Nothing Special   »   [go: up one dir, main page]

JPS6091601A - Method for pulverization for rare earth-boron-iron permanent magnet alloy powder - Google Patents

Method for pulverization for rare earth-boron-iron permanent magnet alloy powder

Info

Publication number
JPS6091601A
JPS6091601A JP58199810A JP19981083A JPS6091601A JP S6091601 A JPS6091601 A JP S6091601A JP 58199810 A JP58199810 A JP 58199810A JP 19981083 A JP19981083 A JP 19981083A JP S6091601 A JPS6091601 A JP S6091601A
Authority
JP
Japan
Prior art keywords
alloy powder
powder
permanent magnet
atomic
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58199810A
Other languages
Japanese (ja)
Other versions
JPH0422011B2 (en
Inventor
Masao Togawa
戸川 雅夫
Atsushi Hamamura
濱村 敦
Masato Sagawa
佐川 真人
Setsuo Fujimura
藤村 節夫
Yutaka Matsuura
裕 松浦
Hitoshi Yamamoto
日登志 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP58199810A priority Critical patent/JPS6091601A/en
Publication of JPS6091601A publication Critical patent/JPS6091601A/en
Publication of JPH0422011B2 publication Critical patent/JPH0422011B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To stabilize quality as well as to improve magnetic characteristics of the titled alloy powder by a mehtod wherein R, B and Fe of the prescribed atomic percentage are used as main ingredients, and the alloy powder of prescribed particles size is pulverized into the prescribed particle size at normal temperature together with the liquid phase hydrocarbon fluoride of the prescribed boiling point temperature. CONSTITUTION:10-30atom% R, 2-28atom% B and 65-82atom% Fe are used as main ingredients, they are pulverized in a short period, and the particle size of the alloy powder before pulverization is prescribed at 10 mesh-through in order to prevent the coexistence of coarse grains in the pulverized powder. Then, the above material is placed in a pulverizer together with the liquid phase hydrocarbon fluoride of the boiling point of 35 deg.C or above. Then, a wet pulverization is performed on the powder of 1-10mum in average particle size at normal temperature. Through these procedures, the alloy powder of stabilized quality can be obtained, and coersive force and the like can also be improved.

Description

【発明の詳細な説明】 この発明は、[犬り但し、RG、LYを包合する希土類
元素のうら少なくとも1種)、B、Feを主成分とづる
永久磁白用合金粉末の製造方法に係り、磁気特性がずぐ
れ、かつ安定した品質の上記系永久磁も用合金微粉末が
(qられる湿式粉砕法の改良に関りる。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing an alloy powder for permanent magnetic white whose main components are [at least one rare earth element containing RG and LY], B, and Fe. This invention relates to the improvement of the wet grinding method in which the above-mentioned permanent magnetic alloy fine powder with excellent magnetic properties and stable quality is obtained.

永久磁石材料は、一般家庭の各種電気製品から大型コン
ピュータの周辺端末機器よC′、幅広い分野で使用され
る極めて重要な電気・電子材料の一つである。近年の電
気・電子機器の小形化、畠効率化の要求にともない、永
久磁石材料は益々高性能化がめられるようになった。
Permanent magnetic materials are one of the extremely important electrical and electronic materials used in a wide range of fields, from various household appliances to peripheral terminal equipment for large computers. In recent years, with the demand for smaller electric and electronic devices and greater efficiency, permanent magnet materials are increasingly required to have higher performance.

現在の代表的な永久磁石材料は、アルニコ、ハードフェ
ライトおよび希土類コバル1〜磁石である。
Current representative permanent magnet materials are alnico, hard ferrite and rare earth Kobal 1~ magnets.

近年のコバルトの原料事情の不安定化に伴ない、コバル
トを20〜30wt%含むアルニコ[iの需要は減り、
鉄の酸化物を主成分とする安価なハードフェライトが磁
石材料の主流を占めるようになった。
As the raw material situation for cobalt has become unstable in recent years, demand for alnico [i] containing 20 to 30 wt% cobalt has decreased.
Inexpensive hard ferrite, whose main component is iron oxide, has come to dominate magnet materials.

一方、希土類コバルト磁石はコバル1へを50〜60w
t%も会むうえ、希土類鉱石中にあまり含まれていない
Smを使用するため大変高価であるが、他の磁石に比べ
て、磁気特性が格段に高いため、主として小型で付加価
値の高い磁気回路に多用されるようになった。
On the other hand, rare earth cobalt magnets have a power of 50 to 60W to Kobal 1.
t% and uses Sm, which is not contained in rare earth ores, it is very expensive, but it has much higher magnetic properties than other magnets, so it is mainly used as a small and high value-added magnet. It has become widely used in circuits.

そこで、本発明者は先に、高価なSmや0を含有しない
新しい高性能永久磁石としてFe −B −R系(RL
! Y ’i *む希土類元素のうち少なくとも1種〉
永久磁石を提案した(特願昭57−145072号)。
Therefore, the present inventor first developed an Fe-B-R system (RL
! Y 'i *At least one rare earth element>
He proposed a permanent magnet (Japanese Patent Application No. 145072/1982).

