Nothing Special   »   [go: up one dir, main page]

JPS6086018A - Silicone resin - Google Patents

Silicone resin

Info

Publication number
JPS6086018A
JPS6086018A JP19249283A JP19249283A JPS6086018A JP S6086018 A JPS6086018 A JP S6086018A JP 19249283 A JP19249283 A JP 19249283A JP 19249283 A JP19249283 A JP 19249283A JP S6086018 A JPS6086018 A JP S6086018A
Authority
JP
Japan
Prior art keywords
terminated
weight
siloxane
molecular weight
pdh8
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19249283A
Other languages
Japanese (ja)
Inventor
Kota Nishii
耕太 西井
Yasuhiro Yoneda
泰博 米田
Masashi Miyagawa
昌士 宮川
Toshiaki Narisawa
成沢 俊明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP19249283A priority Critical patent/JPS6086018A/en
Publication of JPS6086018A publication Critical patent/JPS6086018A/en
Pending legal-status Critical Current

Links

Landscapes

  • Silicon Compounds (AREA)
  • Silicon Polymers (AREA)

Abstract

PURPOSE:To produce an SiO2 film free from strain and pinholes, by the thermal decomposition of a silicone resin soluble in a specific solvent and composed of a silanol-terminated polydihydrogen siloxane or a silyl-terminated polydihydrogen siloxane having a specific composition. CONSTITUTION:An SiO2 film having excellent adhesivity and high electrical resistance, and free from the strain or pinholes caused by the organic groups eliminated by the thermal decomposition of the base resin, is produced by the thermal decomposition of a silicone resin applied to a semiconductor substrate, soluble in a ketone, ether, aromatic hydrocarbon or lower aliphatic alcohol at 20-25 deg.C at a weight ratio of 1:1, and composed of a silanol-terminated polydihydrogen siloxane of the general formula( I ) and having a weight-average molecular weight of 10,000-300,000 or a silyl-terminated polydihydrogen siloxane of the general formula (II) and having a weight-average molecular weight of 10,000-300,000.

Description

【発明の詳細な説明】 技術分野 本発明は熱分解によって酸化ケイ素膜を形成するシリコ
ーン樹脂に関する。
TECHNICAL FIELD The present invention relates to silicone resins that form silicon oxide films by thermal decomposition.

技術の背景 シリコーン樹脂を半導体装置の絶縁膜として用いるとき
、シリコーン樹脂を基板に塗布し熱処理して形成する酸
化ケイ素膜に歪が残らず、かつピンホールがなくて緻密
なことが必要である。
Background of the Technology When silicone resin is used as an insulating film in a semiconductor device, it is necessary that the silicon oxide film formed by coating the silicone resin on a substrate and heat-treating the substrate be dense and free from distortion and pinholes.

従来技術と問題点 このような酸化ケイ素膜を形rjシするシリコーン樹脂
として、従来はポリジアルコキシシロキサン、タトエば
?リジエトキシシロキサンまたはポリジメトキシシロキ
サンを使用した。これらのシリコーン樹脂は有機基を多
量に含み、これが熱分解されて飛散するので、得られる
酸化ケイ素絶縁膜はピンホールを含み、かつ熱分解後に
膜厚が減少するので、歪みを残す欠点がある。たとえば
塗布膜厚を03〜05μmとして熱分解すると膜厚は3
0〜50チ減少し、これをを気中で500℃に加熱する
とクラックを発生する。
Prior Art and Problems Conventionally, polydialkoxysiloxane and Tatoeba® have been used as silicone resins to form such silicon oxide films. Lydiethoxysiloxane or polydimethoxysiloxane was used. These silicone resins contain a large amount of organic groups, which are thermally decomposed and scattered, so the resulting silicon oxide insulating film contains pinholes, and the film thickness decreases after thermal decomposition, resulting in distortion. . For example, if the coating film thickness is 03 to 05 μm and thermally decomposed, the film thickness will be 3
It decreases by 0 to 50 inches, and when it is heated in air to 500°C, cracks occur.

