JPS61136902A - Manufacture of chlorine - Google Patents
Manufacture of chlorineInfo
- Publication number
- JPS61136902A JPS61136902A JP59254234A JP25423484A JPS61136902A JP S61136902 A JPS61136902 A JP S61136902A JP 59254234 A JP59254234 A JP 59254234A JP 25423484 A JP25423484 A JP 25423484A JP S61136902 A JPS61136902 A JP S61136902A
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- hydrogen chloride
- chlorine
- reaction
- chromium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Catalysts (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は塩素の製造方法、より詳細には塩化水素ガスを
含酸素ガスで酸化し塩素を製造する方法の改良に関する
ものである。DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for producing chlorine, and more particularly to an improvement in a method for producing chlorine by oxidizing hydrogen chloride gas with an oxygen-containing gas.
(発明の技術背景)
塩素は食塩電解により大規模に製造されており、塩素の
需要は年々増大するにもかかわらず、食塩電解の際に同
時に生成する苛性曹達の需要は塩素のそれよりも、少な
いために、各々の不均衡をうまく調整するのは困難な状
況が生じている。(Technical Background of the Invention) Chlorine is produced on a large scale by salt electrolysis, and although the demand for chlorine increases year by year, the demand for caustic soda, which is simultaneously produced during salt electrolysis, is greater than that of chlorine. Due to the small size, it is difficult to properly adjust the imbalance between the two.
一方、有機化合物の塩素化反応またはホスゲン製造の際
に大量の塩化水素が副生じており、副生塩化水素の量は
、塩酸の需要量より大巾に多いために、大量の塩化水素
が未利用のままで無駄に廃棄されている。また廃棄のた
めの処理コストもかなシの額に達する。On the other hand, a large amount of hydrogen chloride is produced as a by-product during the chlorination reaction of organic compounds or during the production of phosgene, and the amount of by-product hydrogen chloride is far greater than the demand for hydrochloric acid, so a large amount of hydrogen chloride remains unused. It is being used and wasted. Furthermore, the processing costs for disposal reach a staggering amount.
上記のように大量に廃棄されている塩化水素から効率よ
く塩素を回収出来れば、苛性曹達生産量とのアンバラン
スを生じることなく、塩素の需要を満たすことが出来る
。If chlorine can be efficiently recovered from hydrogen chloride, which is discarded in large quantities as described above, the demand for chlorine can be met without creating an imbalance with the production of caustic soda.
(従来の方法およびその問題点)
塩化水素を酸化して塩素を製造する反応は古くからDe
acon反応として知られている。1868年Deac
onの発明になる銅系の触媒が、従来最も優れた活性を
示めす触媒とされ、塩化銅と塩化カリに第三成分として
種々な化合物を添加した触媒が多数提案されている。し
かしながら、これらの触媒で工業的に充分な反応速度で
塩化水素を酸化するためには、反応温度を400℃以上
にする必要があり、触媒成分の飛散に伴なう触媒寿命の
低下等が問題となる。更に、塩化水素の酸化反応には、
平衡があり、高温になるほど、塩素の生成量が減少する
ので、出来るだけ低温活性な触媒の開発が必要となる。(Conventional methods and their problems) The reaction of oxidizing hydrogen chloride to produce chlorine has been carried out since ancient times using De
This is known as the acon reaction. 1868 Deac
The copper-based catalyst invented by On et al. is said to be the catalyst that has shown the most excellent activity to date, and many catalysts have been proposed in which various compounds are added as third components to copper chloride and potassium chloride. However, in order to oxidize hydrogen chloride at an industrially sufficient reaction rate with these catalysts, it is necessary to raise the reaction temperature to 400°C or higher, which poses problems such as shortened catalyst life due to scattering of catalyst components. becomes. Furthermore, in the oxidation reaction of hydrogen chloride,
There is an equilibrium, and as the temperature increases, the amount of chlorine produced decreases, so it is necessary to develop a catalyst that is active at as low a temperature as possible.