また、さらに、Fe−B−R系の磁気異方性焼結体から
なる永久磁石の温度特性を改良するために、Feの一部
をGで置換することにより、生成合金のキュリ一点を上
昇さVて温度特性を改善したFe−G。
Furthermore, in order to improve the temperature characteristics of permanent magnets made of Fe-B-R magnetically anisotropic sintered bodies, by substituting a part of Fe with G, the Curie point of the resulting alloy was increased by one point. Now, Fe-G with improved temperature characteristics.

−B −R系異方性焼結体からなる永久磁石を提案した
(特願昭57−166663号)。
-B - A permanent magnet made of an anisotropic sintered body was proposed (Japanese Patent Application No. 166663/1983).

上記の新規なFe−B−R系、Fa−Go−BR系([
<はYを含む希土類元素のうち少なくとも1種)永久磁
石を、製造覆るだめの出発原料の希土類金属は、一般に
Cam元法、電解法により製造される金属塊であり、こ
の赤土類金属塊を用いて、例えば次の工程により、上記
の新規な永久磁石が製造される。
The above novel Fe-BR system, Fa-Go-BR system ([
< is at least one kind of rare earth element containing Y) The rare earth metal that is the starting material for manufacturing a permanent magnet is generally a metal lump produced by the Cam base method or the electrolytic method, and this red earth metal lump is The novel permanent magnet described above is manufactured using, for example, the following steps.

■ 出発原料として、純度99.9%の電解鉄、819
.4%を含有し残部はFe及び#、S5C等の不純物か
らなるフエ日ボロン合金、純度99.7%以上の希土類
金属、あるいはざらに、純度99.9%の電解らを高周
波溶解し、その後水冷銅鋳型に鋳造する、■ スタンプ
ミルにより35メツシユスルーまでに粗粉砕し、次にボ
ールミルにより、例えば粗粉砕粉3oogを6時間湿式
微粉砕して3〜io、の微細粉となす、 ■ 磁界(10KOe)中配向して、成形(1,5td
にて加圧)する、 ■ 焼結、1000℃〜1200℃、1時間、Ar中の
焼結後に放冷する。
■ As a starting material, electrolytic iron with a purity of 99.9%, 819
.. Fe/boron alloy containing 4% Fe and impurities such as # and S5C, rare earth metals with a purity of 99.7% or more, or electrolytic metals with a purity of 99.9% are melted by high frequency, and then Cast in a water-cooled copper mold, ■ Coarsely grind to 35 mesh through using a stamp mill, and then wet-pulverize, for example, 300 g of coarsely ground powder for 6 hours using a ball mill to make a fine powder of 3 to 100 g. ■ Magnetic field ( 10KOe) and molded (1.5td
(1) Sintering, sintering in Ar for 1 hour at 1000°C to 1200°C, and then allowing to cool.

■ 時効処理、500℃〜1000℃、k中。■ Aging treatment, 500°C to 1000°C, k medium.

上記の如く、上記永久磁石用合金粉末は、所要組成の鋳
塊を機械的粉砕及び湿式微粉砕を行なって得られるが、
この湿式微粉砕方法は35メツシユスルーに粗粉砕され
た該系粉末を、メタノール。
As mentioned above, the alloy powder for permanent magnets is obtained by mechanically pulverizing and wet pulverizing an ingot having a desired composition.
In this wet pulverization method, the coarsely pulverized powder of 35 mesh is mixed with methanol.

エタノール、イソアミルアルコール、1・ 1・ トト
リクロルエタン等の溶媒と共に、ボール・ミルあるいは
アトライター等の粉砕機に投入し、粉砕機または機内の
回転翼を鋼球と一緒に回転させて10腐以下の微粉末に
粉砕(るもので、粉砕作業上や得られる永久磁石の磁気
特性上で種々の問題があった。
Pour the mixture into a crusher such as a ball mill or attritor along with a solvent such as ethanol, isoamyl alcohol, or trichloroethane, and rotate the rotary blades inside the crusher or the machine together with the steel balls to reduce the rot to 10% or less. There were various problems with the grinding process and the magnetic properties of the resulting permanent magnet.

ずなわら、上記溶媒のメタノール、エタノールは吸湿性
に富み、微粉砕された粉末が酸化されやすく、また1−
リクロルエタンは大気中あるいは粉砕粉末中の含有水に
より分解されて該粉末と反応しやすく、ざらには上記溶
媒は有毒かつ危険物であるため、その取り扱いに細心の
注意を払う必要があるなど作業上での問題があり、一方
、かかる溶媒を使用して微粉砕した粉末をプレス、焼結
して得られた永久磁石はその磁気特性が劣化したり、ま
た、ばらつきを招来−する問題もあった。
However, the above-mentioned solvents, methanol and ethanol, are highly hygroscopic, and the finely ground powder is easily oxidized.
Lichloroethane easily decomposes in the air or in the water contained in the pulverized powder and reacts with the powder. Furthermore, since the above solvent is toxic and dangerous, it is necessary to pay close attention to its handling, which may cause operational problems. On the other hand, permanent magnets obtained by pressing and sintering finely pulverized powder using such solvents have had problems in that their magnetic properties have deteriorated or caused variations. .

