Nothing Special   »   [go: up one dir, main page]

JPS6092670A - Kinetic force converter - Google Patents

Kinetic force converter

Info

Publication number
JPS6092670A
JPS6092670A JP20041283A JP20041283A JPS6092670A JP S6092670 A JPS6092670 A JP S6092670A JP 20041283 A JP20041283 A JP 20041283A JP 20041283 A JP20041283 A JP 20041283A JP S6092670 A JPS6092670 A JP S6092670A
Authority
JP
Japan
Prior art keywords
force
strain
distorting
distorted
gauge resistors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20041283A
Other languages
Japanese (ja)
Inventor
Kenichiro Suzuki
健一郎 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP20041283A priority Critical patent/JPS6092670A/en
Publication of JPS6092670A publication Critical patent/JPS6092670A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/84Types of semiconductor device ; Multistep manufacturing processes therefor controllable by variation of applied mechanical force, e.g. of pressure

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Pressure Sensors (AREA)

Abstract

PURPOSE:To produce a highly precise kinetic force converter easily by a method wherein a distorted body is located in the linear direction i.e. only in the free boundray direction of the distorted body in terms of a kinetic force transmitter, a distorting body and the locational relation between the distorting body and gauge resistors. CONSTITUTION:Gauge resistors 1 are buried in the main surface of a rectangular distorting body 30 comprising a semiconductor substrate by impurity diffusing process. Multiple gauge resistors 1 are arranged in parallel with and perpendicular to the short side ends 40 of the rectangular distorted body 30 to be connected to leads 12 by small metallic wires 11. The multiple gauge resistors 1 are provided with the means to constitute the Wheastone bridge circuit. The four sides of the distorting body 1 comprise a pair of long side ends with free boundary and a pair of short side ends 40 rigidly adhering to a square-shaped supporting base 31 making the distorted body 30 vertically flexible. A kinetic force transmitter 7 is provided with a knife-shaped blade at the end while its edge 32 in the direction perpendicular to the free boundary side of the distorting body 30 i.e. in parallel with the short side direction comes into contact with the distorted body 30 at the central line of the free boundary side of said distorted body 30.

Description

【発明の詳細な説明】 本発明は力変換器に関するものであり、特に外から加え
られた力を起歪体に伝える力伝達体起歪体の表面に形成
される感圧素子の位置決めとを容易に行なうことのでき
る力変換器の構成に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a force transducer, and in particular, to a force transducer, and particularly to a force transducer for positioning a pressure-sensitive element formed on the surface of a force transmitting strain body that transmits a force applied from the outside to a strain body. The present invention relates to a structure of a force transducer that can be easily implemented.

近来、圧力変換器の分野では従来の金属ゲージにかわっ
てピエゾ抵抗効果を利用したダイアフラム型シリコン圧
力センサを利用することが広まってきた。該センサは金
属ゲージに比して感度が数十倍と高く、しかも小型にで
きるという利点をもっている。したがって、当該センサ
を利用すると周辺に温度補償用の回路を形成するだけで
、高性能の半導体圧力変換器を提供することが可能とな
った。しかも、シリコン等の半導体プロセス技術を利用
することによって当該センサを安価に多量に製造するこ
とができるようになった。一方、ロボット工学等システ
ムの側からは、圧力以外に直接力を検知する力変換器に
対する要望が近来特に強まっている。最近、先に述べた
半導体圧力変換器を利用して、力変換器を提供しようと
することが考え出された。これは、起歪体となるシリコ
ンダイアフラムに生じた歪をピエゾ抵抗効果を利用して
、ゲージ抵抗で検知するという点では従来の半導体圧力
変換器と同じ構成であるが、起歪体に外部から気体等流
体の圧力を加えるのではなく、直接力を伝える構造をも
つという点で従来の半導体圧力変換器と異なる。以下、
との力変換器の従来例を図と共に説明する。
Recently, in the field of pressure transducers, the use of diaphragm-type silicon pressure sensors that utilize piezoresistive effects has become widespread in place of conventional metal gauges. This sensor has the advantage of having several tens of times higher sensitivity than a metal gauge, and can be made smaller. Therefore, by using this sensor, it has become possible to provide a high-performance semiconductor pressure transducer simply by forming a temperature compensation circuit around it. Moreover, by utilizing semiconductor processing technology for silicon and the like, it has become possible to manufacture the sensors in large quantities at low cost. On the other hand, from the side of systems such as robotics, there has recently been a particularly strong demand for force transducers that directly detect force in addition to pressure. Recently, it has been devised to utilize the semiconductor pressure transducers mentioned above to provide force transducers. This has the same configuration as a conventional semiconductor pressure transducer in that it uses a piezoresistance effect to detect strain generated in a silicon diaphragm, which is a strain-generating body, with a gauge resistance. It differs from conventional semiconductor pressure transducers in that it has a structure that directly transmits force rather than applying the pressure of gas or other fluid. below,
A conventional example of a force transducer will be explained with reference to the drawings.

