air and the amount of coal flowing into the gasification furnace. It is a gasifier variable pressure control system that controls the rotation speed.
The invention consists of these two parts. Here, the pressure that is variably set according to the load setting value is set by a function generator or the like so as to be suitable for the plant. Therefore, the pressure inside the gasifier changes according to the load setting value, and the plant can be operated with high efficiency even when the turbine is under low load.
本発明は以下C二連べる実施例から、さらに明瞭ζ二理
解される。The present invention will be more clearly understood from the following examples.
第11&は第5図6;示した石炭ガス化コンノ(インド
サイクルプラントの制御装置の系統図を示すものであり
、負荷設定器30から出力され78:負荷設定値31は
変化率制限器32を介して三方C;分岐し、そよび加算
器35書二人力される。比較演算器おにおし)て負荷設
定値31は出力検出器あて得られたタービン案出カイ1
号37と比較され、その偏差は比例積分器あ(二おいて
積分さ3だ後比較演算器39に入力され、この比較演算
器39(二て回転数検出4伯で得られたタービン実回転
数信号41と比較され、さらにその偏差に調定率42が
加味されて帖料流mM!iI弁20が開閉制御される。11& is a system diagram of the control device of the coal gasification condenser (India cycle plant) shown in FIG. The load setting value 31 is applied to the output detector and the obtained turbine design value 1 is applied to the output detector.
37, and the deviation is input to the comparison calculator 39 after being integrated by the proportional integrator (2) and the actual turbine rotation obtained by the rotation speed detection (4). It is compared with the numerical signal 41, and the adjustment rate 42 is added to the deviation to control the opening/closing of the flow mM!iI valve 20.
またガス化炉士関数発生器34においては上記負荷設定
値31に応じて圧力設定値招が出力され、比較4必にお
いてこの圧力設定 ・1直招はガス化炉2内の圧力
を検出する圧力検出器45で得られたガス化炉内圧力信
号46と比較され、その偏差は比例積分器47にて積分
されこれにより突気流電調整弁22が開閉制御される。In addition, in the gasifier function generator 34, a pressure setting value is output according to the load setting value 31, and this pressure setting is used in comparison 4. ・1 direct signal is the pressure at which the pressure inside the gasifier 2 is detected. It is compared with the gasifier internal pressure signal 46 obtained by the detector 45, and its deviation is integrated by the proportional integrator 47, thereby controlling the opening and closing of the rush current regulating valve 22.
他方、加算器35において上記比例積分器47の出力信
号は負荷設定値31と加算され、その加算結果は分岐し
てそれぞれ比較演算器48および石炭流量関数発生器4
9に入力される。比較演算4絽において上記加算結果は
昇圧圧縮機回転数検出器50で得られた昇圧圧縮機回転
数信号51と比較され、その偏差が比例制御器52に入
力されその出力により昇圧圧縮機駆動モータ53が回転
数制御される。また上記石炭流量関数発生器49におい
て上記加算結果に応じた石炭流量設定値54が出力され
、この石炭流量設定値54は比較演算器55(二て石炭
流緻検出器56で得られた石炭流量信号57と比較され
、その偏差は比例積分器58で積分されこれにより石炭
流量調整弁21が開閉制御される。On the other hand, in the adder 35, the output signal of the proportional integrator 47 is added to the load setting value 31, and the addition result is branched and sent to the comparison calculator 48 and the coal flow rate function generator 4, respectively.
9 is input. In comparison operation 4, the above addition result is compared with the boost compressor rotation speed signal 51 obtained by the boost compressor rotation speed detector 50, and the deviation is input to the proportional controller 52, and its output is used to control the boost compressor drive motor. 53 is rotational speed controlled. In addition, the coal flow rate function generator 49 outputs a coal flow rate set value 54 corresponding to the above addition result, and this coal flow rate set value 54 is determined by the comparison calculator 55 (secondly, the coal flow rate obtained by the coal flow rate detector 56). It is compared with a signal 57, and its deviation is integrated by a proportional integrator 58, thereby controlling the opening and closing of the coal flow rate regulating valve 21.
