Nothing Special   »   [go: up one dir, main page]

JPS6098136A - Air-fuel ratio control method of internal-combustion engine - Google Patents

Air-fuel ratio control method of internal-combustion engine

Info

Publication number
JPS6098136A
JPS6098136A JP58207226A JP20722683A JPS6098136A JP S6098136 A JPS6098136 A JP S6098136A JP 58207226 A JP58207226 A JP 58207226A JP 20722683 A JP20722683 A JP 20722683A JP S6098136 A JPS6098136 A JP S6098136A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
engine
fuel
throttle valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58207226A
Other languages
Japanese (ja)
Inventor
Katsunori Yagi
克典 八木
Toshimitsu Ito
利光 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP58207226A priority Critical patent/JPS6098136A/en
Publication of JPS6098136A publication Critical patent/JPS6098136A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1477Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation circuit or part of it,(e.g. comparator, PI regulator, output)
    • F02D41/1481Using a delaying circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/10Introducing corrections for particular operating conditions for acceleration

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To prevent droppage of engine rotation by changing the air/fuel ratio to lean side with predetermined time delay upon transfer from idling to non- idling. CONSTITUTION:Upon rotation of engine by predetermined crank angle from the time point when an idle switch has turned off or when count C=0, it will go to step 142 while if the count is higher than 0 or during the interval from turning off of idle switch untill rotation of engine by predetermined crank angle, it will go to step 140. In step 142, lean correction factor FLEAN corresponding with current suction tube pressure obtained through interpolation or the lean correction factor set in step 140 is applied to operate fuel injecting time TAU. Fuel injection valve is controlled such that fuel of such amount as corresponding with TAU will be injected in next routine.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は内燃機関の空燃比制御方法に係り、特に、0□
センサ出力より得られる空燃比フィードバック補正係数
に基づいて空燃比を理論空燃比に制御すると共に所定条
件下で空燃比を理論空燃比より希薄側にリーン制御する
空燃比制御方法におけるリーン制御の改良に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to an air-fuel ratio control method for an internal combustion engine, and in particular,
Related to improvements in lean control in an air-fuel ratio control method that controls the air-fuel ratio to a stoichiometric air-fuel ratio based on an air-fuel ratio feedback correction coefficient obtained from a sensor output, and also controls the air-fuel ratio leaner than the stoichiometric air-fuel ratio under predetermined conditions. .

〔従来技術〕[Prior art]

従来よシ、排ガス中の一酸化炭素、炭化水素および窒素
酸化物を同時に浄化するために三元触媒が用いられてお
シ、この三元触媒の浄化率を良好にするため0.七ンサ
によシ排ガス中の残留酸素濃度を検出して空燃比を推定
し、空燃比を理論空燃比近傍に制御するフィードバック
制御が行なわれている。このフィードバック制御を行な
うにあたっては、機関負荷(吸気fU正圧力3 Mまた
は機関1回転当りの吸入空気量Q/NK)と機関回転数
とによって定まる基本燃料噴射時間TPに、02センサ
から出力されかつ信号処理された空燃比信号に基づいて
燃料噴射時間を比例積分動作さぜるための空燃比フィー
ドバック補正係数FAFを乗算して燃料噴射時間TAU
をめ、この燃料噴射時間TAUに相当する時間燃料噴射
弁を開弁することによシ空燃比を理論空燃比近傍に制御
している。
Conventionally, a three-way catalyst has been used to simultaneously purify carbon monoxide, hydrocarbons, and nitrogen oxides in exhaust gas.In order to improve the purification rate of this three-way catalyst, 0. Feedback control is performed in which the air-fuel ratio is estimated by detecting the residual oxygen concentration in the exhaust gas using a sensor, and the air-fuel ratio is controlled to be close to the stoichiometric air-fuel ratio. In performing this feedback control, the 02 sensor outputs and Based on the signal-processed air-fuel ratio signal, the fuel injection time TAU is calculated by multiplying the air-fuel ratio feedback correction coefficient FAF for proportional-integral operation of the fuel injection time.
Therefore, the air-fuel ratio is controlled to be close to the stoichiometric air-fuel ratio by opening the fuel injection valve for a time corresponding to this fuel injection time TAU.

