JPS61112122A - Observing device - Google Patents
Observing deviceInfo
- Publication number
- JPS61112122A JPS61112122A JP59233582A JP23358284A JPS61112122A JP S61112122 A JPS61112122 A JP S61112122A JP 59233582 A JP59233582 A JP 59233582A JP 23358284 A JP23358284 A JP 23358284A JP S61112122 A JPS61112122 A JP S61112122A
- Authority
- JP
- Japan
- Prior art keywords
- wavelength
- wafer
- light
- circuit pattern
- irradiated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
Abstract
Description
【発明の詳細な説明】
不発明は観#&装置(関し、特にIC,LSI等の中尋
体t−製造する際にマスク若しくはVチク/%/等の回
路パターン上シリコン基板のウェハ面上へ投影露光する
ときの両者の位置合わせ七行う為の&Mfc直に関する
ものでろる。DETAILED DESCRIPTION OF THE INVENTION The invention is directed to the observation and equipment (particularly in the production of ICs, LSIs, etc.) on the wafer surface of a silicon substrate on a circuit pattern such as a mask or V-chip. This is related to &Mfc direct alignment for aligning the two when projecting and exposing them.
従来よ45 ZC、LSI等の回路パターンをウェハ
面上に形成するフォトリングラフィに2いては回路パタ
ーンをウニノー面上に投影露光するプロ七スを何度も繰
り返して行い回路パターンをウェハ面上に写真食刻して
形成している。Conventionally, photolithography, which forms circuit patterns such as 45 ZC and LSI on the wafer surface, involves repeating the process of projecting and exposing the circuit pattern onto the surface of the wafer many times to form the circuit pattern on the wafer surface. It is formed by photo-etching.
回路パターノ像tウェハ面上に投影露光する際は回路パ
ターン像とクエへ面との位置合わせを各々露光毎に肉眼
で!!察しながら行ったり若しくは所謂オートアライメ
ントという技術で自動的に行つ7tりしている〇
一般にウェハは異つ九回路バターノを何度も繰り返し投
影露光し写真食刻される。この為ウェハ面上の回路パタ
ーン像には段差構造が生じている。このときの段差量は
製造しようとする半導体の種類、工程等くよりさまざま
でるる。When projecting and exposing the circuit pattern image onto the wafer surface, align the circuit pattern image and the square surface with the naked eye for each exposure! ! This can be done while observing or automatically using a technique called auto-alignment. In general, a wafer is photo-etched by repeatedly projecting and exposing nine different circuits over and over again. For this reason, a step structure occurs in the circuit pattern image on the wafer surface. The amount of step difference at this time varies depending on the type of semiconductor to be manufactured, the process, etc.
この7%飼えばウェハ面上へ光束を照射し反射光束を利
用してウェハ1lfit−観察する場合、ウェハ面上の
段差構造O上面と下面からの反射光束が干渉を起こし観
察が困禰となる場合がるる。If this 7% is maintained, when observing one wafer by irradiating a light beam onto the wafer surface and using the reflected light beam, the reflected light beams from the top and bottom surfaces of the step structure O on the wafer surface will interfere, making observation difficult. The case is ruru.
即ち物体であるクエへへの照JR光の波長をλ、回路パ
ターンの段差構造の上面と下面の段差量をdとし段差量
dが波長オーダーで可干渉距離で6つたとき
(但しa−0,1,2,・°°)
のときはウニ八面上の段差構造の上面と下面からの反射
光束は干渉しあい回路パターンを観察するのが固練にな
る。この結果回路パターンとウェハとの位置合わせが固
点になってくる。In other words, when the wavelength of the JR light directed at the object (queue) is λ, the step amount between the top and bottom surfaces of the step structure of the circuit pattern is d, and the step amount d is on the wavelength order and the coherence length is 6 (however, a - 0 , 1, 2, ·°°), the reflected light beams from the top and bottom surfaces of the stepped structure on the eight surfaces of the sea urchin interfere with each other, making it difficult to observe the circuit pattern. As a result, alignment between the circuit pattern and the wafer becomes a fixed point.
又受光手段、TV右カメラを用いて自動的に回路パター
ンとウェハとの位置合わせt行う所謂オードアライメン
)KvAしても反射光束が干渉すると受光手段のS/N
比が低下し、高精度の位置合わせが困aになってくる。In addition, even if the light receiving means and the TV right camera are used to automatically align the circuit pattern and the wafer (so-called automatic alignment), even if the reflected light beam interferes with KvA, the S/N of the light receiving means will increase.
The ratio decreases, making it difficult to perform highly accurate positioning.