以上の観点から、銅系以外の触媒として、鉄系、その他
が提案されているが、未だ充分実用的性能を示めす触媒
は知られていない。酸化クロムは、銅等に比較すると高
温に対する安定性、耐久性があるので、酸化クロムを塩
化水素の酸化に触媒として用いる提案もあるが未だ充分
な活性も示めす結果は報告されていない。例えば、英国
特許第584、790号には、無水クロム酸または硝酸
クロム水溶液を適当な担体に含浸させて熱分解した触媒
上に塩化水素を400℃前後で流通させ、塩素を発生さ
せ、触媒が失活した後、塩化水素の供給を停止し、空気
を流中させ触媒を再生後、空気の流通を断って、ふたた
び塩化水素を流通させる方法が記載されている。また、
英国特許第676、667号には、重クロム酸塩または
暗黒緑色の酸化クロムを担体上に担持した触媒を用い、
塩化水素と含酸素ガスを420〜430℃の反応温度で
空間速度580Hr−1で反応させ、平衡値の674チ
の塩化水素の転化率、空間速度680 Hr−1では6
5%の塩化水素の転化率を得ている。反応温度340℃
でも反応は認められるが、この場合には空間速度を65
Hr〜1といった低い値にして52%の転化率を得てい
るにすぎない。From the above point of view, iron-based catalysts and others have been proposed as catalysts other than copper-based catalysts, but catalysts that exhibit sufficient practical performance are still unknown. Since chromium oxide is more stable and durable at high temperatures than copper or the like, there have been proposals to use chromium oxide as a catalyst for the oxidation of hydrogen chloride, but no results have yet been reported showing sufficient activity. For example, in British Patent No. 584,790, hydrogen chloride is passed over a thermally decomposed catalyst impregnated with an aqueous solution of chromic acid anhydride or chromium nitrate at around 400°C to generate chlorine and decompose the catalyst. A method is described in which, after deactivation, the supply of hydrogen chloride is stopped, air is allowed to flow through the catalyst to regenerate the catalyst, the air flow is cut off, and hydrogen chloride is allowed to flow again. Also,
British Patent Nos. 676 and 667 use a catalyst containing dichromate or dark green chromium oxide on a carrier,
Hydrogen chloride and oxygen-containing gas are reacted at a reaction temperature of 420 to 430°C and a space velocity of 580 Hr-1, and the conversion rate of hydrogen chloride is 674 Hr-1, which is the equilibrium value, and the space velocity is 680 Hr-1.
A hydrogen chloride conversion of 5% was obtained. Reaction temperature 340℃
However, the reaction is observed, but in this case, the space velocity is reduced to 65
A conversion rate of only 52% was obtained with a low value of Hr~1.
このように、酸化クロムを触媒に用いても、従来公知の
方法は反応温度も高く、空間速度も低いために工業的な
操業に耐え得る状態にはない。すなわち、従来報告され
ている酸化クロム触媒は、銅系触媒に比較して特に優れ
た性能を示めすものではない。As described above, even if chromium oxide is used as a catalyst, the conventionally known methods have high reaction temperatures and low space velocities, so they are not suitable for industrial operation. That is, conventionally reported chromium oxide catalysts do not exhibit particularly superior performance compared to copper-based catalysts.
(発明の目的)
本発明の目的とするところは、低温活性であり、塩化水
素の処理量も多い(高、空間速度)の触媒を用いて塩化
水素から塩素を効率よく回収する方法を提供することに
ある。(Objective of the Invention) The object of the present invention is to provide a method for efficiently recovering chlorine from hydrogen chloride using a catalyst that is active at low temperatures and can handle a large amount of hydrogen chloride (high space velocity). There is a particular thing.