発明の目的 本発明の目的は、加熱時に飛散する有機基を実質的に含
まないシリコーン樹脂を提供することである。
OBJECTS OF THE INVENTION An object of the present invention is to provide a silicone resin that is substantially free of organic groups that scatter during heating.

発明の構成 本発明の上記目的は、一般式HOOI2sIo九Hで表
わ式れる重量平均分子量がio、ooo〜300.00
0であるシラノール末端ポリジハイドロジエンシロキザ
ンからなる、ケトン、エーテル、芳香族炭化水素まjc
は低級脂肪族アルコールに、温度20〜25℃において
少なくとも重量比1:1まで溶解可能なシリコーン樹脂
によって達成きレル・溶剤トしては、ベンゼン、トルエ
ン、メチルイソブチルケトン、メチルエチルケトン、T
HF(テトラヒドロフラン)、エチルアルコールまたは
メチルアルコールが代表的なものである。
Structure of the Invention The above object of the present invention is to provide a compound having a weight average molecular weight of io, ooo to 300.00 expressed by the general formula HOOI2sIo9H.
Ketones, ethers, aromatic hydrocarbons, etc. consisting of silanol-terminated polydihydrodiene siloxane with
is achieved by silicone resins that are soluble in lower aliphatic alcohols at a temperature of 20-25° C. to a weight ratio of at least 1:1. Examples of solvents include benzene, toluene, methyl isobutyl ketone, methyl ethyl ketone, T.
Typical examples are HF (tetrahydrofuran), ethyl alcohol or methyl alcohol.

なお、このシリコーン樹脂はシラノール末端をシリル化
して安定性の良好な樹脂とすることができる。末端のシ
リル基(R,、R2,R3−)Sl−はR4゜R2’ 
R5を水素原子または低級アルキル基たとえばメチルま
たはエチルとする。このシリル末端ポリハイドロジエン
シロキサンはケトン、エーテルまたは芳香族炭化水素に
、温度20〜25℃において少なくとも重量比1:1ま
で溶解可能である。
Note that this silicone resin can be made into a resin with good stability by silylating the silanol terminal. The terminal silyl group (R,, R2, R3-) Sl- is R4゜R2'
R5 is a hydrogen atom or a lower alkyl group such as methyl or ethyl. The silyl-terminated polyhydrodiene siloxane is soluble in ketones, ethers or aromatic hydrocarbons at temperatures of 20 DEG to 25 DEG C. to a weight ratio of at least 1:1.

浴剤としてはベンゼン、トルエン、メチルイソブチルケ
トン1だけメチルエチルケトン、THFが代表的なもの
である。
Typical bath agents include benzene, toluene, methyl isobutyl ketone, methyl ethyl ketone, and THF.

製法および性質 一般式H2st(oR)2 (式中、Rは一価の脂肪族
炭化水素を示すンで表わされるジアルコキシシランを出
発原料とし、次式に示すように、加水分解してジヒドロ
キシシランを生成し、引続いて縮重合させてシラノール
末端ジハイドロジエンシロキサン(以下PDH8という
ンを生成する。
Production method and properties A dialkoxysilane represented by the general formula H2st(oR)2 (where R represents a monovalent aliphatic hydrocarbon) is used as a starting material and is hydrolyzed to produce dihydroxysilane as shown in the following formula. and subsequent condensation polymerization to produce silanol-terminated dihydrodiene siloxane (hereinafter referred to as PDH8).