第2図および第3図は上記ガス化炉王関数発生器34お
よび石炭流量関数発生器49の入力と出力の関係を示し
た線図であり、それぞれ横軸(三水された入力値(二対
し、一定の関係を満足する圧力設定値或は石炭流散設定
値が出力されるようになっている。特(;第2図(;お
いて、負荷設定値が一定値以上のときに圧力設定値は負
荷設定値(二比例するよう出力される。2 and 3 are diagrams showing the relationship between the input and output of the gasifier king function generator 34 and the coal flow rate function generator 49, respectively, with the horizontal axis (the input value On the other hand, the pressure setting value or the coal dispersion setting value that satisfies a certain relationship is output. The value is output proportional to the load setting value (2).
次);上記構成の作用を、負荷設定値が低下した場合に
ついて説明する。Next): The operation of the above configuration will be explained in the case where the load setting value decreases.
負荷設定値31が低下した場合、タービン速度負荷制御
系Iの作用で燃料調整弁加は閉方向::作動する。この
とき、ガス化炉田関数発生器あの作用で設定圧力が低下
し、ガス化炉内圧力46と偏差が生じこれに伴い空気流
量調整弁22も閉方向に動作する。こうして空気流量が
減少するとガス化炉2内におけるガス化反応が鈍くなり
ガス圧力が低下する。同時に、加算器35の出力信号も
小さくなり昇FEE縮機駆動モータ53の回転数が低下
して供給される空気量が減少する。一方、上記加算器3
5の出力低下に伴なって石炭流量関数発生器49の出力
が低下するため、石炭流量調整弁21が閉方向に動作し
て供給される石炭(スラリー)量も減少する。When the load setting value 31 decreases, the turbine speed load control system I operates to apply the fuel adjustment valve in the closing direction. At this time, the set pressure decreases due to the action of the gasifier field function generator, causing a deviation from the gasifier internal pressure 46, and accordingly, the air flow rate regulating valve 22 also operates in the closing direction. When the air flow rate decreases in this way, the gasification reaction within the gasifier 2 becomes slower and the gas pressure decreases. At the same time, the output signal of the adder 35 also becomes smaller, the rotational speed of the FEE compressor drive motor 53 decreases, and the amount of air supplied decreases. On the other hand, the adder 3
5, the output of the coal flow function generator 49 decreases, so the coal flow rate regulating valve 21 operates in the closing direction and the amount of coal (slurry) supplied also decreases.
しかして、上記したよう(:ガス化炉変圧制御系川の作
用によりガス化炉2内の圧力が低下すると、タービン速
度負荷制御系lの作用(=よって上記閉方向に作動した
燃料流量調整弁20は再び開度を増加し、タービンの出
力が負荷設定値を満足するよう制御が行われる。As mentioned above, when the pressure inside the gasifier 2 decreases due to the action of the gasifier variable pressure control system, the action of the turbine speed load control system l (=therefore, the fuel flow regulating valve operated in the closing direction). 20 increases the opening degree again, and control is performed so that the output of the turbine satisfies the load setting value.
上記のように、本実施例によれば、負荷設定値の変化に
対しまずタービン速度負荷制御系の作用で燃料流を調整
弁が作動して負荷追従する一方、ガス化炉変圧制御系の
作用で圧力設定値が負荷設定値の変化に伴なって低下し
、上記設定値と炉内実圧力の偏差に応じて空気流量調整
弁が閉方向に作動する。まに、同時に昇圧圧縮機の回転
数が制御され供給される窄気緻が低減され、さらに石炭
(スラリー)Itも石炭量関数発生器の出力に従い調整
される。このように負荷設定値と圧力設定値に基いてガ
ス化炉に流入する石炭量、空気量が石炭流量調節弁、昇
圧圧縮機回転数シーよって制御され、それぞれの蝋が最
終整定値に落着くまでの過渡変動は、燃料流量調整弁、
空気流量調整弁によって制御されるので安定した負荷制
御を実現できる。なお、ガス化炉内圧力は必ずしもガス
化炉2(:おける圧力である必要はなく、燃料流量調整
弁20の上流側の地点(二おける圧力であれば差支えな
い。As described above, according to this embodiment, in response to a change in the load setting value, the turbine speed load control system first operates the fuel flow control valve to follow the load, while the gasifier variable pressure control system operates the fuel flow control valve to follow the load. The pressure setting value decreases as the load setting value changes, and the air flow rate regulating valve operates in the closing direction depending on the deviation between the above setting value and the actual pressure in the furnace. At the same time, the rotational speed of the booster compressor is controlled to reduce the air condensation supplied, and the coal (slurry) It is also adjusted in accordance with the output of the coal quantity function generator. In this way, the amount of coal and air flowing into the gasifier are controlled by the coal flow rate control valve and booster compressor rotation speed sea based on the load setting value and pressure setting value, and each wax settles to the final setting value. Transient fluctuations up to the fuel flow control valve,
Since it is controlled by an air flow rate adjustment valve, stable load control can be achieved. Note that the internal pressure of the gasifier does not necessarily have to be the pressure at the gasifier 2, but may be the pressure at the upstream point of the fuel flow rate regulating valve 20.
