JPS6096538A - Production of optical fiber preform - Google Patents
Production of optical fiber preformInfo
- Publication number
- JPS6096538A JPS6096538A JP20402883A JP20402883A JPS6096538A JP S6096538 A JPS6096538 A JP S6096538A JP 20402883 A JP20402883 A JP 20402883A JP 20402883 A JP20402883 A JP 20402883A JP S6096538 A JPS6096538 A JP S6096538A
- Authority
- JP
- Japan
- Prior art keywords
- base material
- optical fiber
- glass
- composition
- preform
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/012—Manufacture of preforms for drawing fibres or filaments
- C03B37/014—Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
- C03B37/01486—Means for supporting, rotating or translating the preforms being formed, e.g. lathes
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/012—Manufacture of preforms for drawing fibres or filaments
- C03B37/014—Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
- C03B37/01413—Reactant delivery systems
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Manufacture, Treatment Of Glass Fibers (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、気相軸付法による光フアイバ母材の製造方法
において透明化後の光フアイバ母材の徐冷時や母材の延
伸加工時等の熱処理に生ずる透明光ファイバ母材の破損
を防止することに関する。DETAILED DESCRIPTION OF THE INVENTION The present invention is directed to a method for manufacturing an optical fiber base material using a vapor phase axial method, in which transparency occurs during heat treatment such as during slow cooling of the optical fiber base material after transparentization or during stretching of the base material. This invention relates to preventing damage to an optical fiber base material.
光フアイバ母材の製造方法の−っとして気相軸付法(V
AD)が知られているが、この気相軸付法は酸水素バー
ナ等の酸素及び水素を含む可燃性ガス燃焼用バーナーに
、5iO14r Ge(J4 、 POCj13及びB
Br3等の揮発性ガラス形成原料を供給し、火炎中でこ
れらのガラス形成原料を加水分解反応させることによっ
てガラス形成微粒子(以下に於いては弔に1スート」と
呼ぶ)を生成し、棒状の出発暴利の先端からその軸方向
に前記スートを旬着成長させることによって略円柱状の
多孔質光フアイバ母材を得た後、高温で熱処理すること
により、透明な光フアイバ母材とする方法である。こう
して作成した透明光ファイバ母材は通常ガラス旋盤で目
標の径まで加熱延伸され、光コアイノくのコアに相当す
る部分となる。この透明光ファイバ母相はコアとしての
屈折率を調整するためにGe02yP205.B2O3
等の酸化物が添加された石英系ガラス(以下に於いては
単に「ドープ石英ガラス」と呼ぶ)であり、口れに対し
て前述の出発基材は通常市販の純粋な石英ガラス俸を用
いる結果、石英ガラス俸の先端にドープ石英ガラスが融
着した構造となる。G602+P2O5tB203等の
酸化物を含むドープ石英ガラスは純粋の石英ガラスより
熱膨張係数が大きいため前述の融着した部分で歪による
応力が発生し、その結果非常に破損し易くなる。One of the manufacturing methods for optical fiber base material is the vapor phase axial method (V
AD) is known, but this gas phase shafting method uses 5iO14r Ge (J4, POCj13 and B
Volatile glass-forming raw materials such as Br3 are supplied, and these glass-forming raw materials are subjected to a hydrolysis reaction in a flame to generate glass-forming fine particles (hereinafter referred to as "soot"), and rod-shaped A substantially cylindrical porous optical fiber base material is obtained by growing the soot in the axial direction from the tip of the starting profiteer, and then a transparent optical fiber base material is obtained by heat-treating at a high temperature. be. The transparent optical fiber preform thus produced is usually heated and drawn in a glass lathe to a target diameter, forming a portion corresponding to the core of the optical core. This transparent optical fiber matrix is Ge02yP205. to adjust the refractive index of the core. B2O3
It is a silica-based glass to which oxides such as As a result, a structure is obtained in which doped quartz glass is fused to the tip of the silica glass bale. Doped quartz glass containing oxides such as G602+P2O5tB203 has a larger coefficient of thermal expansion than pure quartz glass, so stress due to distortion occurs in the fused portion, and as a result, it becomes very susceptible to breakage.