第1図に従来の力変換器の構成を示す。シリコン等半導
体の基板に不純物を拡散してゲージ抵抗1を形成し、表
面に保護膜をつける。かかる後に、KOH、ヒドラジン
等のエツチング液に浸し、ゲージ抵抗1の形成された表
面と反対の面を異方性エッチしてダイアフラム2を形成
し、圧力センサ3をつくる。該圧力センサ3の台座部2
1を前記基板材質の熱膨張係数に近い熱膨張係数を有す
るガラス6(シリコンに対してはコーニング社製774
0パイレツクスガ2スが望ましい)K静電ポンディング
15によって接着する0さらに、このガラス6はステム
4に金・スズ等の共晶合金14によって接着され、パッ
ケージ5によって封止されているロ圧力センサ3上に形
成されたゲージ抵抗1は金属細線11によりてリード1
2に接続され、これによって電気信号を外部に取シ出す
ことができる。ステム4には開口部13が設けられ、ダ
イアフラム2の上下の気室の圧力を同じ大きさにする。
FIG. 1 shows the configuration of a conventional force transducer. A gauge resistor 1 is formed by diffusing impurities into a semiconductor substrate such as silicon, and a protective film is applied to the surface. After this, it is immersed in an etching solution such as KOH or hydrazine, and the surface opposite to the surface on which the gauge resistor 1 is formed is anisotropically etched to form a diaphragm 2 and a pressure sensor 3. Pedestal portion 2 of the pressure sensor 3
1 and glass 6 having a thermal expansion coefficient close to that of the substrate material (for silicon, 774 manufactured by Corning Co., Ltd.
Furthermore, this glass 6 is bonded to the stem 4 with a eutectic alloy 14 such as gold and tin, and is sealed with a package 5. A gauge resistor 1 formed on 3 is connected to a lead 1 by a thin metal wire 11.
2, thereby allowing electrical signals to be taken out to the outside. The stem 4 is provided with an opening 13 to make the pressures of the upper and lower air chambers of the diaphragm 2 the same.

普通、開口部13け大気に開放されている。ダイアフラ
ム20表面には先が鋭く削られた力伝達体7が接してお
シ、パッケージ5を買ぬいて外部に導かれている。力伝
達体7はステンレス等の硬い金属、テフロン等の絶縁体
等からつくられ、突起9を備えている。一方、パッケー
ジ5は支え8を有し、ダイアフラム2上に該力伝達体7
を大略垂直に立てると共に、ダイアフラム2が破壊する
以前に前記突起9と衝突して、ダイアフラム2に働く力
を制限させる機能を有している。支え8の内部はテフロ
ン、ゴム、金属等の材質でつくられ、力伝達体7が滑ら
かに動くように構成されている。力伝達体7の端には外
部の力が加わる加圧部10が形成されている。また、加
圧部10の形状は丸、角、楕円等である。
Typically, 13 openings are open to the atmosphere. A force transmitting body 7 having a sharply cut tip is in contact with the surface of the diaphragm 20, and is led to the outside through the package 5. The force transmitting body 7 is made of a hard metal such as stainless steel, an insulator such as Teflon, and is provided with a protrusion 9. On the other hand, the package 5 has a support 8 and the force transmitting body 7 is placed on the diaphragm 2.
The diaphragm 2 has a function of standing approximately vertically and colliding with the protrusion 9 before the diaphragm 2 breaks, thereby limiting the force acting on the diaphragm 2. The inside of the support 8 is made of materials such as Teflon, rubber, metal, etc., and is configured to allow the force transmitting body 7 to move smoothly. A pressurizing section 10 to which an external force is applied is formed at the end of the force transmitting body 7. Moreover, the shape of the pressurizing part 10 is round, square, oval, or the like.