また、近時低燃費化の観点から、フィードバック制御中
の所定条件下すなわち完全暖機後の軽負荷時において、
空燃比を理論空燃比より希薄側にフィードフォワード制
御するリーン制御を行なうことが提案されている。
In addition, from the perspective of improving fuel efficiency, under certain conditions during feedback control, that is, at light loads after complete warm-up,
It has been proposed to carry out lean control in which the air-fuel ratio is feedforward controlled to be leaner than the stoichiometric air-fuel ratio.

上記のフィードバック制御およびリーン制御は。Feedback control and lean control mentioned above.

以下のm式に基づいて燃料噴射時間TAUを演算ただし
、TAUGは吸気絞り弁がアイドル位置での学習値、K
Gは吸気絞り弁がアイドル位置にないときでの学習値、
F(t)は暖機増量係数や始動時増量係数等の補正係数
、FLKANはl以下の17−ン補正係数である。この
リーン補正係数FLIliANは、吸気絞り弁がアイド
ル位置(全閉)のとき1未満の所定値(例えば、0.9
8)が採用され、吸気絞り弁が開かれたときには上記所
定値より小さい値(例えば、0.64)が採用される。
Calculate the fuel injection time TAU based on the following m formula. However, TAUG is the learned value when the intake throttle valve is in the idle position, K
G is the learned value when the intake throttle valve is not in the idle position,
F(t) is a correction coefficient such as a warm-up increase coefficient or a start-up increase coefficient, and FLKAN is a 17-ton correction coefficient less than or equal to l. This lean correction coefficient FLIliAN is set to a predetermined value less than 1 (for example, 0.9
8) is adopted, and when the intake throttle valve is opened, a value smaller than the above predetermined value (for example, 0.64) is adopted.

従って、上記のfl1式によれば、リーン補正係数FL
KANを1にすることによりフィードバック制御が行な
われ、リーン補正係数FLJ1!ANを2未満の値にす
ることによシ燃料噴射時間TAUが小さくなってリーン
制御が行なわれる。また、リーン制御については、吸気
絞り弁がアイドル位置のとき理論空燃比より希薄側の第
1の空燃比に制御され、吸気絞シ弁が開かれたときには
第1の空燃比より希薄側の第2の空燃比に制御される。
Therefore, according to the fl1 formula above, the lean correction coefficient FL
Feedback control is performed by setting KAN to 1, and the lean correction coefficient FLJ1! By setting AN to a value less than 2, the fuel injection time TAU becomes shorter and lean control is performed. Regarding lean control, when the intake throttle valve is in the idle position, the air-fuel ratio is controlled to the first air-fuel ratio leaner than the stoichiometric air-fuel ratio, and when the intake throttle valve is opened, the air-fuel ratio is controlled to the leaner side than the first air-fuel ratio. The air-fuel ratio is controlled to 2.

従って、リーン制御実行中に、レーシングや発進等をす
るためにアイドル位置にある吸気絞り弁を開くと、開い
た直後にリーン補正係数FLKANが小さくなって空燃
比がリーン側に制御されて機関回転数が落込み機関回転
数がスムーズに上昇しない、という問題がある。
Therefore, when the intake throttle valve is opened at the idle position for racing or starting while lean control is being executed, the lean correction coefficient FLKAN decreases immediately after opening, and the air-fuel ratio is controlled to the lean side, causing the engine to rotate. There is a problem that the engine speed drops and the engine speed does not rise smoothly.

〔発明の目的〕[Purpose of the invention]

本発明は上記問題点を解消すべく成されたもので、レー
シングや発進時に機関回転数の落込みがない内燃機関の
空燃比制御方法を提供することを目的とする。
The present invention has been made to solve the above-mentioned problems, and it is an object of the present invention to provide an air-fuel ratio control method for an internal combustion engine in which the engine speed does not drop during racing or starting.