透明光ファイバ母材をガラス旋盤で熱延伸する場加
合はその透明光ファイバ母材の終端を直接掴む方法と、
延伸用基材を掴んで透明光ファイバ母材の終端と融着す
る方法が考えられるが、直接掴む方法は掴んでいる部分
が延伸できないので実用的でない。従って別途延伸用基
材としての例えば石英ガラス俸を掴んでその石英棒の先
端と透明光ファイバ母材の終端を融着する方法が適切で
あるが、前述と同様に純粋な石英ガラスとドープ石英ガ
ラスの熱膨張係数差による歪が原因で応力が発生し破損
し易くなる。この歪による応力の発生を防止するための
一つの方法として出発および延伸用の純粋な石英ガラス
棒を透明光ファイバ母材と同じ膨張係数を有するドープ
石英ガラスに変更することが考えられるが、ドープ石英
ガラスは一般的には市販されておらず、特別に作成した
としても高価なものとなり、実用化しにくい面がある。When hot-stretching a transparent optical fiber preform on a glass lathe, there is a method of directly grasping the end of the transparent optical fiber preform;
One possible method is to grip the stretching base material and fuse it to the end of the transparent optical fiber preform, but this method of directly gripping it is not practical because the gripped portion cannot be stretched. Therefore, it is appropriate to separately grasp a quartz glass bale as a base material for stretching and fuse the tip of the quartz rod to the end of the transparent optical fiber base material, but as described above, pure quartz glass and doped quartz Stress is generated due to distortion due to the difference in the thermal expansion coefficient of the glass, making it more likely to break. One way to prevent the stress caused by this strain is to change the pure quartz glass rod for starting and drawing to doped quartz glass having the same expansion coefficient as the transparent optical fiber base material. Quartz glass is generally not commercially available, and even if it is specially made, it is expensive and difficult to put into practical use.
以上の様に従来の技術では出発基材及び延伸用基材とし
て一般に市販されている石英ガラス棒を用いるのが実用
的であるが、目的とする光フアイバ母材はドープ石英ガ
ラスであるため、石英ガラス俸との融着部分で歪による
応力が発生して破損し易いという欠点があった。特に光
ファイバのコアの屈折率を高くした大開口数ファイバを
目的とする場合は、屈折率を高めるためのドーパント酸
化物を大暇に添加しなければならず、その結果透明光フ
ァイバ母材の膨張係数も非常に大きくなり、石英ガラス
棒との融着部分でより破損し易くなる。As described above, in the conventional technology, it is practical to use commercially available quartz glass rods as the starting base material and the drawing base material, but since the target optical fiber base material is doped quartz glass, There is a drawback that stress is generated due to distortion at the fused portion with the silica glass bale, making it easy to break. In particular, when the purpose is to create a large numerical aperture fiber with a high refractive index in the core of the optical fiber, dopant oxides must be added to increase the refractive index, resulting in the formation of a transparent optical fiber base material. The coefficient of expansion also becomes very large, making it more likely to break at the fused portion with the quartz glass rod.
本発明はこのような従来技術における問題に鑑みてなさ
れたもので、その目的とするところは気相軸イ」法によ
る光フアイバ母相の製造方法において、透明光ファイバ
母材が出発基材及び延伸用基材との融着部分で破損する
ことを防止する方法を透明光ファイバ母材の膨張係数を
伸端部に向けて軸線方向に徐々に変化させ、歪による応
力の発生を極力小さくしたものである。すなわち、出発
基材の膨張係数と等しくなるような組成でまずスートを
出発基材先端に付層成長させ、次第に目標とする光ファ
イバ母相の組成に調整する。そして母材の終端に第2の
基材を接合して延伸する場合は1円柱状の光ファイバ母
相を目標長さまで成長させた後、次第に延伸用基材の膨
張係数と等しくなるような組成に調整した後、終了する
方法である。The present invention has been made in view of the problems in the prior art, and its purpose is to provide a method for producing an optical fiber matrix using a vapor phase axis method, in which a transparent optical fiber matrix is used as a starting base material and A method for preventing breakage at the fused part with the stretching base material is to gradually change the expansion coefficient of the transparent optical fiber base material in the axial direction toward the stretched end to minimize stress caused by strain. It is something. That is, soot is first grown as a layer on the tip of the starting substrate with a composition equal to the expansion coefficient of the starting substrate, and then the composition is gradually adjusted to the target optical fiber matrix composition. If a second base material is bonded to the end of the base material and then stretched, after growing a cylindrical optical fiber matrix to the target length, the composition is gradually adjusted so that the coefficient of expansion becomes equal to the expansion coefficient of the base material for stretching. This is the method to exit after adjusting.