第2図は前記圧力センサ3の平面図である。該圧力セン
サ3には(100)面のシリコンを異方性エッチするこ
とによって、図中の破線内部にダイアフラム2が形成さ
れる。破線の外部は圧力センサ3の台座部21でガラス
6に静電ボンディングされ、さらK、ステムに装着され
る。ダイアフラム2の周辺部には(+’to:>方向に
ゲージ抵抗lが不純物拡散によってつくられる。当該ゲ
ージ抵抗はダイアフラム2の辺に平行及び垂直に各2組
ずつ配置され、アルミ配線(図示せず)によってホイー
ストン・ブリッジ回路を構成する。前記力伝達体7の鋭
く削られた先端はダイアフラム2−の中央20に接触し
て、前記加圧部からのカを当該ダイアフラム2に伝える
。そして、ダイアフラム全体に生じた歪によって、ダイ
ア72ムの辺に対して異なる方向の2組のゲージ抵抗は
正負反対の抵抗変化率を示すコこの結果、大きなブリッ
ジ出方電圧が検知され、該ブリッジ出力電圧は前記加圧
部10に加えられたカに比例しているので、ブリッヂ出
力電圧を読むことによって核力の大きさを知ることがで
きるつ しかしながら、このような構造においては力伝達体とダ
イアフラムの接触する位置、及びダイアフラムとゲージ
抵抗の位置関係を精度良く決める仁とが重要であり、こ
の王者の位置関係のずれが力変換器の精度に大きく影響
した。特に、上記従来例の構造をもつ力変換器において
はゲージ抵抗の位置をダイア72ムの二次元平面上で正
確に制御すると共に、力伝達体のダイアフラムに接触す
る先端をダイアフラムの二次元平面上に正しく位置する
ように設計、組立を行なわなければならないという困難
があった。
FIG. 2 is a plan view of the pressure sensor 3. In the pressure sensor 3, a diaphragm 2 is formed inside the broken line in the figure by anisotropically etching silicon on the (100) plane. The portion outside the broken line is electrostatically bonded to the glass 6 at the pedestal portion 21 of the pressure sensor 3, and is further attached to the stem. Gauge resistors l are created in the (+'to:> direction) by impurity diffusion around the diaphragm 2. Two sets of the gauge resistors are arranged parallel to and perpendicular to the sides of the diaphragm 2, and aluminum wiring (not shown) is used. A Wheatstone bridge circuit is constructed by the above.The sharply cut tip of the force transmitting body 7 contacts the center 20 of the diaphragm 2- to transmit the force from the pressurizing section to the diaphragm 2. Due to the strain generated in the entire diaphragm, the two sets of gauge resistors in different directions with respect to the sides of the diaphragm exhibit opposite positive and negative resistance change rates.As a result, a large bridge output voltage is detected, and the bridge output Since the voltage is proportional to the force applied to the pressurizing part 10, the magnitude of the nuclear force can be known by reading the bridge output voltage. However, in such a structure, the force transmitting body and the diaphragm It is important to accurately determine the contact position of the diaphragm and the gauge resistor, and any deviation in the positional relationship between the diaphragm and the gauge resistor greatly affects the accuracy of the force transducer.In particular, the structure of the conventional example described above is The force transducer is designed to accurately control the position of the gauge resistor on the two-dimensional plane of the diaphragm, and to position the tip of the force transmitting body that contacts the diaphragm correctly on the two-dimensional plane of the diaphragm. There was a difficulty in having to assemble it.

本発明の目的は、このような従来の欠点を除去せしめて
、ゲージ抵抗と起歪体及び力伝達体と起歪体の位置決め
を1次元的に考慮するだゆで精度よく動作する、新しい
原理に基づく力変換器を提供することにある〕 本発明によれば、二辺が固定され、他の二辺が自由な境
界を有する矩形の起歪体と、該起歪体の一方あるいは両
側の主面に設けられ該起歪体の歪に応答する抵抗素子と
、該抵抗素子の抵抗値変化を検出する手段と、一方の先
端が当該起歪体に接触し他の先端に加圧部を有する力伝
達体とを備え、該加圧部への印加力を前記検出手段によ
り検出することを特徴とする力変換器が得られる。
The purpose of the present invention is to eliminate such conventional drawbacks and to develop a new principle that can operate with high precision by considering the positioning of the gauge resistance, the strain body, the force transmitting body, and the strain body in one dimension. According to the present invention, a rectangular strain-generating body having two fixed sides and a free boundary on the other two sides, and a main force transducer on one or both sides of the strain-generating body are provided. A resistive element provided on a surface and responsive to strain in the strain-generating body, a means for detecting a change in resistance value of the resistive element, and one tip of which is in contact with the strain-generating body and the other tip of which has a pressurizing portion. A force transducer is obtained, characterized in that the force transmitting body is provided, and the force applied to the pressure section is detected by the detection means.

以下本発明について実施例を示す図面を参照して説明す
る。
The present invention will be described below with reference to drawings showing embodiments.

第3図(a) 、 (bl 、 (clは本発明の一実
施例を示す図で、同図(atは力変換器の断面を概念的
に示した図である。同図(blは同図(a)の平面の概
念図で、同図(C1は同図(blの図中のAA嘲につい
て切斯した断面の概念図である。図において、第1図と
同一番号は同一構成要素を示している。第3図(alに
おいて、30はシリコン等の半導体基板から成る薄い矩
形の起歪体であり、30の一方あるいは両方の主面には
熱拡散、イオン打込み等周知の技術による不純物拡散に
よってゲージ抵抗1が埋設されている。
Figure 3 (a), (bl, (cl is a diagram showing one embodiment of the present invention, the same figure (at is a diagram conceptually showing the cross section of the force transducer, the same figure (bl is the same figure) This is a conceptual diagram of the plan view of Figure (a), and C1 is a conceptual diagram of a cross section taken about AA in the figure (bl). In the figure, the same numbers as in Figure 1 refer to the same components. In Fig. 3 (al), 30 is a thin rectangular strain-generating body made of a semiconductor substrate such as silicon, and one or both main surfaces of 30 are treated by well-known techniques such as thermal diffusion and ion implantation. A gauge resistor 1 is buried by impurity diffusion.