特に高輝度光源としてレーザー等の可干渉距離の長い単
色光源を用いた場合はこのようなことが非常に起こりや
すくなる。This is particularly likely to occur when a monochromatic light source with a long coherence length, such as a laser, is used as the high-intensity light source.
本発明はウニ八面上の回路パターン像にいかなる段差構
造があっても回路パターンとクエへとの位1合わせ全精
度良く行うことの出来る観#I!装置の提供を目的とす
る。The present invention is a concept #I that allows the circuit pattern and the square to be matched with high precision even if there is any step structure in the circuit pattern image on the 8th surface of the sea urchin! The purpose is to provide equipment.
本発明の目的を達成する為の観察装置の主光る%徴は、
光源からの光束1c物体に照射して前記物体t WA、
祭する観1!装宜において、前記物体の微細な段差構造
の段差量に応じて照射光の波長全連続的に変化さぜ九こ
とでbる。The main luminous percentage characteristics of the observation device for achieving the purpose of the present invention are:
The light flux 1c from the light source is irradiated onto the object, and the object t WA,
View to celebrate 1! In this case, the wavelength of the irradiated light changes continuously in accordance with the amount of the step in the fine step structure of the object.
このように本発明においては例えば色素レーザー等で物
体への照射光の波長を連続的に変化させることによりウ
ニ八面上に回路/<ターン像t−繰p返し投影霧光する
際にウニ・・面上に回路パターンの段差構造が生じても
、回路ノ(ターノとウェハを精度良く位置合わせtする
ことを可能としている。In this way, in the present invention, by continuously changing the wavelength of the light irradiated to the object using, for example, a dye laser, etc., a circuit/<turn image t-p is repeatedly projected onto the eight surfaces of the sea urchin. - Even if a stepped structure of the circuit pattern occurs on the surface, it is possible to precisely align the circuit pattern and the wafer.
次に本発明の一実施例を各図と共に説明する。Next, one embodiment of the present invention will be described with reference to each drawing.
第1図は本発明tフォトリソグラフィ技術に適用し九堝
合の一部分の概略図でるる。FIG. 1 is a schematic diagram of a portion of a nine-hole joint applied to the photolithography technique of the present invention.
尚同図においては簡単の為に回路バター71−ウニ八面
上へ投影する際の各9.累については省略してろる。In the figure, for the sake of simplicity, the circuit butter 71 - each 9. I'll omit the details.
第1図の実施例に訃いて光源1から発損し九光束は分光
器、フィルター等の波長変換又は波長選択全行う波長可
変手段2により所望の波長に遍択或いは変換される。Unlike the embodiment shown in FIG. 1, the nine beams emitted from the light source 1 are selectively converted into a desired wavelength by a wavelength variable means 2 which performs wavelength conversion or wavelength selection such as a spectroscope or filter.
尚波長可変手段2は光源1に内蔵されている場合もらる
◎
光源1が波長可変性のガえは色素レーザー等であれば波
長可変手段2は特に設けなくても良い口
波長可変手段2からの光束は全反射ミラー3゜4で反J
Mしハーフミラ−5によって半導体基板でおるウェハ面
6上に入射しウニI・面を照明するO
ウェハ面6からの反射光束は)・−7ミラーを通過し観
察光学系8に入射する。In addition, if the wavelength variable means 2 is built in the light source 1, the wavelength variable means 2 is required. If the light source 1 is wavelength variable, such as a dye laser, the wavelength variable means 2 does not need to be provided. The luminous flux of is reflected by a total reflection mirror of 3°4.
The reflected light beam from the wafer surface 6 is incident on the wafer surface 6 which is a semiconductor substrate by the half mirror 5 and illuminates the surface of the sea urchin I. The reflected light beam from the wafer surface 6 passes through the -7 mirror and enters the observation optical system 8.
いまウェハ面6上に回路パターン像の写真食刻による微
細な段差構造7が存在すると、第2図に示すように段差
構造の上面と下面からの反射光束が各々干渉をし肉眼で
の観察が困難となる場合がらる。例えば段差構造の上面
と下面の段差量t−d、照射元照射長をλとし九ときz
d−(n+4)λ ・・・・・−・・(2)(但
しn−0、1、2、・・・)
に略等しいときは反射光束が干渉し観察困峻となる。そ
こで本実施列では波長コントローラー9を手動で操作し
照射光の波長を変えて反射光束が(2)式を完全に満足
せず即ち完全に干渉しない程尻の長さにすることKよっ
て、ウェハ面6上が良好に観察出来るようにしている。If there is a fine step structure 7 formed by photo-etching a circuit pattern image on the wafer surface 6, the reflected light beams from the top and bottom surfaces of the step structure will interfere with each other as shown in FIG. There may be times when it becomes difficult. For example, if the height difference between the top and bottom surfaces of the stepped structure is t-d, and the irradiation length of the irradiation source is λ, then 9 and z
When it is approximately equal to d-(n+4)λ (2) (however, n-0, 1, 2, . . .), the reflected light beams interfere, making observation difficult. Therefore, in this implementation, the wavelength controller 9 is manually operated to change the wavelength of the irradiated light so that the length of the reflected light beam does not completely satisfy equation (2), that is, it does not completely interfere with the wafer. The surface 6 can be observed clearly.