〔発明の構成〕[Structure of the invention]

上記目的を達成するために本発明は、吸気絞シ弁がアイ
ドル位置のときに空燃比を理論空燃比よシ希薄側の第1
の空燃比に制御すると共に吸気絞シ弁が開かれたときに
空燃比を第1の空燃比より希薄側の第2の空燃比に制御
する内燃機関の空燃比制御方法において、吸気絞り弁が
アイドル位置より開かれた時点から所定期間の間中燃比
を第1の空燃比に倫御することを特徴とする。所定期間
の間中燃比を第1の空燃比に制御するには、吸気絞シ弁
がアイドル位置′でのり一7補正係数を所定期間保持す
ることにより制御できる。
In order to achieve the above object, the present invention provides a first air-fuel ratio on the lean side that is lower than the stoichiometric air-fuel ratio when the intake throttle valve is in the idle position.
In the air-fuel ratio control method for an internal combustion engine, the air-fuel ratio is controlled to a second air-fuel ratio on the lean side than the first air-fuel ratio when the intake throttle valve is opened. It is characterized in that the intermediate fuel ratio is controlled to the first air-fuel ratio for a predetermined period from the time when the engine is opened from the idle position. In order to control the intermediate fuel ratio to the first air-fuel ratio for a predetermined period, the intake throttle valve can be controlled by holding the Node 7 correction coefficient at the idle position' for a predetermined period.

〔発明の実施例〕[Embodiments of the invention]

第1図は、本発明が適用される空燃比制御システムを備
えた内燃機pA(エンジン)の−例を示すものである。
FIG. 1 shows an example of an internal combustion engine pA (engine) equipped with an air-fuel ratio control system to which the present invention is applied.

エアクリーナ2は、インレットパイプ4を介しテスロッ
トル艙ディ6に接続されている。スロットルボディ6の
上流側には、1つの燃料噴射弁8が取付けられ、燃料噴
射弁8の下流側にはアクセルペダルと連動してエンジン
の燃焼室に吸入される混合気の量を調節する吸気絞り弁
10が配置されている。吸気絞り弁10には、吸気絞り
弁がアイドル位r#、(全閉)でオンしがっ吸気絞シ弁
が開かれたときに1フするアイドルスイッチ11および
吸気絞り弁全閉位置を基準とした吸気絞り弁開度が所定
値(例えば、3o”c、)以上でオン1がっ吸気絞り弁
開度が所定値未満でオフするパワースイッチ12が取付
けられている。このパワースイッチ12は、高負荷時の
出力不足を補うためのパワー増量制御に用いられる。ま
た、吸気絞り弁100下流側には、吸気管の圧力を検出
する圧力センサI4が取付けられている。
The air cleaner 2 is connected to a test throttle bay 6 via an inlet pipe 4. One fuel injection valve 8 is installed on the upstream side of the throttle body 6, and on the downstream side of the fuel injection valve 8, there is an intake valve that adjusts the amount of air-fuel mixture sucked into the combustion chamber of the engine in conjunction with the accelerator pedal. A throttle valve 10 is arranged. The intake throttle valve 10 has an idle switch 11 that turns on when the intake throttle valve is at idle position r# (fully closed) and turns 1 when the intake throttle valve is opened, and an idle switch 11 that is based on the intake throttle valve fully closed position. A power switch 12 is installed that turns on when the intake throttle valve opening is equal to or higher than a predetermined value (for example, 3o"c) and turns off when the intake throttle valve opening is less than a predetermined value. , is used for power increase control to compensate for the lack of output during high loads.Furthermore, a pressure sensor I4 is installed downstream of the intake throttle valve 100 to detect the pressure in the intake pipe.

スロットルボディ6は、エンジンの各気筒に連結された
分岐管を備えたインテークマニホールド16と連結され
、インテークマニホールド16には、インテークマニホ
ールドを通過する混合気の温度から吸気温を測定する吸
気温センサ18が取付けられている。インテークマニホ
ールド16の上流側底部165Lには、エンジン冷却水
温が循環されて混合気を加熱するライザ部2oが設けら
れている。
The throttle body 6 is connected to an intake manifold 16 having branch pipes connected to each cylinder of the engine, and the intake manifold 16 includes an intake temperature sensor 18 that measures the intake air temperature from the temperature of the air-fuel mixture passing through the intake manifold. is installed. The upstream bottom portion 165L of the intake manifold 16 is provided with a riser portion 2o through which engine cooling water temperature is circulated to heat the air-fuel mixture.