(既存方法の問題点を解決するだめの手段)本発明者ら
は、塩化水素の酸化による塩素の製造方法、時に酸化反
応に用いる触媒に関し、種々研究した結果、塩化水素の
酸化反応に関しては従来報告されたことのない、触媒の
調製方法にしたがって製造した酸化クロム触媒を用いる
と、反応温度も従来既知の触媒より低く、従来方法よシ
もはるかに高い空間速度で、高い転化率で塩化水素から
塩素を製造出来ることを見出し本発明を完成するに至っ
た。(Means to Solve the Problems of Existing Methods) The present inventors have conducted various studies on methods for producing chlorine by oxidizing hydrogen chloride, and sometimes on catalysts used in the oxidation reaction. Using a chromium oxide catalyst prepared according to a previously unreported catalyst preparation method, the reaction temperature is lower than that of previously known catalysts, and hydrogen chloride can be produced at a much higher space velocity and conversion rate than conventional methods. They discovered that chlorine can be produced from chlorine and completed the present invention.
すなわち、本発明の要旨とするところは、塩化水素を含
酸素ガスで酸化し、塩素を製造するに際し、硝酸クロム
または塩化クロムとアンモニアとを反応させて得られる
化合物を800℃に満たない温度で焼成した触媒の存在
下に反応させることにある。That is, the gist of the present invention is that when hydrogen chloride is oxidized with an oxygen-containing gas to produce chlorine, a compound obtained by reacting chromium nitrate or chromium chloride with ammonia is heated at a temperature below 800°C. The purpose is to carry out the reaction in the presence of a calcined catalyst.
本発明の方法に用いられる原料の塩化水素は通常有機化
合物の塩素化反応の際に副生ずる塩化水素塘たはホスゲ
ンの製造の際に副生ずる塩化水素等の副生塩酸が多用さ
れる。Hydrogen chloride, which is a raw material used in the method of the present invention, is usually a tonnage of hydrogen chloride produced as a by-product during the chlorination reaction of an organic compound, or hydrochloric acid produced as a by-product, such as hydrogen chloride produced during the production of phosgene.
塩化水素の酸化剤は含酸素ガスであって、酸素ガスまた
は空気が多用される。反応器の形式が流動床式の場合に
は酸素ガスが、固定床式の場合には空気が用いられる場
合が多い。反応に供する塩化水素と、含酸素ガス中の酸
素のモル比は、塩化水素1モルに対し酸素−モル(当量
)前後の値が用いられ、通常、酸素を当量の5チ乃至5
0%過剰に用いる場合が多い。触媒床に供給する塩酸の
量は、200〜800 Nt/Hr、KyCa t 、
の範囲が適している。反応の温度は300〜400℃、
特に630〜670℃が多用される。The oxidizing agent for hydrogen chloride is an oxygen-containing gas, and oxygen gas or air is often used. Oxygen gas is often used when the reactor is a fluidized bed type, and air is often used when the reactor is a fixed bed type. The molar ratio of hydrogen chloride to be subjected to the reaction and oxygen in the oxygen-containing gas is around 1 mole of hydrogen chloride to 1 mole of oxygen (equivalent), and usually, the molar ratio of oxygen to 1 mole of hydrogen chloride is around 5 to 5 moles of oxygen.
It is often used in excess of 0%. The amount of hydrochloric acid supplied to the catalyst bed is 200 to 800 Nt/Hr, KyCat,
range is suitable. The reaction temperature is 300-400℃,
In particular, a temperature of 630 to 670°C is often used.
本発明の方法に用いる触媒は硝酸クロムまたは塩化クロ
ムとアンモニアとを反応させて得られる化合物を、80
0℃に満たない温度で焼成したものである。通常、硝酸
クロムまたは塩化クロムを水に溶解したものと、アンモ
ニア水とを反応させて沈殿を生成させる。硝酸クロムま
たは塩化クロムの水に対する溶解量は3〜50wt%の
範囲が多用される。アンモニア水は、通常、20〜30
%のNH,OH濃度のものが適当である。生成した沈殿
はP別、洗滌し、乾燥後、800℃に満たない温度で空
気雰囲気中、あるいは真空中または窒素等の不活性ガス
雰囲気中で、数時間乃至20時間程度焼成し、触媒とす
る。焼成後の触媒は打錠整髪し固定床の反応器に用いる
。流動床用の触媒を調製するには、生成した沈殿をデカ
ンチー/フンにより洗滌後、適当な濃度のスラリーとし
スプt/−ドライヤーで粒状に整髪乾燥後、800℃に
満たない温度で焼成し触媒とする。The catalyst used in the method of the present invention is a compound obtained by reacting chromium nitrate or chromium chloride with ammonia.