H281(OR)2+2H20→H2S1(OH)2+
2ROH、H このとき、6くP!I〈7とすることによって、GPC
で測定したポリスチレン換算による重量平均分子量をt
o、ooo〜300,000とすることができ、かつケ
トン、エーテル、芳香族炭化水素または低級脂肪族アル
コールに温度20〜25℃において少なくとも重量比1
:1まで溶解する。もし声〈6のときは5L−H結合が
分解して、三次元架橋しグル化し、pH=7では縮重合
反応が進行せず、pi(〉7のときはpH(6のときと
同様にグル化するので溶剤に溶解しなくなる。
H281(OR)2+2H20→H2S1(OH)2+
2ROH, H At this time, 6 points! By setting I〈7, GPC
The weight average molecular weight measured in terms of polystyrene is t
o, ooo to 300,000, and the ketone, ether, aromatic hydrocarbon or lower aliphatic alcohol has a weight ratio of at least 1 at a temperature of 20 to 25°C.
:Dissolve up to 1. If the voice is <6, the 5L-H bond will be decomposed, three-dimensional crosslinking will occur, and the polycondensation reaction will not proceed at pH = 7, and if pi (>7), the 5L-H bond will decompose, resulting in three-dimensional crosslinking and gluing. Glues and becomes insoluble in solvents.

出発原料はジメトキシシラン(b、p38℃)またけジ
ェトキシシラン(b、p、 s o〜81℃)カ適当で
あり、これらの単量体よシ高い沸点を有する溶剤、たと
えばメチルイソブチルケトン(b、p。
The starting materials are dimethoxysilane (b, p, 38°C) or jetoxysilane (b, p, so~81°C), and a solvent having a higher boiling point than these monomers, such as methyl isobutyl ketone ( b, p.

117℃)に溶解し、単量体旋度3〜7重量%として反
応させる。この両度が3に量チよシ低いと反応が遅くて
収率が少なく、7重量%より高いと、三次元架橋してグ
ル化し、溶媒に不溶となる。また加水分解および重縮合
の反応温度は50℃を超え々いように制御する。50℃
よシ高いとグル化し易く寿る。
(117°C) and reacted with a monomer rotation of 3 to 7% by weight. If the amount is much lower than 3, the reaction will be slow and the yield will be low, and if it is higher than 7% by weight, it will be three-dimensionally crosslinked and glued, becoming insoluble in the solvent. Furthermore, the reaction temperatures for hydrolysis and polycondensation are controlled to be no higher than 50°C. 50℃
If you are tall, you will easily become a group and live a long life.

本発明のPDH8は重合構造が単純と考えられ、粘稠な
液体または固体であシ、ベンゼン、トルエン、メチルイ
ソブチルケトン、メチルエチルケトン、THF、エチル
アルコールまタハメチルアルコールに温度20〜25℃
において少なくとも重量比1.1まで溶解する。
PDH8 of the present invention is considered to have a simple polymer structure, and is a viscous liquid or solid.
It dissolves to a weight ratio of at least 1.1.

もしジクロルシランを出発原料とすれは、加水分解によ
多塩酸を生成して強酸性となるので、P1]の制御が困
難であって、生成する縮重合体は平均重合度n≦6と低
いのにも拘らず、ベンゼンに不溶であシ、塗布溶液とす
ることができないので、酸化ケイ素膜形成に利用するこ
とができない。
If dichlorosilane is used as a starting material, it will hydrolyze to produce polyhydrochloric acid and become strongly acidic, making it difficult to control P1, and the resulting condensation polymer will have a low average degree of polymerization n≦6. However, it cannot be used to form a silicon oxide film because it is insoluble in benzene and cannot be used as a coating solution.

PDH8のシリル化剤としては、分子量の小さい有機基
を有するクロルシランを使用する。たとえは、ジメチル
クロルシランをシリル化剤とするときは次式に示すジメ
チルシリル末端PDH8を生成する。
As the silylating agent for PDH8, chlorosilane having an organic group with a small molecular weight is used. For example, when dimethylchlorosilane is used as the silylating agent, dimethylsilyl-terminated PDH8 shown in the following formula is produced.