22はJ[(]のエンジン本体でアリ、ピストン24の
底面とシリンダ26の内壁とに上り燃焼室28が形成さ
れており、吸気弁3oを介して吸入された混合気が点火
プラグ32によシ着火される。シ\ リンダ26の周囲には、ウォータジャケット34が形成
され、このウォータジャケット34にはエンジン冷却水
温が循環されシリンダ26等が冷却される。そして、シ
リンダブロック36にはウォータジャケット34内のエ
ンジン冷却水温を検出するエンジン冷却水温センサ38
が取付けられている。
Reference numeral 22 denotes the engine body of J[(]. A combustion chamber 28 is formed on the bottom surface of the piston 24 and the inner wall of the cylinder 26, and the air-fuel mixture taken in through the intake valve 3o is caused by the spark plug 32. A water jacket 34 is formed around the cylinder 26, and engine cooling water is circulated through the water jacket 34 to cool the cylinder 26 and the like.A water jacket 34 is formed around the cylinder block 36. An engine coolant temperature sensor 38 that detects the temperature of the engine coolant in 34.
is installed.

シリンダヘッド40の図示しない排気ボートには、エキ
ゾーストマニホールド42が連結され、エキゾーストマ
ニホールド42の下流側に排ガス中の外留酸素濃度を検
出する0、センサ44が取付けられでいる。また、エキ
ゾーストマニホールド42は、三元触媒を充填した触媒
コンバータ46を介して排気管48に連結されている。
An exhaust manifold 42 is connected to an exhaust boat (not shown) of the cylinder head 40, and a sensor 44 for detecting the concentration of external oxygen in exhaust gas is attached downstream of the exhaust manifold 42. Furthermore, the exhaust manifold 42 is connected to an exhaust pipe 48 via a catalytic converter 46 filled with a three-way catalyst.

点火プラグ32は、ディストリビュータ5oおよびイグ
ナイタ52を介してマイクロコンピュータ等で構成され
た制御回路54に接続されている。
The spark plug 32 is connected via the distributor 5o and the igniter 52 to a control circuit 54 composed of a microcomputer or the like.

ディストリビュータ5oには、ディストリビュータシャ
フトに固定されたシグナルロータとディストリビュータ
ハウジングに固1定されたピックアップとで各々構成さ
れたエンジン回転角センサ56および気筒判別センサ5
8が取付けられている0この気筒判別センサ58は、6
気筒エンジンの場合、ディストリビュータシャフトが1
回転する毎すなわちエンジンが2回転する(720℃A
)毎に基準位置(例えば、特定気筒の上死点)で1つの
パルスを出力し、エンジン回転角センサ56は、例えば
30℃A毎に1つのパルスを出力する。なお、51は車
速を検出する車速センサである。
The distributor 5o includes an engine rotation angle sensor 56 and a cylinder discrimination sensor 5, each of which includes a signal rotor fixed to the distributor shaft and a pickup fixed to the distributor housing.
This cylinder discrimination sensor 58 is equipped with 6.
For cylinder engines, the distributor shaft is 1
Every rotation, the engine rotates twice (720℃A
), the engine rotation angle sensor 56 outputs one pulse at a reference position (for example, top dead center of a specific cylinder) every 30° C.A. Note that 51 is a vehicle speed sensor that detects vehicle speed.