本発明の方法によれば、透明光ファイバ母材の出発端及
び終了端で出発基材及び延伸用基材に各々膨張係数が次
第に等しくなるように調整されているため、歪による応
力が緩和され、その結果透明化時あるいは加熱延伸時に
おいて殆んど破損が生じなくなり、光フアイバ母材の製
造効率を向上させることが可能である。According to the method of the present invention, since the expansion coefficients of the starting base material and the drawing base material are adjusted to become gradually equal at the starting end and ending end of the transparent optical fiber preform, stress due to strain is alleviated. As a result, almost no damage occurs during transparentization or heating stretching, making it possible to improve the manufacturing efficiency of the optical fiber base material.
以下本発明を図面に基づいて説明する。第1図は気相軸
付法による多孔質光フアイバ母材を製造する方法の概念
図であり、図外の駆動機構によって回転および出退移動
する円柱状の基材11例えば純粋の石英ガラス俸に向け
てバーナーλが配置されており、このバーナー2には原
料供給装置3から導管lIAを通してS 10 l 4
+ Ge O114+ P OO4113+ B B
r3等の揮発性ガラス形成原料が供給される。また、
上記バーナーλには、他の導管’1ZB4Qを通してそ
れぞれ水素ガスおよび酸素ガスが供給される。これによ
り酸水素ガスの反応で生成される火炎j中で火炎加水分
解反応によりスー)Jが生成され、口のスート乙は基4
,1’ /の先端上にその軸方向に堆積していく。基+
、t /はこの間回転しているとともに、上記堆積スピ
ードに応じた速度で矢符7方向に連続的に後退移動して
おり、堆積したスート6によって基材lの先端上には円
柱状の多孔質母材gが次第に生成される。そして本発明
に従った方法では、上記スート6を出発基4)l’ l
上に堆積していくに当り、堆積の当初はガラス組成が基
材lと同一となるように、つまり上記例ではドーパント
物質を添加せず5i(J4のみをバーナー2に供給して
生成される5102のスート6を基材l上に堆積させ、
その後所定のドーパント物質も例えばGecx4の添加
を開始するとともにその添加量を連続的に増加させてい
き、目標とする光ファイバ紡糸のceo2含有量例えば
75重量%になるようにGe0A4の供給量を設定して
母材の主体部ざBを形成する。このように組成を母材軸
方向に徐々に変化させた熱膨張率の緩衝帯は、最終的に
光ファイバとして使用し得ない部分であり、一方スート
堆積で生成される多孔質母材gの先端近傍には一般に基
材の外径から徐々に拡大する非定常部分ざAが母相の外
径のおよそ60〜70%の長さにわたり生じ、この外径
非定常部分子りは光ファイバとして成形されない部分で
あるのでこの外径非定常部分JAを前述の熱膨張率緩衝
帯9として用いると都合がよい。The present invention will be explained below based on the drawings. FIG. 1 is a conceptual diagram of a method for producing a porous optical fiber base material by the vapor phase axis method, in which a cylindrical base material 11, for example, a pure quartz glass ball, is rotated and moved in and out by a drive mechanism not shown. A burner λ is arranged towards the
+ Ge O114+ P OO4113+ B B
A volatile glass forming raw material such as r3 is supplied. Also,
The burner λ is supplied with hydrogen gas and oxygen gas through another conduit '1ZB4Q, respectively. As a result, Soo) J is produced by a flame hydrolysis reaction in the flame J produced by the reaction of oxyhydrogen gas, and the soot O at the mouth is based on the base 4.