この発明は、安定した品質でかつ1′ぐれた磁気特性の
得られる希土類、ボロン、鉄系の永久磁石用合金粉末を
製造する湿式粉砕方法を目的とし、安全で取り扱いの容
易な溶媒を用いる湿式微粉砕法を目的としている。
The purpose of this invention is to provide a wet pulverization method for producing rare earth, boron, and iron alloy powder for permanent magnets that has stable quality and excellent magnetic properties. Intended as a fine grinding method.

ずなわら、この発明は、R(但し、RはYを包含する希
土類元素のうち少なくとも1種)10原子%〜30原子
%、B 2原子%〜28原子%、Fe 65原子%〜8
2原子%を主成分とし、粒度が10メツシユスルーの合
金粉末を、沸点が35℃以上で常温で液体の弗素化炭化
水素と共に粉砕機内に装入し、平均粒度が1JJn〜1
oIの粉末に微粉砕することを特徴とする希土類・ボロ
ン・鉄系永久磁石用合金粉末の粉砕方法である。
In this invention, R (wherein R is at least one kind of rare earth elements including Y) 10 at% to 30 at%, B 2 at% to 28 at%, Fe 65 at% to 8
An alloy powder containing 2 atomic % as a main component and having a particle size of 10 mesh through is charged into a pulverizer together with a fluorinated hydrocarbon whose boiling point is 35°C or higher and is liquid at room temperature.
This is a method for pulverizing a rare earth/boron/iron alloy powder for permanent magnets, which is characterized by pulverizing it into oI powder.

この発明は、R,B、 F’eを主成分とする永久磁石
用合金の湿式微粉砕に使用する溶媒を種々検討した結果
、沸点が35℃以上で常温で液体の弗素化炭化水素が最
適であることを知見したもので、弗素化炭化水素は、ト
リクロロトリフルオロエタン、パーフルオロトリブチル
アミン、テトラクロロジフルオロエタン、ペンゾトリフ
ルオリド、ベルフルオロベンゼン、ペルフルオロメチル
デカリン等であり、また、弗素化炭化水素で沸点が35
℃未満のものは、溶剤として使用すると蒸発するため、
35℃以上の沸点であることが必要で、また、湿式微粉
砕を行なうため常温で液体である必要がある また、この発明で微粉砕前の合金粉末の粒度を10メツ
シユスルーとしたのは、1oメツシユスルーを越える粗
粒では微粉砕に長時間を要し、微粉砕後のわ)床中に粗
粒が混在りる恐れがあるためぐある。
This invention was developed after studying various solvents to be used for wet pulverization of alloys for permanent magnets whose main components are R, B, and F'e, and found that fluorinated hydrocarbons, which have a boiling point of 35°C or higher and are liquid at room temperature, are optimal. It has been found that fluorinated hydrocarbons include trichlorotrifluoroethane, perfluorotributylamine, tetrachlorodifluoroethane, penzotrifluoride, perfluorobenzene, perfluoromethyldecalin, etc. Hydrogen has a boiling point of 35
Anything below ℃ will evaporate when used as a solvent, so
It needs to have a boiling point of 35°C or higher, and it needs to be liquid at room temperature to perform wet pulverization.In addition, in this invention, the particle size of the alloy powder before pulverization is set to 10 mesh through. Coarse particles that exceed mesh throughput require a long time to be pulverized, and there is a risk that coarse particles may be mixed in the bed after pulverization.

以下に、この発明にお)Jる希土類・鉄・ボロン系永久
磁石用原料合金粉末の組成限定理由を説明する。
The reasons for limiting the composition of the raw material alloy powder for rare earth/iron/boron permanent magnets according to the present invention will be explained below.

この発明の永久磁6用原料合金粉末に含イjされる希土
類元素l(は、イツトリウム(Y)を包含し軽n上類及
びm8土類を包含づ゛る希」類元素である。
The rare earth element (1) contained in the raw material alloy powder for permanent magnet 6 of this invention is a rare element that includes yttrium (Y) and also includes light nth and m8 earths.

t< i Lでは、軽希土類をもって足り、特にNd。When t<iL, a light rare earth is sufficient, especially Nd.

l) pが々fましい。又通例尺のうち1種をもって足
りるが、実用−1−は2種以上の混合物(ミツシュメタ
ル、ジジム等)を入手上の便宜等の理由により用いるこ
とがて゛さ、Sm、Y、La、Ce、Gd。
l) p is very scary. In addition, one of the standard sizes is sufficient, but in practical use-1, a mixture of two or more types (Mitsuhmetal, didymium, etc.) may be used for reasons such as convenience of availability.Sm, Y, La, Ce, Gd.