制御回路54は、算術論理ユニットやレジスタを備えた
中央処理装置(cpσ)60、制御プログラム等を記憶
したリードオンメモリ(ROM)62、テンダムアクセ
スメモリ(RAM)ft4、不揮発メモリとしてのバッ
クアップラム(B u −IRA M ) 66、入出
力ボート(Ilo)ft8、アナログ−ディジタル変換
器(ADC)70おIびこれらを接続するデータバスや
コントロールバス等のバス72を含んで構成されている
。Ilo a sには、気筒判別センサ58からの気筒
判別信号、エンジン回転角センサ56か、らのエンジン
回転数信号およびパワースイツ′f−12からのパワー
信号が入力されると共に、図示しない駆動回路を介して
燃料噴射弁8を制御するための燃料噴射信号およびイグ
ナイタ52を制御するための点火信号が出力される。ま
た、ADC70には、圧力センサ14からの吸気管圧力
信号、吸気温センサー8からの吸気温信号、水温センサ
38からの水温信号、車速センサからの車速信号および
O,センサ44からの空燃比信号が入力され、CPU6
0の指示に応じてこれらの信号を順次ディジタル信号に
変換する。上記のROM62には、以下の処理ルーチン
で示す制御プログラム、吸気絞り弁がアイドル位置のと
きのり一ン補正係数FLL、吸気絞り弁が開いていると
きのり一ン補正係数FLE’ANが予め記憶されている
。このリーン補正係数FLBANは、第3図に示すよう
に吸気管圧力に応じて定められている。なお、吸入空気
量とエンジン回転数とて基本燃料噴射時間を定めるエン
ジンでは、吸、大空気量に応じてリーン補正係数FLF
IANが定められる。
The control circuit 54 includes a central processing unit (cpσ) 60 including an arithmetic logic unit and registers, a read-on memory (ROM) 62 that stores control programs, etc., a random access memory (RAM) ft4, and a backup RAM as a nonvolatile memory. (Bu-IRAM) 66, an input/output board (Ilo) ft8, an analog-to-digital converter (ADC) 70, and a bus 72 such as a data bus or a control bus that connects these. A cylinder discrimination signal from the cylinder discrimination sensor 58, an engine rotation speed signal from the engine rotation angle sensor 56, and a power signal from the power switch 'f-12 are input to Ilo a s, and a drive circuit (not shown) is input to Ilo a s. A fuel injection signal for controlling the fuel injection valve 8 and an ignition signal for controlling the igniter 52 are outputted through the fuel injection valve 8 . The ADC 70 also includes an intake pipe pressure signal from the pressure sensor 14, an intake temperature signal from the intake temperature sensor 8, a water temperature signal from the water temperature sensor 38, a vehicle speed signal from the vehicle speed sensor, and an air-fuel ratio signal from the O sensor 44. is input and CPU6
These signals are sequentially converted into digital signals in accordance with instructions from 0. The above-mentioned ROM 62 stores in advance a control program shown in the following processing routine, a lift-off correction coefficient FLL when the intake throttle valve is in the idle position, and a lift-off correction coefficient FLE'AN when the intake throttle valve is open. ing. This lean correction coefficient FLBAN is determined according to the intake pipe pressure as shown in FIG. For engines that determine the basic fuel injection time based on the amount of intake air and engine speed, the lean correction coefficient FLF is adjusted depending on the amount of intake air and large amount of air.
IAN is defined.

以下本実施例の処理ルーチンを説明する。まず、第4図
の制御切換えルーチンに基づいてリーン制御御とフィー
ドバック制御との切換えについて説明する。このルーチ
ンは所定時間毎に実行されるもので、ステップ120に
おいてエンジン冷却水温THWが所定値(例えば、80
℃)を越えているか、ステップ121において所定時間
(例えば、2 gec)内における車速の変化率ΔSP
Dの変化量ΔB P D/ 2sec (以下2階微分
値という)が所定値(例えば、0.7km/h)未満か
否か、まだステップ122において吸気絞シ弁開度TA
が所定値(例えば、30°)未満か否かを判断すること
により、リーン制御条件が成立しているか否かを判断す
る。なお、吸気絞り弁開度TAが所定値か否かは、パワ
ースイッチがオンしているか否かにより判断す為ことが
できる。
The processing routine of this embodiment will be explained below. First, switching between lean control and feedback control will be explained based on the control switching routine shown in FIG. This routine is executed at predetermined intervals, and in step 120, the engine coolant temperature THW is set to a predetermined value (for example, 80
℃) or the rate of change ΔSP of vehicle speed within a predetermined time (for example, 2 gec) in step 121.
Whether the amount of change ΔB P D / 2 sec (hereinafter referred to as second-order differential value) of
By determining whether or not is less than a predetermined value (for example, 30 degrees), it is determined whether the lean control condition is satisfied. Note that whether or not the intake throttle valve opening degree TA is a predetermined value can be determined based on whether or not the power switch is turned on.