このシリル末端PDH8はケトンまたは芳香族炭化水素
たとえばベンゼン、トルエン、メチルイソブチルケトン
またはメチルエチルケトン、THFに、温度20〜25
℃において、少なくとも重量比1:1まで溶解する。
This silyl-terminated PDH8 can be reacted with a ketone or aromatic hydrocarbon such as benzene, toluene, methyl isobutyl ketone or methyl ethyl ketone, THF at a temperature of 20-25°C.
℃ to a weight ratio of at least 1:1.

本発明のPDH8およびシリル末端PDH8は熱分解に
おいて有機基の抜穴が小さいと考えられ、熱分解によシ
発生する歪やピンホールが極めて少々い。
It is thought that the PDH8 and silyl-terminated PDH8 of the present invention have small holes for organic groups during thermal decomposition, and have very few distortions and pinholes caused by thermal decomposition.

本発明のジアルコキシシランを出発原料として調製した
PDH8の重量平均分子量および溶解度、さらにこれを
シリル化したシリル末端PDH8の赤外吸収スペクトル
、重量平均分子量、および熱重量分析は次のとおシであ
る。
The weight average molecular weight and solubility of PDH8 prepared using the dialkoxysilane of the present invention as a starting material, and the infrared absorption spectrum, weight average molecular weight, and thermogravimetric analysis of silyl-terminated PDH8 obtained by silylating it are as follows. .

第1図はジメチルシリル末端PDH8の赤外吸収スペク
トルである。波数2100〜2250cm−’に5t−
)T、29ffOcm にC−H3,12601 工 に8l−CH3,100(1〜1150cm に8
1−〇にもとづく特性成敗が認められ、シロキサン結合
を主骨格とし、ケイ素原子に2個の水素原子が結合し、
末端に5i−cu、結合を有する下記の構造であること
がわかった。
FIG. 1 is an infrared absorption spectrum of dimethylsilyl-terminated PDH8. 5t- for wave number 2100~2250cm-'
) T, 29ffOcm to C-H3,12601 Eng to 8l-CH3,100 (1 to 1150cm to 8
The properties based on 1-0 have been confirmed, and the main skeleton is a siloxane bond, two hydrogen atoms are bonded to a silicon atom,
It was found to have the following structure having a 5i-cu bond at the end.

CH3HCH3 PDH8の重量平均分子量は、GPC法によるポリスチ
レン換算値で、10,000から300,000の範囲
にあった。
The weight average molecular weight of CH3HCH3 PDH8 was in the range of 10,000 to 300,000 in terms of polystyrene by GPC method.

ル量平均分−i′量が10,000より小さいと、熱処
理の際低分子量体が揮発してしまうため重量減少が大き
くなシ、膜に歪が入シやずくなるので不適当であシ、3
00,000より太きいと、三次元架橋を起こしケ゛ル
化し易くなり溶媒に不溶となるので不適当である。
If the average molecular weight -i' is less than 10,000, low molecular weight substances will volatilize during heat treatment, resulting in a large weight loss, and the film will become strained, making it unsuitable. ,3
If it is thicker than 00,000, it is unsuitable because it causes three-dimensional crosslinking, tends to cause calcification, and becomes insoluble in solvents.

シリル末端PDH8の分子iはPDH8の分子量と実質
的に同一と考えられる。
The molecule i of silyl-terminated PDH8 is believed to be substantially the same as the molecular weight of PDH8.

このPDH8のベンゼン、トルエン、メチルアルコール
およびエチルアルコールに対する温度20〜25℃の溶
が「度は、いずれも少なくとも重量比1:1才で溶解し
、i!たトリエチルシリル末端PDH8はベンゼン、ト
ルエン、メチルイソブチルケトンおよびメチルエチルケ
トンに対する温度20〜25℃の溶解度は、いずれも少
なくとも重量比1:1まで溶解した。
When this PDH8 is dissolved in benzene, toluene, methyl alcohol, and ethyl alcohol at a temperature of 20 to 25°C, the triethylsilyl-terminated PDH8 is dissolved in benzene, toluene, methyl alcohol, and ethyl alcohol at a weight ratio of at least 1:1. The solubility of methyl isobutyl ketone and methyl ethyl ketone at a temperature of 20 to 25°C was such that both were dissolved at a weight ratio of at least 1:1.