ここで段差量は前述し九よりにさまざまであるので、そ
れに応じて波長の変化中も連続的に大きくとらねばなら
ない。変化できる波長が離散的であろと、それらの公倍
数のKの段差量に対応できなくなるからでろる。Here, since the step amount varies as described above, it must be kept continuously large accordingly even during the wavelength change. This is because even if the wavelengths that can be changed are discrete, it will not be possible to cope with the step amount of K, which is a common multiple of them.
本実施列における波長可変手段2としては例えば超高圧
水銀灯の複数の発光スペクトルを選択して用いても良く
又色素レーザー等に含まれる波長可変手段で行って4良
い。特に色素レーザーはその高輝度性及び第3図のよう
に紫外から赤外にわたる広範囲な波長可変域の点からこ
の目的の九めには最適である。第3図において山の違い
は色素の違いを示す。As the wavelength variable means 2 in this embodiment, for example, a plurality of emission spectra of an ultra-high pressure mercury lamp may be selected and used, or a wavelength variable means included in a dye laser or the like may be used. In particular, dye lasers are ideal for this purpose because of their high brightness and wide wavelength tunable range from ultraviolet to infrared as shown in FIG. In Figure 3, the different peaks indicate the different pigments.
第4図は木兄F!Aを回路パターンとウェハとの位置甘
わぜ(l−TVカメラによる自動位置合わせ装置に適用
した場合の一実施例の概略口でろる。Figure 4 is Ki-ni F! The position of the circuit pattern and the wafer is shown in FIG.
同図においても第1図と同様に回路パターンをウェハ面
上へ投影する際の各要素については省略しである。In the same figure, as in FIG. 1, each element involved in projecting a circuit pattern onto a wafer surface is omitted.
又第4図においてm1図と同一の要素には同一の番号を
付してらる。Also, in FIG. 4, the same elements as in FIG. m1 are given the same numbers.
本災施かjでaζl祭光学系8によってウニハロ上の1
象ヲTV カメラ10上に形成し、’(’v カメラか
らの伽号により回路パターンとウェハとの位置合わせを
行っている。このとき第2図く示すようにウニへ面6上
に段差構造がおると段差構造の上面と下面からの反射光
束が干渉し出力信号が低下してくる。この結果回路パタ
ーンとクエハO位置合わせ精度が悪くなってくる。この
為本実施−jではTVカメラlOでウェハ面6上のコン
トラスト全検出しつつ、コントラストが最大となるより
に自動的に波長コントローラー9を介し波長可変手段2
により光源1からの発振v長tiえるようにしている。1 on the sea urchin halo by the aζl festival optical system 8 in this disaster or j
The elephant is formed on the TV camera 10, and the circuit pattern and the wafer are aligned using the sign from the camera.At this time, a stepped structure is formed on the surface 6 as shown in If this happens, the reflected light beams from the top and bottom surfaces of the stepped structure will interfere, resulting in a drop in the output signal.As a result, the accuracy of the alignment between the circuit pattern and the QF will deteriorate.For this reason, in this implementation-j, the TV camera lO While detecting the entire contrast on the wafer surface 6, the wavelength variable means 2 is automatically adjusted via the wavelength controller 9 as soon as the contrast is maximized.
Thus, the oscillation length v from the light source 1 can be increased.
以上のように本発明によればウェハ面上にいかなる段差
構造が生じて一物体への照射光の波長を変えることによ
り、常に良好なる観察が行なえる観察装置を達成するこ
とができる。As described above, according to the present invention, by changing the wavelength of the light irradiated to one object depending on the level difference structure generated on the wafer surface, it is possible to achieve an observation apparatus that can always perform good observation.