当該ゲージ抵抗は該矩形の短辺端40に対して平行及び
垂直に複数個配置されており(同図(b))、金属細線
11によシ、リード12に接続されている。当該リード
を介して、複数のゲージ抵抗1はホイーストンブリッジ
回路を構成する手段を有する。該起歪体の四辺は、自由
な境界をもつ一組の長辺端と周知の技術によシ支持台3
1に強固に接着された一組の短辺端40よシなる(同図
(b))。
A plurality of the gauge resistors are arranged parallel to and perpendicular to the short side end 40 of the rectangle (FIG. 2(b)), and are connected to the lead 12 through the thin metal wire 11. Via the leads, the plurality of gauge resistors 1 have means for forming a Wheatstone bridge circuit. The four sides of the strain-generating body are connected to a set of long side ends with free boundaries and a support base 3 according to well-known technology.
1 (FIG. 1(b)).

該31は内部に開口を有する10”字形の形状をもち、
該起歪体30が上下に撓むことが可能な構造を有してい
る(同図(C))、該31の材質については限定されな
いが、30と同程度の熱膨張係数を有するパイレックス
ガラス等が好ましい。かかる場合においては、30.3
1間の接着は静電ポンディング技術が利用できる。勿論
、他の材質を用いても良く、接着方法についてもガラス
接着、共晶合金、有機接着剤等を用いても良い。30,
31の構造体はステム4に共晶合金、接着剤等を用いて
固定され、さらに、ステム4にはパッケージ5が封止さ
れている0なお、4.31を同一材料により一体構成し
ても良く、かかる場合には、構成がよシ単純化される利
点をもつ。該起歪体をシリコンで形成する場合には、(
100)面のシリコン単結晶を用いることができ、該矩
形の辺方向を(110)方向、ゲージ抵抗を(110)
方向に設定することができる0かかる面方向、軸方向を
選択する場合には、ゲージ抵抗のピエゾ抵抗効果に基ず
く抵抗変化率を最大にすることが知られている0力伝達
体7は端部にナイフェツジの形状を有する刃33を有し
ている0該33の端部の接触面32は、該起歪体の自由
な境界の辺に直交する方向、すなわち、短辺方向と平行
で、かつ、起歪体30の自由な境界辺の中心線上で該起
歪体と接する〇当該丙33の材質は、金属、絶縁物等で
あυ、特に限定されること社ないOまた、33は7と同
一材質で一体成型されていても良い。
31 has a 10" shape with an opening inside,
The strain body 30 has a structure that allows it to bend up and down (FIG. 3(C)), and the material of the strain body 31 is not limited, but may be Pyrex glass having a coefficient of thermal expansion similar to that of the strain body 30. etc. are preferred. In such cases, 30.3
Electrostatic bonding technology can be used for adhesion between the two. Of course, other materials may be used, and as for the bonding method, glass bonding, eutectic alloy, organic adhesive, etc. may be used. 30,
The structure of 31 is fixed to the stem 4 using a eutectic alloy, an adhesive, etc., and the package 5 is sealed in the stem 4. Note that even if 4.31 is integrally constructed of the same material, In such a case, there is an advantage that the configuration is greatly simplified. When the strain body is made of silicon, (
A silicon single crystal with a 100) plane can be used, and the side direction of the rectangle is in the (110) direction, and the gauge resistance is in the (110) direction.
When selecting the plane direction or axial direction, the force transmitting body 7 is set at the end, which is known to maximize the rate of change in resistance based on the piezoresistance effect of the gauge resistance. A contact surface 32 at the end of the knife 33 has a blade 33 in the shape of a knife in a direction perpendicular to the side of the free boundary of the strain-generating body, that is, parallel to the short side direction, The material of 33, which is in contact with the flexure body 30 on the center line of the free boundary side of the flexure body 30, is a metal, an insulator, etc., and is not particularly limited. It may be integrally molded with the same material as 7.

第4図は前記第3図(alの7と8との接触部の平面を
概念的に示した図である。図において、第3図と同、一
番号は同−構成要素を示している。パッケージ5に構成
された支え8は、力伝達体7に構成された突起9(第3
図(a))と衝突することにより、該起歪体に印加され
る核力を停止して該起歪体の撓みの大きさを制限する働
きがある。また、支え8は前記刃33が回転しないよう
に、8の開口穴ととれを貫く7の平面の形状が円ではな
く、核力の方向とある関係(例えば、平行等)をなす長
辺をもつ矩形等の構造を有している。勿論、当該形状は
33の回転を阻止するものであるから、種々の変形があ
シ得る。
FIG. 4 is a diagram conceptually showing the plane of the contact portion between 7 and 8 in FIG. 3 (al). In the figure, the same numbers as in FIG. The support 8 formed on the package 5 is connected to the protrusion 9 (third
By colliding with Figure (a)), there is a function of stopping the nuclear force applied to the strain body and limiting the magnitude of the deflection of the strain body. In addition, in order to prevent the blade 33 from rotating, the support 8 has a long side that is not circular but has a long side that is in a certain relationship (for example, parallel) with the direction of the nuclear force. It has a structure such as a rectangle. Of course, since this shape prevents rotation of 33, various modifications are possible.