一エンジン冷却水温THWが所定値以下のときすなわち
暖機中のとき、車速の2階微分値ΔSPD/2(8)が
所定値以上のときすなわちエンジン加速中のとき、また
は吸気絞シ弁開度TAが所定値以上のときすなわら高負
荷時は、リーン制御が不可能であるため、ステップ+2
5でリーン補正係数FLKANQ lとして空燃比フィ
ードバック制御を行ないリターンする。一方、ステップ
120.121、+22の判断が肯定のときすなわち完
全暖機後の軽負荷時で定常走行状態のときは、ステップ
126でリーン制御を行ないリターンする。
- When the engine coolant temperature THW is below a predetermined value, that is, when it is being warmed up, when the second derivative value ΔSPD/2 (8) of the vehicle speed is above a predetermined value, that is, when the engine is accelerating, or when the intake throttle valve opening When TA is above a predetermined value, that is, when the load is high, lean control is impossible, so step +2
At step 5, air-fuel ratio feedback control is performed using the lean correction coefficient FLKANQl, and the process returns. On the other hand, when the judgments in steps 120, 121 and +22 are affirmative, that is, when the load is light after complete warm-up and the vehicle is in a steady running state, lean control is performed at step 126 and the process returns.

次に上記のリーン制御における燃料噴射時間TAUを演
算するルーチンについて第5図から第7図を参照して説
明する。第5図は常時実行されるルーチンを示すもので
、まずステップ128でアイドルスイッチがオンしてい
るか否かを判断することによシ吸気絞り弁がアイドル位
置に位置しているか否かを判断する。アイドルスイッチ
がオンしているときはステップ13oにおいてカウント
値Cを所定値Kに設定し、アイドルスイッチがメツして
いるときはl↓y ”7’ l 30 7 ’f y 
7’ 77;)・第6図は所定クランク角(例えば、+
80″CA)毎に実行される割込みルーチンを示し、ス
テップ!32で上記のカウント値Cが0になっているか
0でなければステップ+34でカウント値Cを1デクレ
メントする。
Next, a routine for calculating the fuel injection time TAU in the lean control described above will be explained with reference to FIGS. 5 to 7. FIG. 5 shows a routine that is constantly executed. First, in step 128, it is determined whether the idle switch is on or not, thereby determining whether the intake throttle valve is located at the idle position. . When the idle switch is on, the count value C is set to a predetermined value K in step 13o, and when the idle switch is on, the count value C is set to a predetermined value K, and when the idle switch is on, the count value C is set to a predetermined value K.
7'77;)・Figure 6 shows a predetermined crank angle (for example, +
The interrupt routine is executed every 80'' CA), and if the above-mentioned count value C is 0 at step !32 or not 0, the count value C is decremented by 1 at step +34.

第7図の燃料噴射時間TAU演算ルーチンでは、ステッ
プ136でアイドルスイッチがオンしているか否かを判
断し、アイドルスイッチがオンしていればステップ14
0でFL屈ANの値を吸気絞り弁がアイドル位置でのり
一ン補正係数FLLとした後ステップ142へ進む。一
方、ステップ+3fiでアイドルスイッチがオフしてい
ると判断されたときには、ステップ138でカウント値
CがOになっているか判断する。そして、カウント値C
が0のときすなわちアイドルスイッチがオンからオフに
変化した時点よジエンジンが所定クランク角回転したと
きはステップ142に進み、カウント値が0以上の値の
ときすなわちアイドルスイッチがオンからオフに変化し
た時点よりエンジンが所定クランク角回転するまでの間
はステップ+40に進む。ステップ+42では、第3図
のマツプから補間法によりめた現在の吸気管圧力に対応
するリーン補正係数FL、[!!ANまたはステップ+
40で設定されたリーン補正係数を上記111式に適用
して燃料噴射時間T’AUを演算する。そして、次のル
ーチンにおいて燃料噴射時間TAUに相当する燃料が噴
射・されるよう燃料噴射弁が制御される。
In the fuel injection time TAU calculation routine of FIG. 7, it is determined in step 136 whether the idle switch is on, and if the idle switch is on, step 14 is performed.
0, the value of FL_AN is set as the limp correction coefficient FLL when the intake throttle valve is in the idle position, and then the process proceeds to step 142. On the other hand, when it is determined in step +3fi that the idle switch is off, it is determined in step 138 whether the count value C is O. And count value C
When the count value is 0, that is, when the idle switch has changed from on to off, and when the engine has rotated at a predetermined crank angle, the process proceeds to step 142, and when the count value is 0 or more, that is, when the idle switch has changed from on to off. From this point until the engine rotates at a predetermined crank angle, the process proceeds to step +40. At step +42, the lean correction coefficient FL, [! ! AN or step+
The lean correction coefficient set in step 40 is applied to the above equation 111 to calculate the fuel injection time T'AU. Then, in the next routine, the fuel injection valve is controlled so that fuel corresponding to the fuel injection time TAU is injected.