熱1量分析は、ジメチルシリル末端PDH8の未硬化の
ものの重量を100係とし、昇温速度5℃/m i n
で900℃壕で加熱した。重量の変化は250℃から始
まって450℃では約110%に達した。これはSt 
−Hが分解して酸素が伺加したためと考えられ、酸化は
450℃でt′、8ぼ完了し、その後は800℃を超え
るまで変化のないことがわかった(第2図)。
For thermal analysis, the weight of uncured dimethylsilyl-terminated PDH8 was taken as 100, and the heating rate was 5°C/min.
It was heated in a trench at 900°C. The weight change started at 250°C and reached about 110% at 450°C. This is St
This is thought to be due to the decomposition of -H and the addition of oxygen, and it was found that the oxidation was completed at 450°C for about t'8, and thereafter there was no change until the temperature exceeded 800°C (Figure 2).

絶縁膜への使用 ジメチルシリル末端PDH820重量%を溶解したメチ
ルイソブチルケトン溶液をシリコンウエノ1上に300
 Orpm 、30 iり の条件で塗布し、100℃
で30分間加熱して溶剤を遅出した後、空気中で450
℃で1時間加熱した。塗布膜厚を0.6〜07μmとし
たとき、膜厚の変化は約10チ沖少したに過ぎなかった
。なお500℃に加熱してもクラックを発生せず、さら
に750℃においても安定であった。
Use for insulating film A methyl isobutyl ketone solution containing 820% by weight of dimethylsilyl-terminated PDH was placed on silicone Ueno 1 at a temperature of 300%.
Orpm, applied under the conditions of 30 ir and heated at 100°C.
After heating for 30 minutes at
Heated at ℃ for 1 hour. When the coating film thickness was set to 0.6 to 0.7 μm, the change in film thickness was only about 10 cm. Note that no cracks were generated even when heated to 500°C, and it was stable even at 750°C.

実施例 市販のジェトキシシラン10Iに純水100gを加え、
よく振盪した。分取した水層の−は5.8であったので
、精密蒸留し、得た沸点80.0〜80.5℃の留分の
中の10gを再び100.9の純水で水洗したものは−
=6.6であった。
Example: Add 100 g of pure water to commercially available jetoxysilane 10I,
Shake well. The fractionated aqueous layer had a - of 5.8, so 10g of the fraction with a boiling point of 80.0 to 80.5°C obtained by precision distillation was washed again with pure water of 100.9. Ha-
=6.6.

こうしてAI’i ’Hしたジェトキシシラン50.9
に精製したメチルイソブチルケトン95011を加え、
氷冷して)h拝しながら蒸留水75.9を5秒に1滴ず
つの割合で滴下して加水分解脱アルコールし、さらに約
30分間水冷を続けた後、徐々に温度を昇けて35℃と
して2時間この温度で攪拌を続けて加水分解し縮重合さ
せた。この間5〇−向減圧として生成したアルコールと
水とを除き反応を促進した。残留液はPDH8を約3重
′M: %含むジメチルイソブチルケトン溶液550g
であった。
Thus AI'i'H jetoxysilane 50.9
Add purified methyl isobutyl ketone 95011 to
While cooling on ice, add 75.9 drops of distilled water at a rate of 1 drop every 5 seconds to perform hydrolytic dealcoholization, continue water cooling for about 30 minutes, and then gradually raise the temperature. The temperature was raised to 35° C., and stirring was continued at this temperature for 2 hours to effect hydrolysis and condensation polymerization. During this time, the reaction was promoted by removing the generated alcohol and water by reducing the pressure in the 50-degree direction. The residual liquid is 550 g of dimethyl isobutyl ketone solution containing approximately 3% PDH8.
Met.

