JPS6081060A - Manufacture of partially stabilized zirconia sintered body - Google Patents
Manufacture of partially stabilized zirconia sintered bodyInfo
- Publication number
- JPS6081060A JPS6081060A JP58186523A JP18652383A JPS6081060A JP S6081060 A JPS6081060 A JP S6081060A JP 58186523 A JP58186523 A JP 58186523A JP 18652383 A JP18652383 A JP 18652383A JP S6081060 A JPS6081060 A JP S6081060A
- Authority
- JP
- Japan
- Prior art keywords
- sintered body
- stabilized zirconia
- zirconia sintered
- strength
- partially stabilized
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910002077 partially stabilized zirconia Inorganic materials 0.000 title claims description 12
- 238000004519 manufacturing process Methods 0.000 title claims description 11
- 239000000843 powder Substances 0.000 claims description 21
- 239000003381 stabilizer Substances 0.000 claims description 6
- 239000000203 mixture Substances 0.000 claims description 4
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 14
- 239000013078 crystal Substances 0.000 description 7
- 238000005452 bending Methods 0.000 description 6
- 239000002245 particle Substances 0.000 description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 230000006866 deterioration Effects 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 239000006104 solid solution Substances 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 238000010304 firing Methods 0.000 description 3
- 229910002078 fully stabilized zirconia Inorganic materials 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 230000035939 shock Effects 0.000 description 3
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 238000001354 calcination Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000011812 mixed powder Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000007784 solid electrolyte Substances 0.000 description 2
- 230000006641 stabilisation Effects 0.000 description 2
- 238000011105 stabilization Methods 0.000 description 2
- 229910001928 zirconium oxide Inorganic materials 0.000 description 2
- 229920000084 Gum arabic Polymers 0.000 description 1
- 241000978776 Senegalia senegal Species 0.000 description 1
- 229910003134 ZrOx Inorganic materials 0.000 description 1
- 239000000205 acacia gum Substances 0.000 description 1
- 235000010489 acacia gum Nutrition 0.000 description 1
- 239000012770 industrial material Substances 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 239000012774 insulation material Substances 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 229910002076 stabilized zirconia Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Compositions Of Oxide Ceramics (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
本発明は200°C以上の温度における機械的耐久性に
優れた部分安定化ジルコニア焼結体の製造法に関するも
のである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a partially stabilized zirconia sintered body having excellent mechanical durability at temperatures of 200° C. or higher.
従来、ジルコニア焼結体製造法において原料がジルコニ
アのみからなる場合、1000℃付近で生じる単斜型=
正方型転移に伴う大きな容積変化に起因し、熱衝撃抵抗
の極めて小さいものしか得られないことは知られている
。そこで現在一般にはCa O、M g O−Y b
20a等の安定化剤を添加固溶させた完全安定化ジルコ
ニア焼結体や部分安定化ジルコニア焼結体が断熱材、構
造材、酸素濃淡電池用固体電解質等、各種工業材料に使
用されている。完全安定化ジルコニア焼結体は前記安定
化剤を充分量固溶させて焼結体の結晶系を常温から20
00℃近くまで安定な立方晶の単−相としたものである
が、機械的強度に劣っている。Conventionally, in the manufacturing method of zirconia sintered bodies, when the raw material consists only of zirconia, the monoclinic type that occurs around 1000°C =
It is known that only extremely low thermal shock resistance can be obtained due to the large volume change associated with the square transition. Therefore, currently Ca O, M g O-Y b
Fully stabilized zirconia sintered bodies and partially stabilized zirconia sintered bodies containing stabilizers such as 20a are used in various industrial materials such as insulation materials, structural materials, solid electrolytes for oxygen concentration batteries, etc. . A fully stabilized zirconia sintered body is produced by dissolving a sufficient amount of the stabilizer to change the crystal system of the sintered body from room temperature to 20°C.
Although it is a single-phase cubic crystal that is stable up to temperatures close to 00°C, it has poor mechanical strength.