以上、本発明による一実施例の力変換器について説明を
したが、次に第5図(at 、 fbl 、(clを用
いて上記実施例の曲げモーメント、剪断力の分布、およ
び、本発明の効果について述べる0第5図(alは上記
実施例の力変換器の主要構成要素を示した図であり、第
3図と同一番号は同一構成要素を示している。加圧部l
Oに印加された力は該7,32を介して、単位線長当り
Wの力で該30の長辺の中心位置に力を加えている。長
辺の自由な境界の長さはlであシ、起歪体と支持台とが
掖する場所にはそれぞれR+ 、 kの反力が働いてい
る。この時、曲げモーメントの長辺方向の分布を示すの
が同図(、blである口また、剪断力の分布を同図(C
1に示すO起歪体の長辺と短辺の比が充分大きい時には
、該曲はモーメントと該剪断力の大きさは、長辺方向と
直交する方向に対して#1とんど変化せず、一定である
。また曲はモーメント、反力には次の関係がある。
The force transducer according to one embodiment of the present invention has been described above. Next, the bending moment and shear force distribution of the above embodiment and the distribution of the shear force of the present invention are shown using FIG. 5 (at, fbl, (cl). Describing Effects 0 Fig. 5 (Al is a diagram showing the main components of the force transducer of the above embodiment, and the same numbers as in Fig. 3 indicate the same components. Pressurizing part l
The force applied to O is applied to the center position of the long side of 30 via 7 and 32 with a force of W per unit line length. The length of the free boundary of the long side is l, and reaction forces of R+ and k are acting on the places where the strain-generating body and the support stand touch each other, respectively. At this time, the distribution of the bending moment in the long side direction is shown in the same figure (, bl), and the distribution of shear force is shown in the same figure (C
When the ratio of the long side to the short side of the O flexure body shown in 1 is sufficiently large, the moment of the bend and the magnitude of the shear force change by #1 in the direction perpendicular to the long side direction. It is constant. In addition, the following relationship exists between the moment of the song and the reaction force.

Ml== M3 =百W/ M、=−−W/ R,=几2 =2 一方、起歪体の厚さをhとする時、該30の表面に発生
する応力グと曲げモーメントには、2 グ=百M の関係がある。以上のことより、起歪体30の表面に形
成されたゲージ抵抗に働く応力は、起歪体の長辺の方向
に対して直線的に変化するが、一方、長辺に直交する方
向に対してはほとんど変化しないことがわかる。したが
って、起歪体3oの表面に形成されるゲージ抵抗lを起
歪体の長辺方向の位置のみに注視して目合せするだけで
精度の良い力変換器を得ることができる。また、力伝達
体7においても起歪体の長辺方向にのみ該接触面を位置
合わせするだけで充分である。なお先の従来例において
はゲージ抵抗1は支持台31に近く形成されたが、起歪
体の表面を保護膜等で保護することによって、起歪体中
央近傍にゲージ抵抗を配置することも可能である。また
、本発明の構成をもつ力変換器は従来例と異なシ、起歪
体30の上下の気室は境界の自由な辺の横の面を通して
互いに通じているので、常に同じ圧力である。したがっ
てステムに前記開口部13を開ける必要がなく、構成が
単純化されるという利点がある。
Ml == M3 = 100 W/ M, =--W/ R, = 几2 = 2 On the other hand, when the thickness of the strain-generating body is h, the stress and bending moment generated on the surface of the 30 are as follows. , 2g = 100M. From the above, the stress acting on the gauge resistance formed on the surface of the flexure element 30 changes linearly in the direction of the long side of the flexure element 30, but on the other hand, in the direction perpendicular to the long side. It can be seen that there is almost no change. Therefore, a highly accurate force transducer can be obtained by simply aligning the gauge resistance l formed on the surface of the strain body 3o by observing only the position in the long side direction of the strain body. Further, in the force transmitting body 7, it is sufficient to align the contact surfaces only in the long side direction of the strain generating body. In the conventional example described above, the gauge resistor 1 was formed near the support base 31, but by protecting the surface of the strain body with a protective film, etc., it is also possible to arrange the gauge resistor near the center of the strain body. It is. Further, the force transducer having the structure of the present invention differs from the conventional example in that the upper and lower air chambers of the strain body 30 communicate with each other through the lateral surface of the free side of the boundary, so that the pressure is always the same. Therefore, there is no need to open the opening 13 in the stem, and there is an advantage that the configuration is simplified.

第6図(al a (blに前記接触面の他の形状例を
示す。
FIG. 6 (al a (bl) shows another example of the shape of the contact surface.

同図(81は平面の、同図(b)は同図(alのA A
’の断面の概念を示す図である。同図に才、−いて、第
4図と同一番号は同一構成要素を示している。本実施例
においては、接触面32の長さを大きくとることにより
、起歪体30の変位がある変位以上に達すると32と3
1が衝突して、3oの変位全制限する機能を有するとい
う特徴がある0かかる場合には、同図(blに示すよう
に前記9と8の一部が不要となり、構造が簡素化される
という利点がある。
The same figure (81 is a plane, the same figure (b) is the same figure (al A A
' is a diagram showing the concept of a cross section. In the figure, the same numbers as in FIG. 4 indicate the same components. In this embodiment, by increasing the length of the contact surface 32, when the displacement of the strain body 30 reaches a certain displacement or more, 32 and 3
In such a case, as shown in the same figure (bl), part of the above-mentioned 9 and 8 is unnecessary, and the structure is simplified. There is an advantage.