第1図、第4図は各々木兄BAt−フォトリングラフィ
に適用し九ときの概略図、第2図は本発明における段差
構造からの反射光束t−m察するときの光路の説明図、
第3図は従来の典型的な色素レーザーの発振波長と発振
効率を示すグラフでろる。
図中1#′i光源、2は波長可変手段、3.4はミラー
、5はハーフミラ−16はウェハ面、7は段差構造、8
はw!察先光学系9は波長コントローラー、1oFiT
Vカメラである。FIGS. 1 and 4 are schematic diagrams when applied to Kiyo BAt-photolithography, respectively, and FIG. 2 is an explanatory diagram of the optical path when observing the reflected light flux t-m from the step structure in the present invention,
FIG. 3 is a graph showing the oscillation wavelength and oscillation efficiency of a typical conventional dye laser. In the figure, 1 #'i light source, 2 wavelength variable means, 3.4 mirror, 5 half mirror, 16 wafer surface, 7 step structure, 8
Ha lol! The detection optical system 9 is a wavelength controller, 1oFiT
It is a V camera.
Claims (2)
する観察装置において、前記物体への照射光の波長を連
続的に変化させる手段を備え前記物体の微細な段差構造
の段差量に応じて照射光の波長を変化させたことを特徴
とする観察装置。(1) An observation device for observing an object by irradiating the object with a light beam from a light source, including means for continuously changing the wavelength of the light irradiating the object to adjust the amount of step in the fine step structure of the object. An observation device characterized in that the wavelength of irradiation light is changed accordingly.
特許請求の範囲の第1項記載の観察装置。(2) The observation device according to claim 1, wherein the light source is a dye laser.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59233582A JPS61112122A (en) | 1984-11-06 | 1984-11-06 | Observing device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59233582A JPS61112122A (en) | 1984-11-06 | 1984-11-06 | Observing device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61112122A true JPS61112122A (en) | 1986-05-30 |
Family
ID=16957324
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59233582A Pending JPS61112122A (en) | 1984-11-06 | 1984-11-06 | Observing device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61112122A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01250708A (en) * | 1988-03-30 | 1989-10-05 | Dainippon Screen Mfg Co Ltd | Apparatus for detecting membrane pattern |
WO2006095605A1 (en) * | 2005-03-11 | 2006-09-14 | Fujifilm Corporation | Light source unit for alignment, alignment apparatus, exposure apparatus, digital exposure apparatus, alignment method, exposure method and method for setting lighting apparatus condition |
-
1984
- 1984-11-06 JP JP59233582A patent/JPS61112122A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01250708A (en) * | 1988-03-30 | 1989-10-05 | Dainippon Screen Mfg Co Ltd | Apparatus for detecting membrane pattern |
WO2006095605A1 (en) * | 2005-03-11 | 2006-09-14 | Fujifilm Corporation | Light source unit for alignment, alignment apparatus, exposure apparatus, digital exposure apparatus, alignment method, exposure method and method for setting lighting apparatus condition |
JP2006251571A (en) * | 2005-03-11 | 2006-09-21 | Fuji Photo Film Co Ltd | Light source unit for alignment, alignment apparatus, exposure apparatus, digital exposure apparatus, alignment method, exposure method, and method for setting condition of illumination device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4811055A (en) | Projection exposure apparatus | |
JP3175515B2 (en) | Exposure apparatus and device manufacturing method using the same | |
KR0142645B1 (en) | Projectin exposure method and system used therefor | |
JP2000021748A (en) | Method of exposure and exposure equipment | |
JP2003318086A (en) | Illumination optical system, exposure apparatus having the same, and device manufacturing method | |
JP2000021742A (en) | Method of exposure and exposure equipment | |
JPH0786126A (en) | Method and equipment for detecting pattern and projection aligner employing the same | |
JP3057998B2 (en) | Illumination device and projection exposure apparatus using the same | |
US6890692B2 (en) | Method of focus monitoring and manufacturing method for an electronic device | |
US5581348A (en) | Surface inspecting device using bisected multi-mode laser beam and system having the same | |
JP2001284222A (en) | Projection exposure system and method | |
KR102126322B1 (en) | Wide-spectrum radiation by supercontinuum generation using tapered fiber | |
US6322220B1 (en) | Exposure apparatus and device manufacturing method using the same | |
JP3605047B2 (en) | Illumination apparatus, exposure apparatus, device manufacturing method and device | |
JP2962972B2 (en) | Surface condition inspection apparatus and exposure apparatus having the same | |
JPH01114035A (en) | Aligner | |
JPS61112122A (en) | Observing device | |
JPS62188316A (en) | Projection exposure device | |
JP2000031028A (en) | Exposure method and exposure apparatus | |
CN114174890B (en) | Measuring device and phase modulator device thereof | |
US8102509B2 (en) | Focus and level control method for projection lens unit by comparing intensities of measurement light and reference light | |
JPH07226367A (en) | Light exposure equipment and manufacture of device by using this equipment | |
JP3629801B2 (en) | Exposure equipment | |
JPH11162824A (en) | Aligner | |
JPH1041219A (en) | Projection aligner and manufacturing of device using it |