部分安定化ジルコニア焼結体は前記安定化剤の添加量を
制御し、焼結体の結晶系を立方晶と単斜晶とが混在した
二相としたもので、機械的強度及び耐熱衝撃性に優れて
いるが200℃ないし300℃の特定温度域における強
度の経時劣化が極めて太き(耐久性に欠ける。この経時
劣化は焼結体中の安定化剤の量を増やし立方晶の割合を
増すにつれて小さくなるが、逆にその他の性質は完全安
定化ジルコニア焼結体に近くなり、耐熱衝撃性や初期の
機械的強度が劣化する。この現象を最も代表的な安定化
剤であるY2O3の添加量と抗折強度及び強度の経時劣
化との関係について門べた結果を引用して説明する。第
1図は従来のジルコニア焼結体に対するY2O3の添加
量と同焼結体の抗折強度との関係及び同添加量と同焼結
体を温度250℃で1000時間保持した後の抗折強度
の劣化率との関係を示す。第1図に示すようにY2O。The partially stabilized zirconia sintered body is made by controlling the amount of the stabilizer added, and the crystal system of the sintered body is made into a two-phase mixture of cubic and monoclinic crystals, which improves mechanical strength and thermal shock resistance. However, the strength deteriorates over time in a specific temperature range of 200°C to 300°C (lack of durability). As the stabilizer increases, the size decreases, but on the other hand, other properties become close to those of fully stabilized zirconia sintered bodies, and thermal shock resistance and initial mechanical strength deteriorate. The relationship between the addition amount, flexural strength, and deterioration of strength over time will be explained by citing the results obtained. Figure 1 shows the relationship between the addition amount of Y2O3 and the flexural strength of a conventional zirconia sintered body. The relationship between the addition amount and the deterioration rate of the bending strength after holding the same sintered body at a temperature of 250° C. for 1000 hours is shown.As shown in FIG.
の添加量が増すにつれて抗折強度は低下するが上記温度
で保持した後の強度劣化率は小さくなり耐久性は良くな
る。このように初期の機械的強度とその耐久性とは表裏
一体の相反する傾向を示す故に温度200℃以上での機
械的耐久性に優れた高強度ジルコニア焼結体を製造する
ことは困難であった。As the amount of addition increases, the bending strength decreases, but the rate of strength deterioration after being maintained at the above temperature decreases and the durability improves. In this way, initial mechanical strength and durability tend to be two sides of the same coin, making it difficult to produce a high-strength zirconia sintered body with excellent mechanical durability at temperatures of 200°C or higher. Ta.
発明者等は上記の難点を克服するために鋭意研究を重ね
た処、Y2O3固熔量の異なる二種の部分安定化ジルコ
ニア仮焼粉末を適当な割合で混合し成形し焼成して得ら
れる部分安定化ジルコニア焼結体は、初期はY2O,固
溶量の多い仮焼粉末のみから製造した焼結体と同様の性
質を示すが、200℃ないし300℃の温度で一定時間
以上保持するとY2O3固溶量の少ない仮焼粉末のみか
ら製造した焼結体の初期強度にまで向上し、その後も経
時劣化を起こさず極めて耐久性に優れた高強度焼結体と
なることを見出した。In order to overcome the above-mentioned difficulties, the inventors have conducted intensive research and have developed a part obtained by mixing two types of partially stabilized zirconia calcined powders with different Y2O3 solid melting amounts in an appropriate ratio, molding and firing. Initially, the stabilized zirconia sintered body exhibits the same properties as a sintered body produced only from calcined powder with a large amount of Y2O and solid solution, but when kept at a temperature of 200°C to 300°C for a certain period of time, it solidifies Y2O3. It has been found that the initial strength of the sintered body is improved to that of a sintered body produced only from calcined powder with a small amount of solubility, and even after that, a high-strength sintered body that does not deteriorate over time and has extremely excellent durability can be obtained.
本発明は上記の知見に基づいてなされたもので、その要
旨とする処はY2O3を安定化剤とする部分安定化ジル
コニア焼結体の製造法において、Y2O,とZrO2を
主成分とし、ZrO2に対するY2O3の添加量の異な
る二種の混合粉末をY2O3のX線回折ピークが認めら
れなくなる温度よりも高い温度で仮焼し、Y2O,固溶
量の異なる二種の仮焼粉末を得、前記二種の仮焼粉末よ
りなる混合物の成形体を焼成した後、200℃ないし3
00℃の温度範囲で25時間以上保持することを特徴と
する部分安定化ジルコニア焼結体の製造法に存する。The present invention has been made based on the above findings, and the gist thereof is to provide a method for producing a partially stabilized zirconia sintered body using Y2O3 as a stabilizer, in which Y2O and ZrO2 are the main components, and Two types of mixed powders with different addition amounts of Y2O3 are calcined at a temperature higher than the temperature at which the X-ray diffraction peak of Y2O3 is no longer observed to obtain two types of calcined powders with different amounts of Y2O and solid solution. After firing the molded body of the mixture consisting of the calcined powder of seeds, the temperature is
The present invention relates to a method for producing a partially stabilized zirconia sintered body, characterized by holding the body at a temperature of 00°C for 25 hours or more.