It is fired at a temperature below 0°C. Usually, chromium nitrate or chromium chloride dissolved in water is reacted with aqueous ammonia to form a precipitate. The amount of chromium nitrate or chromium chloride dissolved in water is often in the range of 3 to 50 wt%. Ammonia water usually has 20 to 30
% NH, OH concentration is suitable. The generated precipitate is separated from P, washed, dried, and then calcined for several to 20 hours at a temperature below 800°C in an air atmosphere, in a vacuum, or in an inert gas atmosphere such as nitrogen to form a catalyst. . The fired catalyst is pressed into tablets and used in a fixed bed reactor. To prepare a catalyst for a fluidized bed, the resulting precipitate is washed with a decanterizer/funnel, made into a slurry of an appropriate concentration, shaped into granules and dried with a dryer, and then calcined at a temperature below 800°C to form a catalyst. shall be.
すなわち、本発明の方法で用いられるクロム化合物の出
発物質は硝酸クロムまたは塩化クロムを用いることが必
須であり、沈殿を生成させるアルカリ物質としてはアン
モニアを用いるのが必須条件である。アンモニアのかわ
りにアノモニアを発生し得る化合物、例えば尿素等も同
様に使用出来る。That is, it is essential to use chromium nitrate or chromium chloride as the starting material for the chromium compound used in the method of the present invention, and it is essential to use ammonia as the alkaline substance that generates the precipitate. Compounds that can generate ammonia, such as urea, can be used in the same way instead of ammonia.
クロム化合物として、硫酸クロム、塩基性硫酸クロム、
クロム酸、重クロム酸塩等を用いた場合には沈殿剤とし
てアンモニアを用いても高活性な高性能触媒を得ること
は出来ない。As chromium compounds, chromium sulfate, basic chromium sulfate,
When chromic acid, dichromate, etc. are used, a highly active and high performance catalyst cannot be obtained even if ammonia is used as a precipitant.
また、硝酸クロムまたは塩化クロムを用いた場合でも沈
殿剤としてアノモニアのかわシに苛性曹達、苛性加里等
の苛性アルカリ、あるいは炭酸ソーダ、重炭酸ソーダ等
の炭酸アルカリを用いると高活性な触媒は得られない。In addition, even when chromium nitrate or chromium chloride is used, a highly active catalyst cannot be obtained if a caustic alkali such as caustic soda or caustic potassium or an alkali carbonate such as soda carbonate or bicarbonate is used as a precipitant in addition to anomonia. .
同様にして、硝酸塩、無水クロム酸または市販の水酸化
クロムを熱分解して得た酸化クロムも高性能な触媒とは
ならない。Similarly, chromium oxide obtained by thermally decomposing nitrates, chromic acid anhydride, or commercially available chromium hydroxide does not provide a high performance catalyst.
触媒の焼成温度は800℃に満たない温度に保つことが
必要であり、800℃以上で焼成したものは触媒活性が
急激に低下する。It is necessary to maintain the firing temperature of the catalyst at a temperature lower than 800°C, and if the catalyst is fired at a temperature of 800°C or higher, the catalytic activity decreases rapidly.
焼成温度の下限は特に制限はないが、通常は塩化水素の
酸化反応を実施する温度以上であることが好ましい。There is no particular restriction on the lower limit of the firing temperature, but it is usually preferably higher than the temperature at which the oxidation reaction of hydrogen chloride is carried out.
焼成は乾燥した沈殿を別の焼成炉で実施する場合が多い
が反応に使用する反応管中に充填して反応と同時に焼成
処理することも出来る。Calcination is often carried out by drying the precipitate in a separate calcining furnace, but it can also be filled into the reaction tube used for the reaction and calcined at the same time as the reaction.