第4図は他の実施例を示すもので、本実施例はタービン
速度負荷制御系とガス化炉変圧制御系を相互にバイアス
器を介して接続し、それぞれにガス化炉圧力偏差、ター
ビン負荷偏差を与えて先行制御を可能にシたものである
。なお、以下It図(三水したのと同一部分を示す場合
には同一符号を附して説明する。FIG. 4 shows another embodiment. In this embodiment, the turbine speed load control system and the gasifier transformer pressure control system are connected to each other via a bias device, and the gasifier pressure deviation and turbine load are controlled respectively. This allows advance control by providing a deviation. In the following, when the same parts as those shown in the It figure (Sansui) are shown, the same reference numerals are attached and explained.
第4図C二おいてタービン速度負荷制御系■は負閉制御
するが、上記負荷偏差にはガス化炉関数発生器具の出力
である圧力設定値43とガス化炉内千力信号46の偏差
がフィードフォワード信号としてバイアス器60を介し
て加算器61にて加算されるようになっている。また、
逆に上記圧力設定値43とガス化炉内圧力信号46の偏
差には上記負荷偏差がフィードフォワード信号としてバ
イアス器62を介して加算器63にて7JO算される。In Fig. 4C2, the turbine speed load control system (■) is under negative closed control, but the above load deviation includes the difference between the pressure setting value 43, which is the output of the gasifier function generator, and the gasifier internal power signal 46. is added as a feedforward signal by an adder 61 via a bias device 60. Also,
Conversely, the load deviation is added to the difference between the pressure setting value 43 and the gasifier internal pressure signal 46 by an adder 63 via a biaser 62 as a feedforward signal.
しかしてこの加算結果は空気流量関数発生器64、昇圧
圧縮機回転数関数発生器65、石炭流量関数発生器66
:二人力され、夫々の関数発生器にて入力信号(二応じ
た設定値が出力され、これらの設定値と空気流量検出器
67で得られた窄気流微信号68、昇圧圧縮機回転数信
号51、石炭流量信号57がそれぞれ比較演算器485
2.66で比較されその偏差に基いて各比例積分制御器
70.71.72 により空気流微調整弁22.昇圧
圧縮機駆動モータ53、石炭微調整弁21が制御される
。However, the addition result of the lever is the air flow rate function generator 64, the boost compressor rotation speed function generator 65, and the coal flow rate function generator 66.
: Two people input the input signal (two corresponding set values are output from each function generator, and these set values, the narrow air flow fine signal 68 obtained by the air flow rate detector 67, and the boost compressor rotation speed signal) 51 and the coal flow rate signal 57 are respectively sent to the comparison calculator 485.
2.66 and based on the deviation, the airflow fine adjustment valve 22. The boost compressor drive motor 53 and the coal fine adjustment valve 21 are controlled.
以上のようにして、負荷設定値の変化に応じて圧力設定
値を定め、この圧力設定値とガス化炉実圧力の偏差を解
消するよう空気流量調整弁、昇田田縮機駆動モータ、石
炭微調整弁を作動させ、ガス化炉変圧運転を行い負荷に
適したガス化炉圧力を得ることができる。更に、このガ
ス化炉変圧制m系には負荷偏差バイアスをフィードフォ
ワード信号として採入れであるため、負荷変動による圧
力変動を先行的にとらえ、より信頼性の高い安定した反
圧制御を行うことができる。他方、タービン速度負荷制
御系C二おいても、負荷偏差に圧力偏差バイアスを加え
て燃料流量調整弁を作動させることC二より、土力夏動
による負荷変動を先行的にとらえ良好な負荷制御を実現
することができる。As described above, the pressure setting value is determined according to the change in the load setting value, and the air flow rate adjustment valve, the Nobuta compressor drive motor, and the coal The fine adjustment valve is operated to perform variable pressure operation of the gasifier to obtain a gasifier pressure suitable for the load. Furthermore, since this gasifier variable pressure control m system incorporates the load deviation bias as a feedforward signal, it is possible to detect pressure fluctuations due to load fluctuations in advance and perform more reliable and stable counterpressure control. I can do it. On the other hand, in the turbine speed load control system C2, load fluctuations due to soil force fluctuations can be detected in advance and good load control can be achieved by adding a pressure deviation bias to the load deviation and operating the fuel flow regulating valve C2. can be realized.