第7図(at v (blも前記接触面の他の形状を示
す図であシ、同図(a)は平面の、同図(b)は同図(
!I)のAAIの断面の概念を示す図である口図中の第
4図と同一番号は同一構成要素を示している0本実施例
では、接触面の魚形状であることに特徴がある。かかる
場合においても、前述した如く、起歪体30の短辺方向
のモーメント、応力分布の変化は小さいために、前述し
た本発明における位置合わせの利点を実現することが可
能である。かかる構成の場合には、前記回転止めの機能
を有する構造が不要となシ、工作が容易となる利点を持
つ。
FIG. 7 (at v (bl) is also a diagram showing other shapes of the contact surface; FIG.
! The same reference numerals as in FIG. 4, which is a diagram illustrating the concept of the cross section of AAI in I), indicate the same components. This embodiment is characterized by the fish-shaped contact surface. Even in such a case, as described above, since the changes in the moment and stress distribution in the short side direction of the strain-generating body 30 are small, it is possible to realize the advantages of positioning in the present invention described above. In the case of such a structure, there is an advantage that the structure having the function of preventing rotation is unnecessary and the work is easy.

第8図は本発明の他の一実施例を示す図である。FIG. 8 is a diagram showing another embodiment of the present invention.

図において、第3図と同一番号は同一構成要素を示して
いる。本実施例では前記第1の実施例(第3図)と類似
の構成を持つが、第3図において起歪体30と両辺を固
定する支持台31とを複合的に構成したのに対し、第8
図では、シリコン等半導体の異方性エツチングを利用し
て、厚肉の固定部60と薄肉の起歪体部61とを同一材
料にて形成した仁とに特徴がある。該起歪体の固定部6
0はガラス6等を介してステム4に固定されている。
In the figure, the same numbers as in FIG. 3 indicate the same components. This embodiment has a configuration similar to that of the first embodiment (FIG. 3), but in contrast to FIG. 8th
In the figure, the thick fixing part 60 and the thin strain body part 61 are formed of the same material using anisotropic etching of a semiconductor such as silicon. Fixing part 6 of the strain body
0 is fixed to the stem 4 via a glass 6 or the like.

本実施例における動作は前述した動作と同様であるので
以下の説明を省略する。
Since the operation in this embodiment is similar to the operation described above, the following explanation will be omitted.

第9図は本発明の他の一実施例を示す図であり、第3図
と同一番号は同一構成要素を示している0本実施例では
、シリコン等より々るベース91とシリコ、ン等よりな
る基板92の間に設けられた空洞93と、該空洞の内部
の両面に蒸着された金等よ構成る金属90によりコンデ
ンサを構成していることに特徴がある0該コンデンサの
電極を構成する90は金属細線11を介してリード12
に接続される手段と核コンデンサの静電容tを検出する
手段(図示せず)とを有する。力伝達体7に加えられた
力は32を介して起歪体3oに伝わり、30の上下方向
の変位を誘起するafi該変位は、前記コンデンサの静
電容量値を変化させるので、該容量値の変化を検出する
ことにょシ該カを検知する静電要素型力変換器を構成す
ることができる。
FIG. 9 is a diagram showing another embodiment of the present invention, in which the same numbers as those in FIG. 3 indicate the same components. In this embodiment, a base 91 made of silicon, etc. A capacitor is formed by a cavity 93 provided between a substrate 92 made of a metal material and a metal 90 made of gold or the like deposited on both sides of the inside of the cavity. The lead 90 is connected to the lead 12 via the thin metal wire 11.
and means (not shown) for detecting the capacitance t of the nuclear capacitor. The force applied to the force transmitting body 7 is transmitted to the strain body 3o via 32, which induces vertical displacement of 30. This displacement changes the capacitance value of the capacitor, so that the capacitance value An electrostatic force transducer may be configured to detect the force by detecting a change in the force.

以上、本発明について例を挙げ詳細な説明を行った。な
お、前記起歪体を金属で構成し、該金属の表面の一方、
あるいは両側にストレンゲージを貼りつけたり、金属あ
るいは半導体からなるストレンゲージを蒸着したシする
こと等によって、該起歪体に印加された核力を検出する
構成、シリコン等半導体よシなる前記起歪体の表面をシ
リコン等の酸化膜、窒化膜等で保護した構成、及び、該
表面上に周辺回路を形成した構成も本発明に含まれる。
The present invention has been described above in detail using examples. Note that the strain body is made of metal, and one of the surfaces of the metal,
Alternatively, the nuclear force applied to the strain body is detected by pasting strain gauges on both sides or depositing strain gauges made of metal or semiconductor, etc., and the strain body is made of a semiconductor such as silicon. The present invention also includes a structure in which the surface is protected with an oxide film such as silicon, a nitride film, etc., and a structure in which a peripheral circuit is formed on the surface.