(作用および発明の効果)
本発明の方法によれば、従来法よりも低い温度すなわち
300−350℃程度の温度で、空間速度700〜12
00Hr−1と従来法よりはるかに高い、塩化水素の処
理量を得ることが出来、得られる転fヒ率も、平衡転化
率の+aQ %に達する。すなわち、本発明は従来既知
の如何なる触媒系よりもはるかに低温活性、高空間速度
で高い塩化水素の転化率が得られるので、塩化水素から
効率よく塩素を製造できる工業的に有利な塩素の製造方
法を提供するものである。(Operation and Effects of the Invention) According to the method of the present invention, a space velocity of 700 to 12
00 Hr-1, which is much higher than the conventional method, can be obtained, and the resulting conversion rate also reaches +aQ% of the equilibrium conversion rate. In other words, the present invention has a much lower temperature activity, a higher space velocity, and a higher conversion rate of hydrogen chloride than any conventionally known catalyst system, so it is an industrially advantageous method for efficiently producing chlorine from hydrogen chloride. The present invention provides a method.
(実施例) 以下、実施例により本発明を説明する。(Example) The present invention will be explained below with reference to Examples.
実施例−1
硝酸クロム9水塩300?を脱イオン水3tに溶解させ
よく1立打しながら、28チのアンモニア水2851を
10分間を要して滴下注入し、た。生じた沈殿スラリー
に脱イオン水を加え20tに希釈し、−晩放置後デカン
チー/ヨンを繰返し沈殿を洗滌した。沈殿をf別し風乾
後、100〜120℃で6時間乾燥後電気炉で空気雰囲
気中、100〜600 ’Cまで3時間を要して昇温し
550℃で4時間焼成した。Example-1 Chromium nitrate nonahydrate 300? was dissolved in 3 tons of deionized water, and 28 tons of ammonia water 2851 was injected dropwise over a period of 10 minutes while stirring well. Deionized water was added to the resulting precipitate slurry to dilute it to 20 tons, and after it was left to stand overnight, the precipitate was washed with repeated decanting and washing. The precipitate was separated and air-dried, then dried at 100-120°C for 6 hours, heated in an electric furnace to 100-600'C in an air atmosphere over 3 hours, and fired at 550°C for 4 hours.
焼成後の触媒を破砕し1〜1.5m/iηの粒度のもの
を内径1インチのステンレススチール製反応器に157
充填し、反応τ外部よ、り砂動浴により340 ℃に加
熱した。The fired catalyst was crushed and the particles with a particle size of 1 to 1.5 m/iη were placed in a stainless steel reactor with an inner diameter of 1 inch.
The reactor was filled and heated to 340° C. from the outside of the reaction chamber using a moving sand bath.
塩化水素ガス100 me/ min 、空気180
rue / mi n(S V= 1.120 Hr−
1) を600℃に予熱してから触媒層に導入し反応
させた。触媒床温度は反応熱で656℃まで上昇した。Hydrogen chloride gas 100 me/min, air 180
rue/min(SV=1.120 Hr-
1) was preheated to 600°C, and then introduced into the catalyst layer and reacted. The catalyst bed temperature rose to 656°C due to the heat of reaction.
反応器流出ガスをヨウ化カリ水溶液の吸収瓶と苛性曹達
水溶液の吸収瓶を直列につないだトラップで捕集し、チ
オ硫酸ソーダおよび塩酸で滴定し、未反応塩化水素を生
成した塩素を定量した。The reactor effluent gas was collected in a trap made by connecting an absorption bottle of an aqueous potassium iodide solution and an absorption bottle of an aqueous caustic soda solution in series, and titrated with sodium thiosulfate and hydrochloric acid to quantify the amount of chlorine that produced unreacted hydrogen chloride. .
塩化水素の転化率81%であり、これはこの反応温度の
平衡転化率の100%に当たる。The conversion rate of hydrogen chloride was 81%, which corresponds to 100% of the equilibrium conversion rate at this reaction temperature.