以上述べたとおり、本発明は負荷設定に応じてガス化炉
圧力を回置にする構成であるから、本発明(二よれば定
格の25%程度の低い負荷までプラント運転が可能とな
り、またかかる低負荷においてもきわめて高い効率で運
転を持続することのできる石炭ガス化コンバインドプラ
ントを実現できる。As described above, since the present invention has a configuration in which the gasifier pressure is reversed depending on the load setting, the present invention (according to the present invention (2) enables plant operation up to a low load of about 25% of the rated value. It is possible to realize a coal gasification combined plant that can sustain operation with extremely high efficiency even under low load conditions.
if図は本発明の一実施例に係る石炭ガス化コンバイン
ドサイクルプラントの制御装置の制御系統図、第2図お
よび第3図は関数発生器の作用を説明する線図、第4図
は本発明の他の実施例を示す制御系統図、第5因は石炭
ガス化コンパイア’Fナイクルプラントの系統図である
。
2・・・ガス化炉 7・・・燃焼器8・・・圧
縮aI 9・・・ガスタービン10・・・
排熱回収ボイラ 15・・・蒸気タービン19・・・
昇圧圧縮機 20・・・燃料流微調整弁21・・
・石炭流社調整弁 22・・・菟気流祉調整弁お・・
・制御装置 31・・・負荷設定値34・・・
ガス化炉土関数発生器
37・・・タービン実出力信号
41・・・タービン実回転数信号
53・・・昇圧圧縮機駆動モータ
代理人 弁理士 則 近 憑 佑
(ばか1名)
第2図
貝翻定イ11j−
第 3 図
入プ1イ通しIF diagram is a control system diagram of a control device for a coal gasification combined cycle plant according to an embodiment of the present invention, FIGS. 2 and 3 are diagrams explaining the action of the function generator, and FIG. A control system diagram showing another example of the fifth factor is a system diagram of a coal gasification compiler'F Nikle plant. 2...Gasifier 7...Combustor 8...Compression aI 9...Gas turbine 10...
Exhaust heat recovery boiler 15...Steam turbine 19...
Boost compressor 20...Fuel flow fine adjustment valve 21...
・Coal circulation welfare adjustment valve 22... Coal circulation welfare adjustment valve...
・Control device 31...Load setting value 34...
Gasification furnace soil function generator 37... Turbine actual output signal 41... Turbine actual rotation speed signal 53... Boosting compressor drive motor agent Patent attorney Noriyuki Chika (one idiot) Figure 2 Shell Translation A 11j- Part 3 Illustrated P1 I Through
Claims (1)
化炉で得られたガスを圧縮機から送給される空気と共に
燃焼する燃焼器と、該燃焼器の燃焼ガスにより駆動され
るガスタービンと、該ガスタービンの排ガスおよび上記
ガス化炉で得られたガスを熱源に蒸気を発生する排熱回
収ボイラと、該排熱回収ボイラで得られた蒸気により駆
動される蒸気タービンと、上記圧縮機から得られる空気
の一部を加圧して上記ガス化炉に供給する昇圧圧縮機と
を有する石炭ガス化コンバインドサイクルプラントの制
御装置であつて、負荷設定値とタービンの実出力および
実回転数に基いて上記燃焼器に流入する燃料量を調整す
るタービン速度負荷制御系と、上記負荷設定値に応じて
可変に設定される圧力と上記ガス化炉内圧力の偏差に基
いて上記ガス化炉に流入する石炭量および空気量を調整
すると共に前記昇圧圧縮機回転数を制御するガス化炉変
圧制御系とからなる石炭ガス化コンバインドサイクルプ
ラントの制御装置。A gasifier that oxidizes coal with air and gasifies it; a combustor that burns the gas obtained in the gasifier together with air supplied from a compressor; and a combustor that is driven by the combustion gas of the combustor. a gas turbine, an exhaust heat recovery boiler that generates steam using the exhaust gas of the gas turbine and the gas obtained in the gasifier as a heat source, and a steam turbine driven by the steam obtained by the exhaust heat recovery boiler; A control device for a coal gasification combined cycle plant having a booster compressor that pressurizes a part of the air obtained from the compressor and supplies it to the gasifier, which controls the load setting value, the actual output of the turbine, and the actual output of the turbine. a turbine speed load control system that adjusts the amount of fuel flowing into the combustor based on the rotational speed; and a turbine speed load control system that adjusts the amount of fuel flowing into the combustor based on the rotation speed; A control device for a coal gasification combined cycle plant comprising a gasifier variable pressure control system that adjusts the amount of coal and air flowing into the gasifier and controls the rotation speed of the boost compressor.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26634184A JPS61145322A (en) | 1984-12-19 | 1984-12-19 | Control device in combined cycle plant for producing coal gas |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26634184A JPS61145322A (en) | 1984-12-19 | 1984-12-19 | Control device in combined cycle plant for producing coal gas |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61145322A true JPS61145322A (en) | 1986-07-03 |