, 1'/ in the axial direction. Base+
, t/ are rotating during this time and are continuously moving backward in the direction of arrow 7 at a speed corresponding to the above-mentioned deposition speed, and the deposited soot 6 forms a cylindrical porous hole on the tip of the base material l. A solid base material g is gradually generated. And in the method according to the invention, the above soot 6 is converted into a starting group 4) l' l
As the glass is deposited on top of the substrate, the initial glass composition is the same as that of the base material L, that is, in the above example, the glass is produced by supplying only 5i (J4) to the burner 2 without adding any dopant material. 5102 soot 6 is deposited on the substrate l;
Thereafter, the addition of a predetermined dopant substance, for example Gecx4, is started and its addition amount is continuously increased, and the supply amount of Ge0A4 is set so that the targeted CEO2 content of the optical fiber spinning is, for example, 75% by weight. Then, the main body portion B of the base material is formed. The buffer zone of the thermal expansion coefficient whose composition is gradually changed in the axial direction of the base material is a part that cannot be used as an optical fiber. Near the tip, an unsteady part A that gradually expands from the outer diameter of the base material generally occurs over a length of approximately 60 to 70% of the outer diameter of the parent phase, and this outer diameter unsteady part is used as an optical fiber. Since it is a portion that is not molded, it is convenient to use this outer diameter unsteady portion JA as the aforementioned thermal expansion coefficient buffer zone 9.
すなわち、前記部分JAのほぼ全長にわたって組成を徐
々に変化させるのが望ましい。That is, it is desirable to gradually change the composition over substantially the entire length of the portion JA.
上記のようにして得られた多孔質母相は次いで高温で焼
結され、スート間の空隙が埋められて透明の母材となる
。この透明ガラス母材は光ファイバのコアを形成するガ
ラス素材として次のクランド層形成およびファイバ紡糸
工程へ送られるか、または次のようにして引き続き加熱
延伸されてファイバ紡糸に都合の良い外径まで細くされ
る。The porous matrix obtained as described above is then sintered at a high temperature to fill the voids between the soots and form a transparent matrix. This transparent glass preform can be sent to the next crund layer formation and fiber spinning process as the glass material that forms the core of the optical fiber, or it can be heated and drawn as follows to reach an outer diameter convenient for fiber spinning. Be made thinner.
すなわち市−図に示すように出発基材(第1基材)l上
にスート堆積で生成される多孔質母材lの終端側から焼
結用バーナー10で漸進的に高温加熱して透明ガラス化
させ、全長にわたる透明ガラス化の終r後、生成された
透明ガラス母材//の終端に、−例として純粋石英から
なる円柱状の延伸用基材(第2基材)/2の先端を接合
し、この第2基材/、2をガラス施錠にチャッキングさ
せ、前記第1基材/と同一速度、同一方向に回転させつ
つ軸線方向に引張って透明ガラス母材IIを所定外径ま
で加熱延伸する。That is, as shown in the figure, a porous base material L produced by soot deposition on a starting base material (first base material) L is gradually heated to a high temperature from the end side with a sintering burner 10 to form transparent glass. After completion of transparent vitrification over the entire length, a tip of a cylindrical drawing base material (second base material) made of, for example, pure quartz is placed at the end of the produced transparent glass base material //. This second base material II is chucked in a glass lock and pulled in the axial direction while rotating at the same speed and in the same direction as the first base material II to give the transparent glass base material II a predetermined outer diameter. Heat and stretch until
上記において、本願の第2発明では、第1図に示すよう
に多孔質母材ざを生成する際に母材ざの終端近くの一定
領域、例えば外径が次第に先細りとなる終端の外径非定
常部分gcで組成を軸線方向に徐々に変化させて最終的