なお、上記実施例における力・電圧の変換効率は該起歪
体の自由な境界をもつ辺の長さが大きい程、膜厚が薄い
程大きくなり、わずかな力の検出が可能となる0まだ、
検出する力が大きい場合には、該力伝達体の上下運動に
ばね等の弾性作用を持たせ、外部からの印加力の一部が
このばね等に吸収され、残る当該印加力のみが該起歪体
に印加されるようにすれば良い。また、起歪体の自由な
境界をもつ辺の長さと固定辺の長さの比を小さくしたシ
、力伝達体のナイフェツジの先端を鈍くする等によって
も感度を小さくすることが可能である0前記膜厚、自由
辺と固定辺の長さの比、ばね、ナイフェツジの先端形状
等は被測定力により、さまざまに組み合せて選択すれば
良いことになる。
In addition, the force/voltage conversion efficiency in the above embodiment increases as the length of the side with free boundaries of the strain-generating body increases and as the film thickness decreases, and it becomes possible to detect a slight force. ,
When the force to be detected is large, the vertical movement of the force transmitting body is provided with an elastic action such as a spring, so that a part of the applied force from the outside is absorbed by the spring, and only the remaining applied force is used to generate the force. It is sufficient if the voltage is applied to the strained body. It is also possible to reduce the sensitivity by reducing the ratio of the length of the side with a free boundary to the length of the fixed side of the strain-generating body, or by making the tip of the knife of the force transmitting body blunt. The film thickness, the ratio of the length of the free side to the fixed side, the shape of the spring, the tip of the knife, etc. may be selected in various combinations depending on the force to be measured.

さらに、前記接触面は、ゲージ抵抗の配置、検出手段等
、設計上の考慮をするならば、該起歪体の自由な境界辺
方向の中心組上で必らずしも起歪体と接する必要はない
Further, if design considerations are taken into consideration, such as the arrangement of the gauge resistor and the detection means, the contact surface does not necessarily come into contact with the strain-generating body on the center set in the direction of the free boundary side of the strain-generating body. There's no need.

以上1、本発明によれば、力伝達体と起歪体及び起歪体
とゲージ抵抗の位置関係に対して、−次元方向、すなわ
ち起歪体の自由な境界方向のみに位置合せすることによ
って精度の良い力変換器が容易に実現できる0本発明に
よる、省力化および製造コストの低減という利点を始め
として、耐久性のある精度の高い品質をもつ念力変換器
を得ることのできる効果は大きいものである。
1. According to the present invention, by aligning only the -dimensional direction, that is, the free boundary direction of the strain body, with respect to the positional relationship between the force transmitting body and the strain body, and the strain body and the gauge resistance. A highly accurate force transducer can be easily realized.The present invention has great effects in that it can provide a durable, highly accurate, and high-quality psychokinetic transducer, including the advantages of labor saving and manufacturing cost reduction. It is something.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の力変換器の断面図、第2図は圧力センサ
の平面図、第3図(atは本発明の一実施例の断面図、
同図(b)は同図(!I)の平面の、同図(c)は同図
(blのAにの断面の概念図、第4図は第3図(a3の
7と8の接触する部分の平面の概念図、第5図(a)。 )(゛)・1°)悄酢岨酩”非[ttlff%−) 7
 )・剪断力の分布図、第6図(at 、 (bl、第
7図(at e (b)は本発明の一実施例の変形の平
面と断面の概念図、及び第8図、第9図は本発明の他の
実施例の断面図である。 1・・・ゲージ抵抗、2・・・ダイア72ム、3・・・
圧力センサ、4・・・ステム、5・・・パッケージ、6
・・・ガラ、ス、7・・・力伝達体、8・・支え、9・
・・突起、1o・・・加圧部、11・・・金属細線、1
2・・−リード、13・・・開口部、14・・・金・ス
ズ等共晶合金、15・・・静電ボンディング、20・・
・接触端、21・・・台座部、3゜・・・起歪体、31
・・・支持台、32・・・接触面、33・・・刃、40
・・・短辺端、6o・・・固定部、61・・・起歪体部
、90・・・金属、91・・・ベース、92・・・基板
、93・・・空洞。 第1図 第2図 ! 0 圧力℃ン’73 第3図 (り 輩 3I刀 (b) 第4図 第5図 第6図 ((1) 第7図 (a)− 第8図 n
Fig. 1 is a sectional view of a conventional force transducer, Fig. 2 is a plan view of a pressure sensor, and Fig. 3 (at is a sectional view of an embodiment of the present invention;
The same figure (b) is the plane of the same figure (!I), the same figure (c) is the conceptual diagram of the cross section at A in the same figure (bl), and Fig. 4 is the same figure (! Conceptual diagram of the plane of the part shown in Fig. 5 (a).
)・Distribution diagram of shearing force, FIG. The figure is a sectional view of another embodiment of the present invention. 1... Gauge resistance, 2... Diameter 72m, 3...
Pressure sensor, 4... Stem, 5... Package, 6
... Gala, Su, 7... Force transmission body, 8... Support, 9.
...Protrusion, 1o...Pressure part, 11...Thin metal wire, 1
2...-Lead, 13... Opening, 14... Eutectic alloy such as gold and tin, 15... Electrostatic bonding, 20...
・Contact end, 21... Pedestal part, 3°... Strain body, 31
...Support stand, 32...Contact surface, 33...Blade, 40
...Short side end, 6o...Fixing part, 61...Strain body part, 90...Metal, 91...Base, 92...Substrate, 93...Cavity. Figure 1 Figure 2! 0 Pressure ℃'73 Figure 3 (Rihai 3I sword (b) Figure 4 Figure 5 Figure 6 ((1) Figure 7 (a) - Figure 8 n