以上の結果、アイドルスイッチがオンからオフに変化し
た時点よりエンジンが所定クランク角回転するまでは、
アイドルスイッチオン時の空燃比と同一の空燃比になる
よう空燃比が制御される。
As a result of the above, from the time the idle switch changes from on to off until the engine rotates at the specified crank angle,
The air-fuel ratio is controlled to be the same air-fuel ratio as the air-fuel ratio when the idle switch is turned on.

第8図に上記実施例の制御のタイミングを示す。FIG. 8 shows the control timing of the above embodiment.

図から理解されるように本実施例では破線で示すエンジ
ン回転数の落込み現象が防止されている。
As can be understood from the figure, in this embodiment, the phenomenon of the engine rotational speed dropping as indicated by the broken line is prevented.

なお上記では、1つの燃料噴射弁を備えたエンジンに本
発明を適用した例について説明したが、本発明はインテ
ークマニホールドに各気筒毎に燃料噴射弁を備えたエン
ジンや吸入空気前とエンジン回転数とで基本燃料噴射時
間を定めるエンジンにも適用することが可能である。ま
た上記では、フィードバック制御とり一ン制御とを切換
える空燃比制御について説明しだが、本発明は高負荷以
外の運転領域で全域リーン制御する空燃比制御に適用す
ることも可能である。更に、上記ではクランク角によっ
て空燃比を保持する所定期間を定めたが、時間によって
この所定期間を定めるようにしてもよい。
In the above, an example in which the present invention is applied to an engine equipped with one fuel injection valve has been described, but the present invention can also be applied to an engine equipped with a fuel injection valve for each cylinder in the intake manifold, or an engine equipped with a fuel injection valve for each cylinder in the intake manifold. It can also be applied to an engine in which the basic fuel injection time is determined by Although the above description has been made of air-fuel ratio control that switches between feedback control and single-control, the present invention can also be applied to air-fuel ratio control that performs lean control over the entire range in operating ranges other than high loads. Furthermore, although the predetermined period for maintaining the air-fuel ratio is determined by the crank angle in the above example, the predetermined period may be determined by time.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、リーン制御におけ
るレーシングや発進時のエンジン回転数の落込みを防止
できる、という効果が得られる。
As explained above, according to the present invention, it is possible to prevent a drop in the engine rotational speed during racing or starting during lean control.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明が適用される空燃比制御システムを備え
たエンジンの一例を示す説明図、第2図は第1図の制御
回路の詳細を示すブロック図、第3図は吸気絞シ弁が開
いているときのリーン補正係数を示す線図、第4図は本
発明の実施例における制御切換えルーチンを示す流れ図
、第5図は上記実施例のカウント値設定ルーチンを示す
流れ図、第6図は上記実施例の所定クランク角毎の割込
み8・・・燃料噴射弁、 10・・・吸気絞り弁、11
・・・スロットルスイッチ、 54・・・制御回路。 代理人 鵜 沼 辰 之 (ほか1名) 1F?J 第2図 占 第3図 一噴気%Fi−/+ PMfmrhH9abs)第4図 第5図 第6図 第8図 アイトルスイ・7千 OFF
Fig. 1 is an explanatory diagram showing an example of an engine equipped with an air-fuel ratio control system to which the present invention is applied, Fig. 2 is a block diagram showing details of the control circuit shown in Fig. 1, and Fig. 3 is an intake throttle valve. FIG. 4 is a flowchart showing the control switching routine in the embodiment of the present invention; FIG. 5 is a flowchart showing the count value setting routine in the above embodiment; FIG. 6 are interrupts at every predetermined crank angle in the above embodiment 8...Fuel injection valve, 10...Intake throttle valve, 11
...Throttle switch, 54...Control circuit. Agent Tatsuyuki Unuma (and 1 other person) 1F? J Figure 2 Figure 3 One Fumarole %Fi-/+ PMfmrhH9abs) Figure 4 Figure 5 Figure 6 Figure 8 Aitorusui 7,000 OFF