に第2基材12の組成と同一にすることにより、始端と
同様の熱膨張率緩衝帯9を形成する。例えば、5i−G
eガラスであればスート生成バーナーλへのGeCl4
の供給量を徐々に減らしていき、第2基材12が接合さ
れる母材端部では5iCI!4のみを供給して生成され
る5i02 スートを堆積させる。これにより多孔質母
材gの始端および終端外径非定常部分JA 、 rcで
のスート組成は第1図のグラフに示されるように端部に
向けて軸線方向にドーパン) GeO2の含有量が例え
ばtS%から0%まで次第に減少し、先端部においては
基材へ12と同一の8102単一組成のスートから成る
。したがって高温焼結で透明ガラス化させた母材端部に
延伸用の上記第λ基材12を接合した場合、透明ガラス
母材//の熱膨張係数αは第7基材/および第2基材l
λと同一の値α、(石英で5X/ 0’−1)から所定
の光フアイバ組成の熱膨張係数α2(Ge02/j%、
5i02Jj%テ/7X10−7)鴨
まで滑らかに変化しているため、冷却椀に両基材/S/
2と透明ガラス母材iiとの熱膨張係数の差に基づく歪
による応力が緩和され、母材の破損が防止される。In the above, in the second invention of the present application, when generating a porous base material zone, as shown in FIG. By gradually changing the composition in the axial direction in the steady portion gc and finally making it the same as the composition of the second base material 12, a thermal expansion coefficient buffer zone 9 similar to that of the starting end is formed. For example, 5i-G
If it is e-glass, GeCl4 to soot generation burner λ
Gradually reduce the supply amount of 5iCI! at the end of the base material where the second base material 12 is joined. The 5i02 soot produced by supplying only 4 is deposited. As a result, the soot composition at the starting and ending outer diameter unsteady portions JA and rc of the porous base material g is such that the content of GeO2 is, for example, doped in the axial direction toward the ends as shown in the graph of FIG. It gradually decreases from tS% to 0%, and the tip consists of 8102 single composition soot, which is the same as 12 to the base material. Therefore, when the above-mentioned λ base material 12 for stretching is joined to the end portion of the base material that has been transparently vitrified by high-temperature sintering, the thermal expansion coefficient α of the transparent glass base material // is the same as that of the seventh base material / and the second base material. material l
The coefficient of thermal expansion α2 (Ge02/j%,
5i02Jj%te/7X10-7) Since there is a smooth transition to the duck, both base materials/S/
The stress caused by strain due to the difference in thermal expansion coefficient between the transparent glass base material ii and the transparent glass base material ii is alleviated, and damage to the base material is prevented.
図面は本発明の一実施例を示し、第1図は多孔質母材の
生成工程を示す正面図および同母材中におけるドーパン
ト物質の濃度、熱膨張率の分布を示すグラフ、第2図は
多孔質母材を高温焼結して透明ガラス化した後、延伸す
る工程を示す正面図である。
l・・・第1基材 λ・・・スート生成バーナー 3・
・・原料供給装置
IIA・・・原料供給導管 41B・・・水素ガス導管
+C・・・酸未ガス導管 !・・・火炎6・・・スート
ざ・・・多孔質母材
fA 、 10・・・外径非定常部分 タ・・・熱膨張
率緩衝(I¥(組成変化部分) //・・・透明ガラス
母材 12・・・第2基材
第 1 図
第 2 図
手 続 補 正 書
f 事件の表示 (p−:s c(Jn二)、(゛昭和
3g年IO月37日提出の特許願
2 発明の名称
光フアイバ母材の製造方法
3 補正をする者
事件との関係 特許出願人
住 所 大阪府大阪市東区道修町弘丁目g番地名 称
(1100)日本板硝子株式会社代表者 刺 賀 信
雄
仏代理人
自 発
6 補正の対象
明細書および図面
7 補正の内容
(1)明細書第9頁第1行から第1/行に「すなわち第
2図に示すように・・・まで加熱延伸する。」とあるの
を次の文に補正する。
[すなわち多孔質母材を焼結して得られた透明ガラス母
材tiの終端に、−例として純粋石英からなる円柱状の
延伸用基材(第2基材)/Jの先端を接合し、この第λ
基材12をガラス施錠にチャッキングさせ、加熱バーナ
ーlOで透明母材//を加熱軟化させるとともに、上記
第2基材12を前記第1基材lと同一速度、同一方向に
回転させつつ軸線方向に引張って太径の透明母材//を
延伸し所定外径の透明母材llAを成形する。」(2)
明細書第9頁第11行にl”5i−Gelトあるのを[
5io2−Ce02Jと補正する。
(3)図面の第2図中の参照番号を別紙の通り補正する
。The drawings show one embodiment of the present invention, and FIG. 1 is a front view showing the production process of a porous base material, and a graph showing the concentration of the dopant substance and the distribution of the coefficient of thermal expansion in the same base material. It is a front view which shows the process of extending|stretching after a porous base material is sintered at high temperature and made into transparent glass. l...First base material λ...Soot generation burner 3.