等は他の1:2、特にNd 、Pr等との混合物として
用いることができる。なJ3、この1文は純希土類元素
でなくてもよく、工業上入手可能な範囲で製造上不可避
な不純物を含有するものでも差支えない。
etc. can be used as a 1:2 mixture with others, especially Nd, Pr, etc. J3, this first sentence does not have to be a pure rare earth element, and may contain impurities that are unavoidable in production within an industrially available range.

1り(YをΩむ希土類元素のうち少なくとも1種)は、
新規な上記系永久磁石を製造する合金粗粉砕粉末として
、必須元素であって、10原子%未渦で番よ、高磁気特
性、特に高保磁ツノが行られず、30原子%を越えると
、残留磁束密度(Br )が低下して、すぐれた特性の
永久磁石が得られない。よって、希土類元素は、10原
子%〜30原子%の範囲とづる。
1 (at least one rare earth element that Ω is Y) is
As the alloy coarsely pulverized powder for manufacturing the new above-mentioned permanent magnet, it is an essential element, and if it is not vortexed at 10 atomic %, it has high magnetic properties, especially high coercive horns, and if it exceeds 30 atomic %, The residual magnetic flux density (Br) decreases, making it impossible to obtain a permanent magnet with excellent characteristics. Therefore, the rare earth element is defined as being in a range of 10 atomic % to 30 atomic %.

Bは、新規な上記系永久磁石を製造する合金粗粉砕粉末
として、必須元素であって、2原子%未満では、高い保
磁力(+t−l(>は得られず、28原子%を越えると
、残留磁束密度(Br )が低下するため、すぐれた永
久磁石が得られない。よって、Bは、2原子%〜28原
子%の範囲とする。
B is an essential element for the coarsely pulverized alloy powder used to manufacture the new above-mentioned permanent magnets, and if it is less than 2 atomic %, a high coercive force (+t-l) cannot be obtained, and if it exceeds 28 atomic %, B cannot be obtained. , the residual magnetic flux density (Br) decreases, making it impossible to obtain an excellent permanent magnet.Therefore, B is set in the range of 2 at.% to 28 at.%.

「eは、新規な上記系永久磁石を製造する合金粗粉砕粉
末として、必須元素であるが、G5原子%未満では残留
磁束密度(Br )が低下し、82原子%を越えると、
高い保磁力が得られないので、Feは65原子%〜82
原子%に限定する。
"e is an essential element for the alloy coarsely ground powder used to manufacture the new above-mentioned permanent magnets, but if it is less than 5 atomic %, the residual magnetic flux density (Br ) will decrease, and if it exceeds 82 atomic %,
Since high coercive force cannot be obtained, Fe is 65 atomic % to 82 atomic %.
Limited to atomic percent.

また、Feの一部をCOで置換する理由は、永久磁石の
温度特性を向上させる効果が得られるためであり、CO
はFeの50%を越えると、高い保磁ツノが得られ−f
、1ぐれた永久磁石が得られない。
In addition, the reason why part of Fe is replaced with CO is that it has the effect of improving the temperature characteristics of the permanent magnet, and CO
When it exceeds 50% of Fe, a high coercive horn is obtained.
, it is not possible to obtain a permanent magnet with a slight deviation.

まっ’c、Coは50%を上限どづる。For Mac and Co, the upper limit is 50%.

この発明の合金粗粉砕粉末において、高い残留磁束密度
と畠い保磁力を共に有するすぐれた永久磁石をi′?る
ためには、RIO原子%〜25原子%、G4 原子% 
〜2 G11i f%、「C68原子%〜80原子%が
々fましい。
In the coarsely pulverized alloy powder of this invention, an excellent permanent magnet having both high residual magnetic flux density and strong coercive force can be obtained. In order to
~2 G11i f%, "C68 atomic % to 80 atomic % is very good.

また、この発明による合金粗粉砕粉末は、RlR,Fe
の他、工業的生産上不可避的不純物の存在をa’F容で
きるが、Bの 一部を4.0原子%以下のC13,5原
子%のP、2.5原子%以下のS、3.515N、子%
以下のCuのうち少なくとも1種、合噌笛で4.0原子
%以下で置換することにJ、す、磁石合金の製造性改善
、低価格化が可能である。
Further, the alloy coarsely ground powder according to the present invention is composed of RlR, Fe
In addition, the presence of unavoidable impurities in industrial production can be excluded, but a part of B can be replaced by 4.0 at% or less of C13, 5 at% of P, 2.5 at% or less of S, 3 .515N, child%
By substituting at least one of the following Cus in an amount of 4.0 atomic % or less, it is possible to improve the manufacturability and lower the price of the magnetic alloy.