Claims (1)

【特許請求の範囲】[Claims] (1) 吸気絞り弁がアイドル位置のときに空燃比を理
論空燃比より希薄側の第1の空燃比に制御すると共に吸
気絞り弁が開かれたときに空燃比を第1の空燃比より希
薄側の第2の空燃比に制御する内燃機関の空燃比制御方
法において、吸気絞り弁がアイドル位置より開かれた時
点から所定期間の間中燃比を第1の空燃比に制御するこ
とを特徴とする内燃機関の空燃比制御方法。
(1) Controlling the air-fuel ratio to a first air-fuel ratio leaner than the stoichiometric air-fuel ratio when the intake throttle valve is in the idle position, and making the air-fuel ratio leaner than the first air-fuel ratio when the intake throttle valve is opened. The method for controlling the air-fuel ratio of an internal combustion engine to a second air-fuel ratio on the side is characterized by controlling the intermediate air-fuel ratio to the first air-fuel ratio for a predetermined period from the time when the intake throttle valve is opened from the idle position. Air-fuel ratio control method for internal combustion engines.
JP58207226A 1983-11-04 1983-11-04 Air-fuel ratio control method of internal-combustion engine Pending JPS6098136A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58207226A JPS6098136A (en) 1983-11-04 1983-11-04 Air-fuel ratio control method of internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58207226A JPS6098136A (en) 1983-11-04 1983-11-04 Air-fuel ratio control method of internal-combustion engine

Publications (1)

Publication Number Publication Date
JPS6098136A true JPS6098136A (en) 1985-06-01

Family

ID=16536325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58207226A Pending JPS6098136A (en) 1983-11-04 1983-11-04 Air-fuel ratio control method of internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS6098136A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6238846A (en) * 1985-08-14 1987-02-19 Nippon Carbureter Co Ltd Air-fuel ratio control method for engine
JPS6238843A (en) * 1985-08-14 1987-02-19 Nippon Carbureter Co Ltd Air-fuel ratio control method for engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6238846A (en) * 1985-08-14 1987-02-19 Nippon Carbureter Co Ltd Air-fuel ratio control method for engine
JPS6238843A (en) * 1985-08-14 1987-02-19 Nippon Carbureter Co Ltd Air-fuel ratio control method for engine

Similar Documents

Publication Publication Date Title
JPS6134330A (en) Air-fuel ratio controller for internal-combustion engine
JPH0531646B2 (en)
JPS6338537B2 (en)
US4559915A (en) Method of controlling air-fuel ratio and ignition timing in internal combustion engine and apparatus therefor
JPS6098136A (en) Air-fuel ratio control method of internal-combustion engine
JPS593135A (en) Control of idle revolution number of internal- combustion engine
US4658785A (en) Method of controlling air-fuel ratio and ignition timing in internal combustion engine and apparatus therefor
JPS58214632A (en) Electronically controlled fuel injection method for internal-combustion engine
JPS6019934A (en) Method of controlling rotational speed of internal-combustion engine
JPS62186029A (en) Abnormality judging method for lean sensor
JPS61155638A (en) Method for controling idle rotating number
JPS6172848A (en) Control device of fuel increase and ignition timing in internal-combustion engine
JPS623159A (en) Intake secondary air supply device for internal-combustion engine
JPS6060229A (en) Air-fuel ratio learning control method for internal-combustion engine
JPS61190146A (en) Fuel injection controller of internal-combustion engine
JPS61223239A (en) Starting fuel injection controller of internal-combustion engine
JPH0461178B2 (en)
JPS5990740A (en) Starting of air-fuel ratio control of internal-combustion engine
JPS58217734A (en) Digital control method of internal-combustion engine
JPH06146980A (en) Rotation speed controller for internal combustion engine
JPS6045745A (en) Method of controlling learning of air-fuel ratio of electronically-controlled engine
JPH04252832A (en) Fuel injection controller of internal combustion engine
JPS5996452A (en) Partial lean control method for air-fuel ratio of internal-combustion engine
JPS6067738A (en) Air-fuel ratio control method for internal-combustion engine
JPS58217735A (en) Electronic controlled fuel injection method for internal-combustion engine