このPDH8溶液にジェトキシランと同当量のジメチル
クロルシラン39gを掬:拌しながら加え、30℃で3
0分間攪拌し続けてシリル化を完了した。蒸留水2!を
1秒に1滴ずつの削合で滴下して、過剰のジメチルクロ
ルシランを分解し、さらに水洗し、減圧濃縮した。得だ
有機層に5倍容量のアセトニトリルを加えてシリル末端
PDH8を沈殿させ、アセトニトリルによる傾斜洗浄を
3回反復して、白色粉末のジメチルシリル末端PDII
S18Nを得た。
To this PDH8 solution, 39 g of dimethylchlorosilane, which is equivalent to jetoxylan, was added with stirring, and the mixture was heated to 30°C.
Stirring was continued for 0 minutes to complete the silylation. Distilled water 2! was added dropwise at a rate of one drop per second to decompose excess dimethylchlorosilane, which was further washed with water and concentrated under reduced pressure. Five times the volume of acetonitrile was added to the obtained organic layer to precipitate the silyl-terminated PDH8, and the gradient washing with acetonitrile was repeated three times to obtain the dimethylsilyl-terminated PDII as a white powder.
S18N was obtained.

このシリル末端PDH8の重量平均分子量は、次のよう
に測定した。
The weight average molecular weight of this silyl-terminated PDH8 was measured as follows.

ジメチルシリル末端PDH8の0.1gを1011のテ
トラヒドロフランに溶解し1wt%テトラヒドロフラン
溶液とした。この溶液を用いてGPC法(グルパーミエ
ータ1ンクロマトクラフイー)KJ:υ分子量測定した
。この結果、重量平均分子量Mw=158,000、数
平均分子量MN = 30.200−分散度MW/MN
 = 5.27であることがわかった。
0.1 g of dimethylsilyl-terminated PDH8 was dissolved in 1011 volumes of tetrahydrofuran to obtain a 1 wt % tetrahydrofuran solution. Using this solution, the molecular weight was measured using the GPC method (glupermeator chromatography) KJ:υ. As a result, weight average molecular weight Mw = 158,000, number average molecular weight MN = 30.200 - dispersity MW/MN
= 5.27.

PDH8自身の平均分子量はシリル化PDH8と同一と
考えられる。々おこのPDH8は室温(25℃)におい
てベンゼン、トルエン、メチルイソブチルケトン、メチ
ルエチルケトン、テトラヒドロフラン、メチルアルコー
ル、エチルアルコールニ少なくとも重量比1:1まで溶
解した。またジメチルシリル未# PDH8は室温(2
5℃)においてベンゼン、トルエン、メチルイソブチル
ケトン、メチルエチルケトン、テトラヒドロフランに少
なくとも重量比1:1まで溶解した。
The average molecular weight of PDH8 itself is considered to be the same as that of silylated PDH8. Each PDH8 was dissolved in benzene, toluene, methyl isobutyl ketone, methyl ethyl ketone, tetrahydrofuran, methyl alcohol, and ethyl alcohol to a weight ratio of at least 1:1 at room temperature (25° C.). In addition, dimethylsilyl non-#PDH8 is at room temperature (2
5° C.) in benzene, toluene, methyl isobutyl ketone, methyl ethyl ketone, and tetrahydrofuran to a weight ratio of at least 1:1.

次に精製ジメチルシリル末端PDH85、S’をトルエ
ン20.9に俗解した20重量%浴液を、シリコンウェ
ハ上K 3000 rynでスビンコー) L、テ塗腕
を形成し、これを100℃で30分間、次いで450℃
で1時間熱処理して酸化ケイ素膜とした。
Next, a 20% by weight bath solution containing purified dimethylsilyl-terminated PDH85, S' in toluene 20.9 was coated on a silicon wafer with a K 3000 ryen to form a coated arm, and this was heated at 100 °C for 30 minutes. , then 450℃
The film was heat-treated for 1 hour to form a silicon oxide film.