Claims (2)

【特許請求の範囲】[Claims] (1)二辺が固定され、他の二辺が自由な境界を有する
矩形の起歪体と、該起歪体の一方あるいは両側の主面に
設けられ該起歪体の歪に応答する抵抗素子と、該抵抗素
子の抵抗値変化を検出する手段と、一方の先端が当該起
歪体に接触し他の先端に加圧部を有する力伝達体とを備
え、該加圧部への印加力を前記検出手段によシ検出する
ことを特徴とする力変換器。
(1) A rectangular flexure element with two fixed sides and a free boundary on the other two sides, and a resistor that is provided on one or both main surfaces of the flexure element and responds to strain of the flexure element. an element, a means for detecting a change in the resistance value of the resistance element, and a force transmitting body having one tip in contact with the strain-generating body and the other tip having a pressurizing part, and applying the force to the pressurizing part. A force transducer characterized in that force is detected by the detection means.
(2) 前記起歪体の前記固定された二辺め該起歪体厚
さが、前記力伝達体の接触する領域の該起歪体の厚さよ
りも大きく、かつ、該起歪体が同一材料にて一体構成さ
れている特許請求の範囲第1項記載の力変換器。
(2) The thickness of the flexure element on the fixed two sides of the flexure element is larger than the thickness of the flexure element in the region in contact with the force transmitting body, and the flexure element is the same. The force transducer according to claim 1, which is integrally constructed of a material.
JP20041283A 1983-10-26 1983-10-26 Kinetic force converter Pending JPS6092670A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20041283A JPS6092670A (en) 1983-10-26 1983-10-26 Kinetic force converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20041283A JPS6092670A (en) 1983-10-26 1983-10-26 Kinetic force converter

Publications (1)

Publication Number Publication Date
JPS6092670A true JPS6092670A (en) 1985-05-24

Family

ID=16423884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20041283A Pending JPS6092670A (en) 1983-10-26 1983-10-26 Kinetic force converter

Country Status (1)

Country Link
JP (1) JPS6092670A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017032571A (en) * 2016-09-07 2017-02-09 株式会社ワコム Pressure sensing semiconductor device
US9702778B2 (en) 2012-02-06 2017-07-11 Wacom Co., Ltd. Position indicator

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS544670B2 (en) * 1973-07-17 1979-03-08
JPS5797422A (en) * 1980-12-10 1982-06-17 Matsushita Electric Ind Co Ltd Manufacture of electrostatic capacity type pressure sensor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS544670B2 (en) * 1973-07-17 1979-03-08
JPS5797422A (en) * 1980-12-10 1982-06-17 Matsushita Electric Ind Co Ltd Manufacture of electrostatic capacity type pressure sensor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9702778B2 (en) 2012-02-06 2017-07-11 Wacom Co., Ltd. Position indicator
US9778123B2 (en) 2012-02-06 2017-10-03 Wacom Co., Ltd. Position indicator
US10101228B2 (en) 2012-02-06 2018-10-16 Wacom Co., Ltd. Position indicator
JP2017032571A (en) * 2016-09-07 2017-02-09 株式会社ワコム Pressure sensing semiconductor device

Similar Documents

Publication Publication Date Title
CA1311365C (en) Pressure transducer with stress isolation for hard mounting
US7284444B2 (en) Hermetically sealed displacement sensor apparatus
US4236137A (en) Semiconductor transducers employing flexure frames
US3697917A (en) Semiconductor strain gage pressure transducer
EP1384612B1 (en) Mechanical deformation amount sensor
US5186055A (en) Hermetic mounting system for a pressure transducer
EP1359402B1 (en) Pressure sensor
CA1078217A (en) Force transducing cantilever beam and pressure transducer incorporating it
US8384170B2 (en) Pressure sensor
WO2002101347A1 (en) Miniaturized pressure sensor
US3970982A (en) Beam type transducers employing accurate, integral force limiting
EP0225095A2 (en) Biaxial strain gage systems
US5932809A (en) Sensor with silicon strain gage
US20030005768A1 (en) Sensor
KR100816660B1 (en) Tactile sensor and manafacturing method of tactile sensor
JPH0755598A (en) Tactile sensor and tactile imager
GB2174500A (en) Accelerometer
JP2007139799A (en) Sensor for detecting mechanical deformation amount
JPS6092670A (en) Kinetic force converter
JPH0758795B2 (en) Pressure sensor
JPS5856424B2 (en) force transducer
US8146436B2 (en) Silicon sensing structure to detect through-plane motion in a plane of material with thermal expansion substantially different from that of silicon
JPS60208867A (en) Force converter
JPS5983023A (en) Semiconductor pressure difference detector
RU2329480C2 (en) Strain transducer of pressure