本発明製造法において仮焼温度をy、o、のX線回折ピ
ークが認められなくなる温度よりも高い温度としたのは
、この温度でY2O,がほぼ完全にZ r Oxに固溶
したと認定し得るからである。In the production method of the present invention, the calcination temperature is set higher than the temperature at which the X-ray diffraction peaks of y and o are no longer recognized, because it is recognized that at this temperature Y2O is almost completely dissolved in ZrOx. Because it can be done.
仮焼粉末は、焼結体を200℃ないし300℃の温度範
囲で25時間以上保持した後の単斜晶の割合が20〜4
0vo1%となるようにそれらの種類及び混合比を選定
するのが望ましい。単斜晶が20vo1%に満たないと
強度が弱(なり、40vo1%を越えると耐久性が悪く
なるからである。The calcined powder has a monoclinic ratio of 20 to 4 after holding the sintered body at a temperature range of 200°C to 300°C for 25 hours or more.
It is desirable to select their types and mixing ratio so that the content is 0vo1%. If the monoclinic crystal content is less than 20 vol%, the strength will be weak, and if it exceeds 40 vol%, the durability will be poor.
また、焼結体の強度をY2O,固溶量の少ない仮焼粉末
のみから製造した焼結体の初期の強度にまで向上させる
には、焼結体を200℃ないし300°Cの温度範囲で
25時間以上望ましくは100時間以上保持することを
必要とする。In addition, in order to improve the strength of the sintered body to the initial strength of the sintered body produced only from Y2O and calcined powder with a small amount of solid solution, the sintered body must be heated in a temperature range of 200°C to 300°C. It is necessary to hold it for 25 hours or more, preferably 100 hours or more.
以下実施例を示す。Examples are shown below.
実施例
第−稀元素化学工業■製酸化ジルコニウム(SP ZG
rade ) 96モル%及び粒径2.5μm以下の粒
子が85重量%以上の信越化学■製酸化イツトリウム4
モル%よりなる混合粉末を粒径2,5μm以下の粒子が
93重量%以上となるまで湿式粉砕し乾燥後、温度13
00°C1保持時間2時間の条件で仮焼したものを仮焼
粉末Aとした。酸化ジルコニウム及びイツトリウムの含
有量がそれぞれ95モル%及び5モル%である以外は仮
焼粉末Aを得る条件と同一条件で得たものを仮焼粉末B
とした。仮焼粉末Aと仮焼粉末Bを等重量混合し湿式粉
砕した後、全仮焼粉末100重量部に対し1.2重量部
のセロゾール及び0.8重量部のアラビアゴムを添加し
、次いで粒径2.5μm以下の粒子が82重量%以上と
なるまで湿式粉砕し噴霧乾燥機を用いて造粒した。造粒
粉末を長さ50龍、先端外径7龍φ、後端外径1211
1φの自動車用酸素センサー素子形状に成形し、温度1
480℃、保持時間80分の条件で焼成することによっ
て部分安定化ジルコニア焼結体1を製造した。比較のた
めに仮焼粉末Aと仮焼粉末Bを混合せず、それぞれの仮
焼粉末に対して焼結体1を製造した場合と同一条件で粉
砕、造粒、成形、焼成を行い、焼結体2及び焼結体3を
製造した。焼結体1〜3を温度250℃の大気中に一定
時間保持した後に取り出して抗折強度を測定した結果を
第2図に示す。図中曲線p、曲線q及び曲線rはそれぞ
れ焼結体l、仮焼粉末Aのみから製造された焼結体2及
び仮焼粉末Bのみから製造された焼結体3について上記
抗折強度を測定した結果を表わす。初期の焼結体1ばY
2O3固溶量が多く結晶安定化度の高い焼結体3と同程
度の強度を示すが、温度250℃で保持すると25時間
までは急激に強度が増し、約100時間保持するとY2
O3固熔量が少なく結晶安定化度の低い焼結体2と同程
度の強度に達し、その後もほとんど強度が劣化していな
いことがわかる。従って焼結体1を温度250℃で25
時間以上保持したものの如く本発明製造法によって得ら
れる焼結体は、一種の仮焼粉末のみから得られる焼結体
に比べて格段に優れた性質を示すのである。Example No. - Zirconium oxide (SP ZG) manufactured by Kigenso Kagaku Kogyo ■
Yttrium oxide 4 manufactured by Shin-Etsu Chemical ■ containing 96 mol% and 85% by weight or more of particles with a particle size of 2.5 μm or less
A mixed powder consisting of mol% was wet-pulverized until particles with a particle size of 2.5 μm or less became 93% by weight or more, dried, and then heated at a temperature of 13%.