この熱処理の前後の膜厚の変化は、硬化前の0.75μ
mが硬化後の0.70μmとなった程度であシ、さらに
空気中で500℃で2時間放置したが、膜に異常は認め
られなかった。このように酸化ケイ素膜はクラックも発
生せず、また微少なピンホールも視覚できないばかシで
なく、電気抵抗が5×10”Q−cmであシ、絶縁性は
良好であった。
The change in film thickness before and after this heat treatment is 0.75μ before curing.
m was only 0.70 μm after curing, and the film was left to stand at 500° C. for 2 hours in air, but no abnormality was observed in the film. As described above, the silicon oxide film had no cracks, no visible minute pinholes, and had an electrical resistance of 5 x 10"Q-cm, and had good insulation properties.

またこの硬化膜は下地基板との密着性が良好であって、
ケイ素、酸化ケイ素、通常のガラス、リンケイ酸ガラス
、アルミナおよびアルミニウムなど、多様な基板と対し
てすぐれた密着性を示した。
In addition, this cured film has good adhesion to the underlying substrate,
It showed excellent adhesion to a variety of substrates, including silicon, silicon oxide, ordinary glass, phosphosilicate glass, alumina, and aluminum.

発明の効果 本発明のシリコーン樹脂の溶液を種々な基板に塗布し、
熱処理して形成した酸化ケイ素絶縁膜は基板との@着性
が良好てあり、電気抵抗も高く、かつ高温に加熱しても
クラックの入らない利点を有する。
Effects of the Invention Applying the silicone resin solution of the present invention to various substrates,
The silicon oxide insulating film formed by heat treatment has the advantage of good adhesion to the substrate, high electrical resistance, and no cracking even when heated to high temperatures.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施態様であるジメチルシリル末端P
DH8の赤外吸収スペクトル曲線であシ、第2図は本発
明の実施態様であるジメチルシリル末端PDH8の熱重
量分析曲線である。
FIG. 1 shows a dimethylsilyl-terminated P which is an embodiment of the present invention.
FIG. 2 is an infrared absorption spectrum curve of DH8, and FIG. 2 is a thermogravimetric analysis curve of dimethylsilyl-terminated PDH8, which is an embodiment of the present invention.

Claims (1)

【特許請求の範囲】 1、一般式 %式% で表わされる重量平均分子量Mwが10,000〜30
0.000であるシラノール末端ポリジハイドロジエン
シロキサンからなる、ケトン、エーテル、芳香族炭化水
素または低級脂肪族アルコールに温度20〜25℃にお
いて少なくとも重量比1:1まで溶解可能なシリコーン
樹脂。 2、一般式 (式中、R1,R2+ R3は水素原子または低級アル
キル基)で表わされる重量平均分子量が10,000〜
300,000であるシリル末端ポリジハイドロジエン
シロキサンからなる、ケトン、エーテルまたは芳香族炭
化水素に温度20〜25℃において少なくとも重量比1
:1まで溶解可能なシリコーン樹脂。
[Claims] 1. Weight average molecular weight Mw expressed by the general formula % is 10,000 to 30
0.000 silanol-terminated polydihydrodiene siloxane, which is soluble in ketones, ethers, aromatic hydrocarbons or lower aliphatic alcohols at a temperature of 20-25°C to a weight ratio of at least 1:1. 2. The weight average molecular weight represented by the general formula (wherein R1, R2+ R3 are hydrogen atoms or lower alkyl groups) is 10,000 to
300,000 to a ketone, ether or aromatic hydrocarbon in a weight ratio of at least 1 at a temperature of 20-25°C.
: Silicone resin that can be dissolved up to 1.
JP19249283A 1983-10-17 1983-10-17 Silicone resin Pending JPS6086018A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19249283A JPS6086018A (en) 1983-10-17 1983-10-17 Silicone resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19249283A JPS6086018A (en) 1983-10-17 1983-10-17 Silicone resin

Publications (1)