Family
ID=17429585
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP26634184A Pending JPS61145322A (en) | 1984-12-19 | 1984-12-19 | Control device in combined cycle plant for producing coal gas |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61145322A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5220782A (en) * | 1991-10-23 | 1993-06-22 | Bechtel Group, Inc. | Efficient low temperature solvent removal of acid gases |
US5688296A (en) * | 1992-12-30 | 1997-11-18 | Combustion Engineering, Inc. | Control system for IGCC's |
JP2017020435A (en) * | 2015-07-13 | 2017-01-26 | 株式会社日立製作所 | Coal gasification complex power-generating plant |
-
1984
- 1984-12-19 JP JP26634184A patent/JPS61145322A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5220782A (en) * | 1991-10-23 | 1993-06-22 | Bechtel Group, Inc. | Efficient low temperature solvent removal of acid gases |
US5289676A (en) * | 1991-10-23 | 1994-03-01 | Bechtel Group, Inc. | Efficient low temperature solvent removal of acid gases |
US5688296A (en) * | 1992-12-30 | 1997-11-18 | Combustion Engineering, Inc. | Control system for IGCC's |
JP2017020435A (en) * | 2015-07-13 | 2017-01-26 | 株式会社日立製作所 | Coal gasification complex power-generating plant |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4099374A (en) | Gasifier-combined cycle plant | |
JPS6033971B2 (en) | Control device for power generation equipment | |
EP0722535B1 (en) | A combined gas and steam cycle pressurized fluidized bed boiler power plant and a method of establishing and operating the same | |
JPS61145322A (en) | Control device in combined cycle plant for producing coal gas | |
JP2002129910A (en) | Control equipment of integrated coal gasification combined cycle power generation plant | |
JP2000120403A (en) | Integrated gas combined power generating system | |
JPS5949410B2 (en) | Control method for gasification power plant | |
JP2000297610A (en) | Integrated coal gasification combined cycle power plant and operation control method of the same | |
JPH0996227A (en) | Pressure controller of gasification plant | |
JPH06288262A (en) | Operation control method of coal gasification compound generator system | |
JPS6291608A (en) | Control device for power plant | |
JPS59134331A (en) | Method of and device for controlling slide pressure operation of pressurized coal gasification type power plant | |
JPS6149486B2 (en) | ||
JPS63192919A (en) | Control device for coal gasification combined plant | |
JP2645128B2 (en) | Coal gasification power plant control unit | |
JPS63143308A (en) | Control device for coal gasification combined cycle | |
JPS62279208A (en) | Power generating plant control method | |
JPS62223421A (en) | Sliding pressure operation control method for coal gasification compound power generating plant | |
JPH02163402A (en) | Compound electric power plant and its operation | |
JPH0343609A (en) | Control of power generation plant | |
JPH05296407A (en) | After burning type combined cyclic power generating facility | |
JP2000248908A (en) | Coal gasification combined power generating plant and its operating method | |
JP2507426B2 (en) | Coal gasification combined cycle controller | |
JPH051508A (en) | Operation of flexible cogeneration plant | |
JPS63143307A (en) | Coal gasification combined cycle controlling method |