Calcined powder A was obtained by calcining at 00° C. for a holding time of 2 hours. Calcined powder B was obtained under the same conditions as for calcined powder A, except that the contents of zirconium oxide and yttrium were 95 mol% and 5 mol%, respectively.
And so. After mixing equal weights of calcined powder A and calcined powder B and wet pulverizing, 1.2 parts by weight of cellosol and 0.8 parts by weight of gum arabic were added to 100 parts by weight of the total calcined powder, and then granulated The mixture was wet-pulverized until particles having a diameter of 2.5 μm or less accounted for 82% by weight or more, and granulated using a spray dryer. The length of the granulated powder is 50 mm, the outer diameter of the tip is 7 mm, and the outer diameter of the rear end is 1211 mm.
Molded into the shape of a 1φ automotive oxygen sensor element and heated to a temperature of 1
Partially stabilized zirconia sintered body 1 was manufactured by firing under the conditions of 480° C. and holding time of 80 minutes. For comparison, calcined powder A and calcined powder B were not mixed, but each calcined powder was crushed, granulated, molded, and fired under the same conditions as when producing sintered body 1. A compact 2 and a sintered compact 3 were manufactured. The sintered bodies 1 to 3 were kept in the atmosphere at a temperature of 250° C. for a certain period of time, and then taken out and the bending strength was measured. The results are shown in FIG. In the figure, curve p, curve q, and curve r represent the above-mentioned bending strength for sintered body 1, sintered body 2 manufactured only from calcined powder A, and sintered body 3 manufactured only from calcined powder B, respectively. Indicates the measured results. Initial sintered body 1baY
It shows the same strength as sintered compact 3, which has a large amount of 2O3 solid solution and a high degree of crystal stabilization, but when held at a temperature of 250°C, the strength increases rapidly until 25 hours, and after about 100 hours, Y2
It can be seen that the strength is comparable to that of sintered body 2, which has a small amount of O3 solid melt and a low degree of crystal stabilization, and the strength has hardly deteriorated even after that. Therefore, the sintered body 1 is
A sintered body obtained by the production method of the present invention, such as one kept for a period of time, exhibits much superior properties compared to a sintered body obtained from only one type of calcined powder.
上記実施例では原料をZ r 02とY2O,の二成分
に限定したが、本発明製造法に使用する原料はこれに限
定されることなくCaO,MgO等公知の焼結助剤を添
加しても同様の効果を奏する。In the above example, the raw materials were limited to two components, Zr 02 and Y2O, but the raw materials used in the production method of the present invention are not limited to these, and known sintering aids such as CaO and MgO may be added. has the same effect.
以上のように本発明部分安定化ジルコニア焼結体の製造
法によって得られる部分安定化ジルコニア焼結体は20
0℃以上の温度における機械的耐久性に優れたものであ
るので自動車用酸素センサー素子、断熱材、構造材、酸
素濃淡電池用固体電解質等各方面に広く利用することが
できる。As described above, the partially stabilized zirconia sintered body obtained by the method for producing a partially stabilized zirconia sintered body of the present invention has a
Since it has excellent mechanical durability at temperatures above 0°C, it can be widely used in various fields such as oxygen sensor elements for automobiles, heat insulating materials, structural materials, and solid electrolytes for oxygen concentration batteries.
第1図は従来のジルコニア焼結体に対するY2O。
の添加量と同焼結体の抗折強度との関係及び同添加量と
強度劣化率との関係を示し、第2図はジルコニア焼結体
を温度250℃の大気中に一定時間保持した場合の保持
時間と抗折強度との関係を示す。
特許出願人 日本特殊陶業株式会社Figure 1 shows Y2O for a conventional zirconia sintered body. Figure 2 shows the relationship between the amount of addition of zirconia and the bending strength of the sintered body, and the relationship between the amount of addition and the rate of strength deterioration. The relationship between retention time and bending strength is shown. Patent applicant: Nippon Tokushu Togyo Co., Ltd.