...Raw material supply device IIA...Raw material supply conduit 41B...Hydrogen gas conduit +C...Acid-free gas conduit! ...Flame 6...Soot Z...Porous base material fA, 10...Outer diameter unsteady part T...Thermal expansion coefficient buffer (I¥ (composition changing part) //...Transparent Glass base material 12...Second base material No. 1 Figure 2 Procedures Amendment f Case description (p-:sc(Jn2) 2 Name of the invention Method for manufacturing optical fiber base material 3 Relationship to the case of the person making the amendment Patent applicant address Address g, Hiro-chome, Doshomachi, Higashi-ku, Osaka-shi, Osaka Prefecture Name
(1100) Nobu Saiga, Representative of Nippon Sheet Glass Co., Ltd.
Sponsored by Yubutsu's agent 6 Description and drawings subject to amendment 7 Contents of amendment (1) Page 9 of the specification, line 1 to line 1/: ``In other words, as shown in Figure 2... ” should be amended to the following sentence. [In other words, the tip of a cylindrical drawing base material (second base material) /J made of pure quartz is bonded to the end of the transparent glass base material ti obtained by sintering the porous base material. , this λth
The base material 12 is chucked in a glass lock, and the transparent base material // is heated and softened with a heating burner lO, and the second base material 12 is rotated at the same speed and in the same direction as the first base material l while the axis line The large-diameter transparent base material // is stretched by pulling in the direction to form a transparent base material LLA having a predetermined outer diameter. ”(2)
On page 9, line 11 of the specification, there is l”5i-Gel.
Correct as 5io2-Ce02J. (3) The reference numbers in Figure 2 of the drawings are corrected as shown in the attached sheet.
Claims (3)
ことによって得られるガラス微粒子を回転する棒状基材
の先端に何着成長させて円柱状の多孔質母材を作成した
後、この多孔質母材を加熱焼結して透明ガラスとする光
フアイバ母材の製造方法において、前記多孔質母材の出
発端部付近のガラス組成を、前記基材との接合点から軸
線方向に前記基材とほぼ同一の組成から所定の光フアイ
バ組成まで徐々に変化させることを特徴とする光フアイ
バ母材の製造方法。 \1(1) Glass fine particles obtained by reacting volatile glass-forming raw materials in a flame are grown on the tip of a rotating rod-shaped base material to create a cylindrical porous base material. In a method for manufacturing an optical fiber base material in which a base material is heated and sintered to produce transparent glass, the glass composition near the starting end of the porous base material is changed from the joining point to the base material in the axial direction. 1. A method for producing an optical fiber base material, characterized in that the composition is gradually changed from approximately the same composition to a predetermined optical fiber composition. \1
外径非定常部分である特許請求の範囲第1項記載の光フ
アイバ母材の製造方法。(2) The method for manufacturing an optical fiber preform according to claim 1, wherein the region whose composition is changed is a portion of the porous preform whose outer diameter is unsteady.
とによって得られるガラス微粒子を回転する棒状の第1
基材の先端に付着成長させて円柱状の多孔質母材を作成
した後、この多孔質母材を加熱焼結して透明ガラス母材
とし、この透明ガラス母材終端に棒状の第2基材を接合
してこの第2基材を把持して前記透明ガラス母材を軸方
向に延伸するようにした光7アイパ母材の製造方法にお
いて、前記多孔質母材の両端付近のガラス組成を、それ
ぞれ前記第1、第2基材との接合点から軸線方向に、前
記各基材とほぼ同一の組成から所定の光フアイバ組成ま
で徐々に変化させることを特徴とする光フアイバ母材の
製造方法。(3) A rod-shaped first rotating glass particle obtained by reacting a repellent glass-forming raw material in a flame.