実施例−2
塩化クロム6水塩200?を脱イオン水3tに溶解し、
よく攪拌しながら、28%アンモニア水290?を滴下
、注入し沈殿を生ぜしめた。沈殿スラリーに脱イオン水
を加え20tに希釈し一晩放置した後デカンテーション
で沈殿を洗滌し、P別した。Example-2 Chromium chloride hexahydrate 200? Dissolved in 3 t of deionized water,
While stirring well, add 28% ammonia water 290? was added dropwise and injected to produce a precipitate. The precipitate slurry was diluted to 20 t with deionized water, left overnight, and the precipitate was washed by decantation to separate the P.
f別した沈殿を風乾後、110℃で6時間乾燥後550
℃まで5時間を要して昇温し、550℃で5時間焼成し
触媒を調製した。 、
本触媒152を実施例−1と同様の装置に充填し、触媒
床温度555℃で、塩化水素、100 rue/mi
n空気185 rug / mi nを導入し反応させ
た。塩化水素の転化率70チで塩素が生成した。これは
平衡転化率の90%に対応する値であった。After air-drying the separated precipitate at 110°C for 6 hours,
It took 5 hours to raise the temperature to 550°C, and then calcined at 550°C for 5 hours to prepare a catalyst. , This catalyst 152 was packed in the same apparatus as in Example-1, and the catalyst bed temperature was 555°C, and hydrogen chloride was heated at 100 rue/mi.
185 rug/min of air was introduced to cause a reaction. Chlorine was produced at a conversion rate of hydrogen chloride of 70 degrees. This value corresponded to 90% of the equilibrium conversion.
実施例−3
実施例−1と同様の方法で硝酸クロムとアンモニア水と
から得た沈殿のスラリーをデカンテーションで洗滌後、
スプレードライヤーで乾燥し粒状の粉末を得た。本粉末
を流動・焼成炉で空気を送入しながら流動状態で600
℃で3時間焼成した。本触媒の粒径100〜150me
shの部分を分篩し、内径40 mrnφの流動床反応
器に60g←発充填し外部より電気炉で540℃に加熱
した。Example-3 After washing the precipitate slurry obtained from chromium nitrate and ammonia water by decantation in the same manner as in Example-1,
It was dried with a spray dryer to obtain a granular powder. This powder was heated in a fluidized state for 600 minutes while introducing air in a fluidized and calcined furnace.
It was baked at ℃ for 3 hours. Particle size of this catalyst: 100-150me
The sh portion was sieved, 60 g was charged into a fluidized bed reactor with an inner diameter of 40 mrnφ, and heated to 540° C. from the outside in an electric furnace.
塩化水素ガス400 wLll / min、酸素ガス
14a、me/min、窒素ガス100 me/ mi
nを触媒床に導入し触媒を流動させながら反応させた
。Hydrogen chloride gas 400 wLll/min, oxygen gas 14a, me/min, nitrogen gas 100 me/mi
n was introduced into the catalyst bed, and the reaction was carried out while the catalyst was fluidized.
塩化水素の転化率76チで塩素ガスが生成した。Chlorine gas was produced at a hydrogen chloride conversion rate of 76 degrees.
実施例−4
実施例−1と同様の方法で得た沈殿を110℃で乾燥後
、焼成温度を400℃、500℃、600℃、700℃
、800℃、900℃に変化させて6種類の触媒を調製
した。焼成時間は各々3.5時間である。Example-4 After drying the precipitate obtained in the same manner as Example-1 at 110°C, the calcination temperature was changed to 400°C, 500°C, 600°C, and 700°C.
, 800°C, and 900°C to prepare six types of catalysts. The firing time was 3.5 hours each.
実施例−1と同様の装置と方法で、650℃で反応させ
た結果を表−1に示めした。Table 1 shows the results of the reaction at 650°C using the same apparatus and method as in Example 1.
表−1
比較例−1〜5
クロムの出発原料および沈殿剤を種々に変えた触媒を調
−製し実施例−1と同様の装置と方法で反応させた。得
られた結果を表−2に示めす。Table 1 Comparative Examples 1 to 5 Catalysts using various starting materials for chromium and precipitants were prepared and reacted using the same apparatus and method as in Example 1. The results obtained are shown in Table-2.