さらに、前記R,B、Fe合金あるいはCoを8右りる
1で、B 、Fe合金に、 9.5原子%以下のAn、4.5原子%以下のT1.9
.5原子%以下のV、8.5IfA子%以下のOr、8
.0原子%以下のMn15原子%以下のBi、12.5
原子%以下のNb 、 10.5原子%以下のTa、9
.5原子%以下のMo、9.5原子%以下のW。
Further, the above R, B, Fe alloy or Co is 8% 1, B, Fe alloy is added with 9.5 atomic % or less of An, 4.5 atomic % or less of T1.9.
.. V of 5 atomic % or less, Or of 8.5 IfA atomic % or less, 8
.. Mn not more than 0 atom% Bi not more than 15 atom%, 12.5
Nb below atomic %, Ta below 10.5 atomic %, 9
.. Mo of 5 atomic % or less, W of 9.5 atomic % or less.

2.5原子%以下の811,7原子%以下のGe、35
原子%以下の8口、5.5原子%以−トのZr、5.5
原子%以下のHfのうち少なくとも1種を添加含有させ
ることにより、永久磁石合金の高保磁力化が可能になる
2.5 atomic % or less of 811, 7 atomic % or less of Ge, 35
8 atomic % or less, 5.5 atomic % or more Zr, 5.5
By adding at least one kind of Hf at atomic % or less, it becomes possible to increase the coercive force of the permanent magnet alloy.

結晶相は主相が正方品であることが、微細で均一な合金
粉末を得るのに不可欠である。
It is essential that the main crystalline phase is a tetragonal one in order to obtain a fine and uniform alloy powder.

この発明による合金微粉末の粒度は、平均粒度が10J
7111を越えると、永久磁石の作製時にすぐれた磁気
特性、とりわけ高い保磁力が得られず、また、平均粒度
が1卯未満では、永久磁石の作製工程、りなわら、プレ
ス成形、焼結9時効処理工程にお1ノる酸化が著しく、
すぐれた磁気特性が得られないため、平均粒度1〜10
1A11の合金微粉末が最も望ましい。
The particle size of the alloy fine powder according to this invention has an average particle size of 10J.
If it exceeds 7111, it will not be possible to obtain excellent magnetic properties, especially high coercive force, when producing a permanent magnet, and if the average particle size is less than 1 µm, the permanent magnet production process, lining, press forming, sintering, aging, etc. will be difficult. There is significant oxidation during the treatment process,
Because excellent magnetic properties cannot be obtained, the average particle size is 1 to 10.
1A11 alloy fine powder is most desirable.

この発明による永久磁石用合金微粉末を使用して得られ
る磁気異方性永久磁石合金は、保磁力+HC≧I K 
Oe、残留磁束密度Br> 4KG、を示し、最大エネ
ルギー1(BH)ma、xはハードフエライトど同等以
上となり、最も好ましい組成範囲では、(t3 fi 
) max≧10MGOeを示し、最大値は25MGO
θ以上に達する。
The magnetically anisotropic permanent magnet alloy obtained using the alloy fine powder for permanent magnets according to the present invention has a coercive force + HC≧I K
Oe, residual magnetic flux density Br > 4KG, maximum energy 1 (BH) ma, x is equal to or higher than hard ferrite, and in the most preferable composition range, (t3 fi
) max≧10MGOe, the maximum value is 25MGO
Reach θ or more.

また、この発明による合金微粉末の組成が、R10原子
%〜3oIIl子%、B22原子〜28原子%、G45
原子%以下、Fe 65原子%〜82原子%の揚台、着
られる磁気異方性永久磁石合金は、上記磁石合金と回等
の磁気特性を示し、残留磁束密度の温度係数が、0.1
%/”C以下となり、すぐれた特性が得られる。
Further, the composition of the alloy fine powder according to the present invention is R10 atomic % to 3oIIl atomic %, B22 atomic % to 28 atomic %, G45
The magnetically anisotropic permanent magnet alloy deposited on the platform containing 65 at% to 82 at% Fe exhibits magnetic properties similar to those of the above magnet alloy, and has a temperature coefficient of residual magnetic flux density of 0.1.
%/''C or less, and excellent characteristics can be obtained.

また、合金V)末のRの主成分がその50%以上を軽希
土類金属が占める場合で、R12原子%〜20原子%、
El 41Gi子%〜24原子%、「θ 65原子%〜
82原子%の場合、あるいはさらにCo5原子%〜45
原子%を含イjするどき最もずぐれた磁気特性を示し、
特に軽希土類金属が陶の場合には、(B H) max
はその最大値が33M G Oe g、上に達する。
In addition, when the main component of R in the powder of alloy V) is a light rare earth metal that accounts for 50% or more, R12 atomic % to 20 atomic %,
El 41Gi %~24 at%, θ 65 at%~
In the case of 82 atomic %, or even Co5 atomic % to 45 atomic %
It shows the most outstanding magnetic properties when containing atomic percent,
Especially when the light rare earth metal is ceramic, (B H) max
reaches its maximum value of 33M G Oe g.

また、この発明による合金微粉末は、無磁界中で加圧成
型づることにより、等方性永久磁石を製造することがで
きる。
Further, the alloy fine powder according to the present invention can be press-molded in the absence of a magnetic field to produce an isotropic permanent magnet.

以下に実施例を説明する。Examples will be described below.