Publication Number Publication Date
JPS6086018A true JPS6086018A (en) 1985-05-15

Family

ID=16292203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19249283A Pending JPS6086018A (en) 1983-10-17 1983-10-17 Silicone resin

Country Status (1)

Country Link
JP (1) JPS6086018A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5942802A (en) * 1995-10-09 1999-08-24 Matsushita Electric Industrial Co., Ltd. Semiconductor device and method of producing the same
WO2008035820A1 (en) * 2006-09-21 2008-03-27 Jsr Corporation Silicone resin composition and method for forming trench isolation
JP2008101206A (en) * 2006-09-21 2008-05-01 Jsr Corp Silicone resin, silicone resin composition and method for forming trench isolation
JP2008266119A (en) * 2006-11-24 2008-11-06 Jsr Corp Silicone resin, silicone resin composition and method for forming trench isolation
US8097690B2 (en) 2005-08-05 2012-01-17 Dow Corning Toray Company, Ltd. Cyclic dihydrogenpolysiloxanes, hydrogenpolysiloxanes, processes for their production, silica type glass moldings and a process for their production, optical elements and a process for their production

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5942802A (en) * 1995-10-09 1999-08-24 Matsushita Electric Industrial Co., Ltd. Semiconductor device and method of producing the same
US6171979B1 (en) * 1995-10-09 2001-01-09 Matsushita Electric Industrial Co., Ltd. Semiconductor device and method of producing the same
US6200912B1 (en) 1995-10-09 2001-03-13 Matsushita Electric Industrial Co., Ltd. Semiconductor device and method of producing the same
US8097690B2 (en) 2005-08-05 2012-01-17 Dow Corning Toray Company, Ltd. Cyclic dihydrogenpolysiloxanes, hydrogenpolysiloxanes, processes for their production, silica type glass moldings and a process for their production, optical elements and a process for their production
WO2008035820A1 (en) * 2006-09-21 2008-03-27 Jsr Corporation Silicone resin composition and method for forming trench isolation
JP2008101206A (en) * 2006-09-21 2008-05-01 Jsr Corp Silicone resin, silicone resin composition and method for forming trench isolation
JP2008266119A (en) * 2006-11-24 2008-11-06 Jsr Corp Silicone resin, silicone resin composition and method for forming trench isolation

Similar Documents

Publication Publication Date Title
EP2250213B1 (en) Silsesquioxane resins
US4694040A (en) Liquid composition for forming a coating film of organopolysiloxane and method for the preparation thereof
EP0494744B1 (en) Coating composition for forming insulating layers and masks
US5152834A (en) Spin-on glass composition
US6743471B2 (en) Process for preparing insulating material having low dielectric constant
US5472488A (en) Coating solution for forming glassy layers
US5302198A (en) Coating solution for forming glassy layers
TWI384016B (en) Siloxane resin coating
JP3543669B2 (en) Coating liquid for forming insulating film and method for forming insulating film
JP2002363285A (en) Siloxane-based resin and method for forming semiconductor interlayer insulating film by using the same
JPH0213A (en) Composition for forming protective film for transparent electrode of liquid crystal display element
JPS62230828A (en) Insulating film for semiconductor, formation thereof and coating solution
JPS6086018A (en) Silicone resin
TW201816516A (en) Negative-type photosensitive resin composition and use thereof
JP3681582B2 (en) Epoxy group-containing silicone resin
JP2004536924A (en) Siloxane resin
JPH06346025A (en) Coating composition
JPS60235711A (en) Formation of sio2 film
JPH03221577A (en) Coating solution for insulating film formation
JP2000319530A (en) Composition for semiconductor element
JP4734815B2 (en) Composition, method of forming low dielectric constant film using the composition, low dielectric constant film, and electronic component having the low dielectric constant film
US5270074A (en) Silicone resin coating compositions
JPH0623253B2 (en) Method for producing organic silicon resin
JPH07258604A (en) Optical material and coating composition for optical material
JPH03100021A (en) Polysiloxane