After creating a cylindrical porous base material by adhering and growing on the tip of the base material, this porous base material is heated and sintered to become a transparent glass base material, and a rod-shaped second group is attached to the end of the transparent glass base material. In the method for manufacturing a Hikari 7 Aipah base material, the glass composition near both ends of the porous base material is , the production of an optical fiber preform characterized in that the composition is gradually changed in the axial direction from the joining point with the first and second base materials from approximately the same composition as each of the base materials to a predetermined optical fiber composition. Method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20402883A JPS6096538A (en) | 1983-10-31 | 1983-10-31 | Production of optical fiber preform |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20402883A JPS6096538A (en) | 1983-10-31 | 1983-10-31 | Production of optical fiber preform |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6096538A true JPS6096538A (en) | 1985-05-30 |
JPH0333660B2 JPH0333660B2 (en) | 1991-05-17 |
Family
ID=16483560
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20402883A Granted JPS6096538A (en) | 1983-10-31 | 1983-10-31 | Production of optical fiber preform |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6096538A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0612701A1 (en) * | 1993-02-22 | 1994-08-31 | Litespec, Inc. | Vapour axial deposition process for making optical fibre preforms |
JP2016050152A (en) * | 2014-09-01 | 2016-04-11 | 住友電気工業株式会社 | Production method of glass preform for optical fiber |
-
1983
- 1983-10-31 JP JP20402883A patent/JPS6096538A/en active Granted
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0612701A1 (en) * | 1993-02-22 | 1994-08-31 | Litespec, Inc. | Vapour axial deposition process for making optical fibre preforms |
JP2016050152A (en) * | 2014-09-01 | 2016-04-11 | 住友電気工業株式会社 | Production method of glass preform for optical fiber |
Also Published As
Publication number | Publication date |
---|---|
JPH0333660B2 (en) | 1991-05-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6917740B2 (en) | Optical fiber having reduced viscosity mismatch | |
JPH07223832A (en) | Method of producing glass article and fiber optic coupler | |
NO153192B (en) | PROCEDURE FOR AA DESIGN A POROE GLASS FORM AND APPARATUS FOR IMPLEMENTING THE PROCEDURE | |
NO164139B (en) | OPTICAL POLARIZATION CONSERVING FIBERS OF THE SINGLE-WAVE TYPE AND PROCEDURE FOR THE PREPARATION OF AN OPTICAL FIBER BASIS. | |
JPS6096538A (en) | Production of optical fiber preform | |
JPS627130B2 (en) | ||
JP3823341B2 (en) | Optical fiber preform, optical fiber and manufacturing method thereof | |
JP3197069B2 (en) | Optical fiber manufacturing method | |
JPH01148722A (en) | Production of optical fiber preform | |
JP3758596B2 (en) | Glass base material and glass base material processing method | |
US20040118164A1 (en) | Method for heat treating a glass article | |
JP2005089241A (en) | Optical fiber preform, optical fiber, method of manufacturing optical fiber, and method of manufacturing optical fiber preform | |
JP2000264659A (en) | Thermal working of optical fiber preform | |
JPS62292647A (en) | Production of decentralized-shift single-mode optical fiber | |
JP2002274878A (en) | Method for producing glass preform for optical fiber | |
JPS62132740A (en) | Production of parent material for optical fiber | |
JP2004043200A (en) | Method of supporting optical fiber preform | |
TW200536797A (en) | Method for producing porous glass base material and glass base material for optical fiber | |
JPH04119940A (en) | Production of glass body | |
JPH09100132A (en) | Preform for optical fiber | |
JPH0483728A (en) | Method for preparing glass article | |
JP4081713B2 (en) | Manufacturing method of glass base material and drawing method of glass base material | |
JPH01203238A (en) | Production of optical fiber preform | |
JPH0930824A (en) | Polarization maintaining optical fiber and its production | |
JPS6016828A (en) | Manufacture of optical fiber |