実施例1 出発原料として、純度99.9%の電解鉄、819.4
%を含有し残部はFe及びC等の不純物からなるフェロ
ボロン合金、純度99.7%以上の陶を高周波溶解し、
その後水冷銅鋳型に鋳造し、15陶8B77Fe(at
%)なる組成の鋳塊1kgを得た。
Example 1 As a starting material, electrolytic iron with a purity of 99.9%, 819.4
A ferroboron alloy with a purity of 99.7% or more is melted by high frequency, and the balance is made up of impurities such as Fe and C.
After that, it was cast in a water-cooled copper mold and made of 15 porcelain 8B77Fe (at
%) was obtained.

この鋳塊を機械飽粉砕により35メツシユスルーまでに
粗粉砕した。ついで、粗粉砕粉より採取した300(l
を、外径150 mm X内径120IIlll×長さ
150mm寸法のボールミルに、10mm外径の鋼球2
.8−とともに装入し、溶媒としてトリクロロ−トリフ
ルオロエタン 600ccを用い、回転数100叩■で
5.5時間の微粉砕を行ない、平均粒度3.3μnの合
金粉末を得た。
This ingot was coarsely ground to a throughput of 35 mesh by mechanical grinding. Next, 300 (l) collected from the coarsely ground powder
2 steel balls with an outer diameter of 10 mm were placed in a ball mill with dimensions of outer diameter 150 mm x inner diameter 120IIll x length 150 mm.
.. Using 600 cc of trichloro-trifluoroethane as a solvent, fine pulverization was carried out at 100 revolutions for 5.5 hours to obtain an alloy powder with an average particle size of 3.3 μm.

この合金粉末を用いて、磁界10KOθ中で配向し、2
 tJにて加圧成型し、その後、1100℃、1時間。
Using this alloy powder, it is oriented in a magnetic field of 10 KOθ, and 2
Pressure molded at tJ, then 1100°C for 1 hour.

の条件で焼結し、さらに、Ar中で600℃、1時間の
時効処理を施して、永久磁石を作製した。得られた永久
磁石の磁気特性を測定し第1表に示す。
The magnet was sintered under the following conditions and further subjected to aging treatment at 600° C. for 1 hour in Ar to produce a permanent magnet. The magnetic properties of the obtained permanent magnet were measured and are shown in Table 1.

比較のため、同一組成の鋳塊を、微粉砕時の溶媒にメタ
ノール aooccを使用する以外は上記のこの発明方
法ど回−条f(として永久磁石を作製し、同様に磁気特
性を測定し、第1表に測定結果を示づ。
For comparison, a permanent magnet was prepared from an ingot of the same composition using the method of this invention described above except that methanol aoocc was used as the solvent during pulverization, and the magnetic properties were similarly measured. Table 1 shows the measurement results.

実施例2 出発原料として、t11i100.9%の電解鉄、E1
19.4%を含有し残部はFe及びC等の不純物からな
る〕XUボロン合金、純度99.7%以上の南金属及び
み金属を高周波溶解し、その後水冷銅鋳型に鋳造し、1
51m l、5Dy 7B76.5Fe (at%)な
る組成の鋳塊1に9を1牙/、:。
Example 2 As a starting material, electrolytic iron with t11i100.9%, E1
19.4% and the remainder consists of impurities such as Fe and C] XU boron alloy, Minami metal and Mi metal with a purity of 99.7% or more are high-frequency melted, then cast in a water-cooled copper mold,
51ml, 5Dy 7B76.5Fe (at%) composition: 9 to 1 ingot/:.

この鋳塊をb1械的粉砕により35メツシユスルーまで
に粗粉砕した。ついで、粗粉砕粉より採取した300g
を、外径15010Ill X西経120nunX長さ
150 mm1法のボールミルに、10 mm外径の鋼
球2 、8 k、とともに装入し、溶媒として70リナ
ート F(、−72(商品名 住友スリーエム社製3S
 ) 600ccを用い、回転数100r囲で5.5R
間の微粉砕を行ない、平均粒度3.35μnの合金粉末
を得た。
This ingot was coarsely ground to a throughput of 35 mesh by b1 mechanical grinding. Next, 300g collected from the coarsely ground powder
was charged into a ball mill with an outer diameter of 15010 Ill x west longitude 120 nun x length 150 mm together with steel balls 2 and 8 k with an outer diameter of 10 mm, and 70 Linate F (, -72 (trade name, manufactured by Sumitomo 3M Co., Ltd.) as a solvent. 3S
) Using 600cc, 5.5R at rotation speed of 100r
Fine pulverization was performed in between to obtain an alloy powder with an average particle size of 3.35 μm.

この合金粉末を用いて、磁界10KOe中で配向し、2
も4にC加圧成型し、その後、1100℃、1時間。
Using this alloy powder, it was oriented in a magnetic field of 10 KOe, and 2
4. Pressure molded at 1100°C for 1 hour.

の条件で焼結し、さらに、Ar中で600℃、1時間の
時効処理を施して、永久磁石を作製した。得られた永久
磁石の磁気特性を測定し第2表に示す。
The magnet was sintered under the following conditions and further subjected to aging treatment at 600° C. for 1 hour in Ar to produce a permanent magnet. The magnetic properties of the obtained permanent magnet were measured and are shown in Table 2.

比較のため、同一組成の鋳塊を、微粉砕時の溶媒に1・
 1・ トトリクロルエタン 600ccを使用する以
外は上記のこの発明方法と同一条件として永久磁石を作
製し、同様に磁気特性を測定し、第2表に測定結果を承
り”。
For comparison, an ingot with the same composition was mixed with 1.
1. A permanent magnet was prepared under the same conditions as the method of this invention described above except that 600 cc of trichloroethane was used, and the magnetic properties were similarly measured, and the measurement results are shown in Table 2.

実施例3 出発原料として、純度99.9%の電解鉄、919.4
%を含有し残部はFe及びC等の不純物からなるフェロ
ボロン合金、純度99,7%以上の円を高周波溶解し、
その後水冷銅鋳型に鋳造し、20Pr 8 B 72F
e(at%)なる組成の鋳塊1kiを得た。
Example 3 As a starting material, electrolytic iron with a purity of 99.9%, 919.4
A ferroboron alloy with a purity of 99.7% or more is melted by high frequency, and the remainder is made up of impurities such as Fe and C.
Then cast in a water-cooled copper mold, 20Pr 8B 72F
1 ki of an ingot having a composition of e (at%) was obtained.

この鋳塊を機械的粉砕により35メツシユスルーまでに
粗粉砕した。ついで、粗粉砕粉より採取した300gを
、外径150n+n+X内径120mmX長さ150m
m寸法のボールミルに、10mm外径の鋼球2.8−と
とムにス人し、溶媒としくパーフルAロトリブヂルアミ
ン GOOccを用い、回転数1100rpで5.5詩
間の微粉砕を(jない、平均粒1哀3.1gnの合金粉
末を1′l)こ。
This ingot was mechanically crushed to a roughness of 35 mesh through. Next, 300g collected from the coarsely ground powder was heated to an outer diameter of 150n+n+X, an inner diameter of 120mm, and a length of 150m.
A steel ball with an outer diameter of 10 mm was placed in a ball mill of 2.8 mm in diameter, and finely pulverized for 5.5 mm at a rotation speed of 1100 rp using perfluor A rottribudylamine GOOcc as a solvent. (1'l of alloy powder with an average grain size of 3.1 gn).

この合金粉末を用いて、磁界10KOθ中で配面し、2
 t4にて加圧成型し、ぞの後、1100’C,1時間
Using this alloy powder, it was oriented in a magnetic field of 10 KOθ, and 2
Pressure molded at t4, then 1100'C for 1 hour.

の条件で焼結し、さらに、Ar中で600℃、1詩間の
n、1効処理をDi!Iシて、永久磁石を作製した。得
られた永久磁もの磁気特性を測定し第3表に示づ。
Sintered under the following conditions, and then subjected to Di! treatment at 600°C for one cycle in Ar! A permanent magnet was produced. The magnetic properties of the obtained permanent magnet were measured and are shown in Table 3.

比較のため、同一組成の鋳塊を、微粉砕時の溶媒にイソ
ノアミルアル」−ル 600ccを使用する以外は上記
のこの発明方法と同一条件として永久磁石を作製し、同
様に磁気特性を測定し、第3表にa)り定結宋を示1゜ 第1表から第33表の結果より明らかなとおり、本発明
による粉砕方法で得られた微粉末を使用した永久磁石は
、磁気特性がづぐれていると其に、磁気特性のばらつき
が極めて少なく工業生産上、頗るイ」効である。
For comparison, a permanent magnet was prepared from an ingot of the same composition under the same conditions as the method of this invention described above, except that 600 cc of iso-noamyl alcohol was used as the solvent during pulverization, and the magnetic properties were similarly measured. As is clear from the results in Tables 1 to 33, permanent magnets using the fine powder obtained by the pulverization method of the present invention have magnetic properties. Moreover, if the magnetic properties are uniform, there will be very little variation in magnetic properties, which is extremely effective in industrial production.

第1表 第2表 第3表Table 1 Table 2 Table 3

Claims (1)

【特許請求の範囲】[Claims] IR(但し、1(はYを包含する希土類元素のうら少な
くどし1種>10原子%〜30原子%、B 2原子%〜
28原子%、Fe 65原子%〜82原子%を主成分と
Jる合金粉末を、沸点が35°C以上で一序温で液体の
弗素化炭化水素と共に粉砕機内に装入し、平均粒度が1
洞〜10ρの粉末に微V)砕覆ることを特徴とする希土
類・ボロン・鉄系永久磁石用合金粉末の粉砕方法。
IR (however, 1 (1) is one type of rare earth element containing Y > 10 at% to 30 at%, B 2 at% to
An alloy powder whose main components are 28 at% Fe and 65 at% to 82 at% Fe is charged into a grinder together with a liquid fluorinated hydrocarbon with a boiling point of 35 °C or above and a temperature above 35 °C, and the average particle size is 1
A method for pulverizing rare earth/boron/iron alloy powder for permanent magnets, which is characterized by finely crushing the powder into a powder with a diameter of ~10ρ.
JP58199810A 1983-10-25 1983-10-25 Method for pulverization for rare earth-boron-iron permanent magnet alloy powder Granted JPS6091601A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58199810A JPS6091601A (en) 1983-10-25 1983-10-25 Method for pulverization for rare earth-boron-iron permanent magnet alloy powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58199810A JPS6091601A (en) 1983-10-25 1983-10-25 Method for pulverization for rare earth-boron-iron permanent magnet alloy powder