表−2
比較例6〜10
硝酸クロム、無水クロム酸、市販の水酸化クロムを熱分
解して酸化クロムとし、500℃に焼成した触媒によっ
て実施例−1と同様の装置と反応条件で反応させた。得
られた結果を表−3に示めす。Table 2 Comparative Examples 6 to 10 Chromium nitrate, chromic anhydride, and commercially available chromium hydroxide were thermally decomposed to produce chromium oxide, and reacted with a catalyst calcined at 500°C in the same apparatus and reaction conditions as in Example 1. Ta. The results obtained are shown in Table-3.
また、塩化クロム水溶液を表面積1so m2/ S’
、平均細孔径100Xのシリカゲル粒に含浸、乾燥後、
400℃に焼成した触媒および市販酸化クロム触媒(8
揮化学X−421)によって得られた結果も併記した。In addition, the surface area of chromium chloride aqueous solution is 1so m2/S'
, impregnated with silica gel particles with an average pore diameter of 100X, and after drying,
Catalyst calcined at 400°C and commercially available chromium oxide catalyst (8
The results obtained by Volatile Chemistry X-421) are also listed.
表−6Table-6
Claims (1)
し、硝酸クロムまたは塩化クロムとアンモニアとを反応
させて得られる化合物を800℃に満たない温度で焼成
した触媒の存在下に反応させることを特徴とする塩素の
製造方法。1) When producing chlorine by oxidizing hydrogen chloride with an oxygen-containing gas, a compound obtained by reacting chromium nitrate or chromium chloride with ammonia is reacted in the presence of a catalyst calcined at a temperature below 800°C. A method for producing chlorine, characterized by:
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59254234A JPS61136902A (en) | 1984-12-03 | 1984-12-03 | Manufacture of chlorine |
CN85109387.6A CN1003504B (en) | 1984-12-03 | 1985-11-28 | Chlorine gas preparation method |
EP85308746A EP0184413B1 (en) | 1984-12-03 | 1985-12-02 | Process for the production of chlorine |
DE8585308746T DE3583218D1 (en) | 1984-12-03 | 1985-12-02 | METHOD FOR PRODUCING CHLORINE. |
BR8506017A BR8506017A (en) | 1984-12-03 | 1985-12-02 | PROCESS TO PRODUCE CHLORINE BY OXIDATION OF HYDROGEN CHLORIDE WITH A GAS CONTAINING OXYGEN |
KR1019850009066A KR890005057B1 (en) | 1984-12-03 | 1985-12-03 | Production process of chlorine |
US07/132,665 US4828815A (en) | 1984-12-03 | 1987-12-10 | Production process of chlorine |
US07/759,630 US5147624A (en) | 1984-12-03 | 1991-09-16 | Production process of chlorine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59254234A JPS61136902A (en) | 1984-12-03 | 1984-12-03 | Manufacture of chlorine |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61136902A true JPS61136902A (en) | 1986-06-24 |
JPH0366241B2 JPH0366241B2 (en) | 1991-10-16 |
Family
ID=17262126
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59254234A Granted JPS61136902A (en) | 1984-12-03 | 1984-12-03 | Manufacture of chlorine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61136902A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1988000171A1 (en) * | 1986-06-26 | 1988-01-14 | Mitsui Toatsu Chemicals, Inc. | Process for producing chlorine |
JPS63107801A (en) * | 1986-06-30 | 1988-05-12 | Mitsui Toatsu Chem Inc | Production of chlorine |
JPH01224201A (en) * | 1988-03-01 | 1989-09-07 | Mitsui Toatsu Chem Inc | Production of chlorine |
JP2006137669A (en) * | 2005-12-05 | 2006-06-01 | Sumitomo Chemical Co Ltd | Method for producing phosgene |
WO2009014229A1 (en) | 2007-07-23 | 2009-01-29 | Sumitomo Chemical Company, Limited | Method for activating catalyst for chlorine production |
WO2010021407A1 (en) | 2008-08-22 | 2010-02-25 | 住友化学株式会社 | Method for producing chlorine and catalyst |
WO2010050546A1 (en) | 2008-10-30 | 2010-05-06 | 住友化学株式会社 | Process for producing chlorine |