Claims (1)
の製造法において、Y2O3とZrO□を主成分とし、
Z r Ozに対するY2O3の添加量の異なる二種の
混合粉末をY2O,のX線回折ピークが認められなくな
る温度よりも高い温度で仮焼し、Y2O,固118量の
異なる二種の仮焼粉末を得、前記二種の仮焼粉末よりな
る混合物の成形体を焼成した後、200℃ないし300
℃の温度範囲で25時間以上保持することを特徴とする
部分安定化ジルコニア焼結体の製造法。In the method for producing a partially stabilized zirconia sintered body using Y2O3 as a stabilizer, Y2O3 and ZrO□ are the main components,
Z After baking a molded body of a mixture of the above two kinds of calcined powders,
1. A method for producing a partially stabilized zirconia sintered body, characterized by holding the body in a temperature range of °C for 25 hours or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58186523A JPS6081060A (en) | 1983-10-05 | 1983-10-05 | Manufacture of partially stabilized zirconia sintered body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58186523A JPS6081060A (en) | 1983-10-05 | 1983-10-05 | Manufacture of partially stabilized zirconia sintered body |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6081060A true JPS6081060A (en) | 1985-05-09 |
Family
ID=16189982
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58186523A Pending JPS6081060A (en) | 1983-10-05 | 1983-10-05 | Manufacture of partially stabilized zirconia sintered body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6081060A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210246075A1 (en) * | 2018-03-19 | 2021-08-12 | Tosoh Corporation | Zirconia sintered body and method for manufacturing the same |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54138007A (en) * | 1978-04-18 | 1979-10-26 | Nippon Denso Co | Zirconia sintered body for oxygen concentration sensor |
JPS5650169A (en) * | 1979-09-28 | 1981-05-07 | Sumitomo Aluminium Smelting Co | Manufacture of zirconia sintered body |
-
1983
- 1983-10-05 JP JP58186523A patent/JPS6081060A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54138007A (en) * | 1978-04-18 | 1979-10-26 | Nippon Denso Co | Zirconia sintered body for oxygen concentration sensor |
JPS5650169A (en) * | 1979-09-28 | 1981-05-07 | Sumitomo Aluminium Smelting Co | Manufacture of zirconia sintered body |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210246075A1 (en) * | 2018-03-19 | 2021-08-12 | Tosoh Corporation | Zirconia sintered body and method for manufacturing the same |
US11746054B2 (en) * | 2018-03-19 | 2023-09-05 | Tosoh Corporation | Zirconia sintered body and method for manufacturing the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS63139050A (en) | zirconia ceramics | |
JPS6121184B2 (en) | ||
JPS6081060A (en) | Manufacture of partially stabilized zirconia sintered body | |
JPS5855373A (en) | Zirconia ceramic and manufacture | |
JPS6051664A (en) | Manufacture of lead zirconate titanate ceramic | |
JP3190060B2 (en) | Method for producing fine ceria solid solution tetragonal zirconia powder | |
JPH0230663A (en) | Zirconia sintered body and its manufacturing method | |
JPS6121185B2 (en) | ||
JPH03197356A (en) | Zirconia refractory and its production | |
JPS6186466A (en) | Spinel ceramics | |
JP2762508B2 (en) | Zirconia sintered body and method for producing the same | |
JPS62230667A (en) | Manufacture of ceramics | |
JP2616772B2 (en) | Method for producing proton conductive ceramics | |
JPH01261267A (en) | Solid electrolyte and its production | |
JPS63277560A (en) | Zro2-mgo-y2o3 ceramic and production thereof | |
JP2587704B2 (en) | Zirconia sintered body and method for producing the same | |
JPS59107966A (en) | Manufacture of zirconia ceramics | |
JP3108493B2 (en) | Heat exchanger components | |
JPS60255668A (en) | Partially stabilized zirconia sintered body | |
JPS63139049A (en) | zirconia ceramics | |
JPS59107968A (en) | Manufacture of zirconia ceramics | |
JPS63292508A (en) | Method for manufacturing dielectric resonator material | |
JPS63156065A (en) | Method for manufacturing perovskite ceramics containing zirconium | |
JPH0797259A (en) | Zirconia refractory | |
JPH07215759A (en) | Zirconia porcelain and its manufacturing method |