Publications (2)

Publication Number Publication Date
JPS6091601A true JPS6091601A (en) 1985-05-23
JPH0422011B2 JPH0422011B2 (en) 1992-04-15

Family

ID=16414009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58199810A Granted JPS6091601A (en) 1983-10-25 1983-10-25 Method for pulverization for rare earth-boron-iron permanent magnet alloy powder

Country Status (1)

Country Link
JP (1) JPS6091601A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61287104A (en) * 1985-06-13 1986-12-17 Hitachi Metals Ltd Method for pulverization of permanent magnet alloy powder
JPS61295355A (en) * 1985-06-21 1986-12-26 Sumitomo Special Metals Co Ltd Permanent magnet alloy
JPS6247455A (en) * 1985-08-28 1987-03-02 Sumitomo Special Metals Co Ltd Permanent magnet material having high performance
JPS6250437A (en) * 1985-08-28 1987-03-05 Sumitomo Special Metals Co Ltd Permanent magnet material superior in corrosion resistance
US4778542A (en) * 1986-07-15 1988-10-18 General Motors Corporation High energy ball milling method for making rare earth-transition metal-boron permanent magnets
JPH05264172A (en) * 1992-03-17 1993-10-12 Ngk Insulators Ltd Ceramic product burning furnace
JP2004500480A (en) * 1999-03-19 2004-01-08 キャボット コーポレイション Production of niobium and other metal powders by grinding

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61287104A (en) * 1985-06-13 1986-12-17 Hitachi Metals Ltd Method for pulverization of permanent magnet alloy powder
JPS61295355A (en) * 1985-06-21 1986-12-26 Sumitomo Special Metals Co Ltd Permanent magnet alloy
JPS6247455A (en) * 1985-08-28 1987-03-02 Sumitomo Special Metals Co Ltd Permanent magnet material having high performance
JPS6250437A (en) * 1985-08-28 1987-03-05 Sumitomo Special Metals Co Ltd Permanent magnet material superior in corrosion resistance
US4778542A (en) * 1986-07-15 1988-10-18 General Motors Corporation High energy ball milling method for making rare earth-transition metal-boron permanent magnets
JPH05264172A (en) * 1992-03-17 1993-10-12 Ngk Insulators Ltd Ceramic product burning furnace
JP2004500480A (en) * 1999-03-19 2004-01-08 キャボット コーポレイション Production of niobium and other metal powders by grinding

Also Published As

Publication number Publication date
JPH0422011B2 (en) 1992-04-15

Similar Documents

Publication Publication Date Title
JPH0424401B2 (en)
JP6624455B2 (en) Method for producing RTB based sintered magnet
JPH03236202A (en) Sintered permanent magnet
JPS6091601A (en) Method for pulverization for rare earth-boron-iron permanent magnet alloy powder
JPH0685369B2 (en) Permanent magnet manufacturing method
JPS6181606A (en) Preparation of rare earth magnet
JP6508447B1 (en) Method of manufacturing RTB based sintered magnet
JPS6181603A (en) Preparation of rare earth magnet
JPS6181607A (en) Preparation of rare earth magnet
JPS6181604A (en) Preparation of rare earth magnet
JP5235264B2 (en) Rare earth sintered magnet and manufacturing method thereof
JPH05211102A (en) Powder for permanent magnet and permanent magnet
JP4802927B2 (en) Rare earth sintered magnet and manufacturing method thereof
JP4645336B2 (en) Rare earth sintered magnet and manufacturing method thereof
JPS61245505A (en) Manufacture of rare-earth iron magnet
JPH04214804A (en) Method for molding alloy powder for rare earth-iron-boron based permanent magnet
JP4972919B2 (en) Rare earth sintered magnet and manufacturing method thereof
JPH0571641B2 (en)
JPH02138707A (en) Rare-earth magnet powder annealing method
JP2992808B2 (en) permanent magnet
JPH04240703A (en) Manufacture of permanent magnet
JPH07211568A (en) Manufacture of rare-earth permanent magnet
JPH1017908A (en) Production of alloy powder for rare earth sintered magnet
JPH0732200A (en) Production of sn-containing ndfeb sintered magnet having excellent corrosion resistance
JPH0613212A (en) Rare earth magnetic particle, manufacturing method thereof and rare earth bond magnet