DE112010002611T5 (en) | 2009-05-29 | 2012-08-23 | Sumitomo Chemical Company, Limited | Method for activating a catalyst for chlorine production and method for producing chlorine |
WO2021199633A1 (en) | 2020-04-01 | 2021-10-07 | 住友化学株式会社 | Molding catalyst and method for producing halogen |
-
1984
- 1984-12-03 JP JP59254234A patent/JPS61136902A/en active Granted
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1988000171A1 (en) * | 1986-06-26 | 1988-01-14 | Mitsui Toatsu Chemicals, Inc. | Process for producing chlorine |
US4822589A (en) * | 1986-06-26 | 1989-04-18 | Mitsui Toatsu Chemicals, Incorporated | Manufacturing process of chlorine |
JPS63107801A (en) * | 1986-06-30 | 1988-05-12 | Mitsui Toatsu Chem Inc | Production of chlorine |
JPH01224201A (en) * | 1988-03-01 | 1989-09-07 | Mitsui Toatsu Chem Inc | Production of chlorine |
JP2006137669A (en) * | 2005-12-05 | 2006-06-01 | Sumitomo Chemical Co Ltd | Method for producing phosgene |
WO2009014229A1 (en) | 2007-07-23 | 2009-01-29 | Sumitomo Chemical Company, Limited | Method for activating catalyst for chlorine production |
WO2010021407A1 (en) | 2008-08-22 | 2010-02-25 | 住友化学株式会社 | Method for producing chlorine and catalyst |
WO2010050546A1 (en) | 2008-10-30 | 2010-05-06 | 住友化学株式会社 | Process for producing chlorine |
DE112010002611T5 (en) | 2009-05-29 | 2012-08-23 | Sumitomo Chemical Company, Limited | Method for activating a catalyst for chlorine production and method for producing chlorine |
WO2021199633A1 (en) | 2020-04-01 | 2021-10-07 | 住友化学株式会社 | Molding catalyst and method for producing halogen |
Also Published As
Publication number | Publication date |
---|---|
JPH0366241B2 (en) | 1991-10-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR890005057B1 (en) | Production process of chlorine | |
JPS63107801A (en) | Production of chlorine | |
US4081510A (en) | Process for catalytically treating an exhaust gas containing ammonia gas and oxygen gas to reduce said ammonia gas to nitrogen | |
JPH04277030A (en) | Ethylbenzene dehydrogenation catalyst | |
WO2005079983A1 (en) | Method for recovering molybdenum and method for preparing catalyst | |
JPS61136902A (en) | Manufacture of chlorine | |
JP3465350B2 (en) | Method for producing catalyst for methacrylic acid production | |
KR960010775B1 (en) | Cerium chloride-chromium oxide catalyst for producing chlorine by oxidation of hydrochloric acid and method for manufacture thereof | |
US4036785A (en) | Catalyst for reduction of nitrogen oxides in presence of ammonia | |
JPH053404B2 (en) | ||
JPS6034927A (en) | Purification of cyclohexanone containing organic acid as by-product | |
JPS61275104A (en) | Production of chlorine | |
JPH0615402B2 (en) | Chlorine production method | |
JPS62197302A (en) | Production of chlorine | |
JPH053401B2 (en) | ||
EP0465243B1 (en) | Method for stabilizing treatment of catalytic activity | |
JP3788530B2 (en) | Catalyst regeneration method | |
JPH053403B2 (en) | ||
JPS62191403A (en) | Production of chlorine | |
JPS6345102A (en) | Production of chlorine | |
US3446589A (en) | Iron-based catalysts,their preparation and their uses | |
NZ588032A (en) | Process for preparing catalysts involving the regeneration of metal carbonate precipitants | |
JPH0367961B2 (en) | ||
KR810000267B1 (en) | Method for the production of acrylonitrile | |
JPH09141104A (en) | Catalyst for producing chlorine from hydrogen chloride |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |