JPS6080347A - Data reception circuit - Google Patents
Data reception circuitInfo
- Publication number
- JPS6080347A JPS6080347A JP18826883A JP18826883A JPS6080347A JP S6080347 A JPS6080347 A JP S6080347A JP 18826883 A JP18826883 A JP 18826883A JP 18826883 A JP18826883 A JP 18826883A JP S6080347 A JPS6080347 A JP S6080347A
- Authority
- JP
- Japan
- Prior art keywords
- circuit
- data
- pulse
- threshold value
- data signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/06—Dc level restoring means; Bias distortion correction ; Decision circuits providing symbol by symbol detection
- H04L25/061—Dc level restoring means; Bias distortion correction ; Decision circuits providing symbol by symbol detection providing hard decisions only; arrangements for tracking or suppressing unwanted low frequency components, e.g. removal of dc offset
- H04L25/062—Setting decision thresholds using feedforward techniques only
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Dc Digital Transmission (AREA)
Abstract
Description
【発明の詳細な説明】
(a) 発明の技術分野
本発明は元データリンク等の受信回路に係り、髄に広範
囲なダイナミックレンジを有する受信データのパルス幅
変動を少なく抑制することによりデータパルス再生を忠
実に行うデータ受信回路に関する。DETAILED DESCRIPTION OF THE INVENTION (a) Technical Field of the Invention The present invention relates to a receiving circuit such as an original data link, and the essence is data pulse regeneration by suppressing pulse width fluctuations of received data having a wide dynamic range. This invention relates to a data receiving circuit that faithfully performs data receiving.
(b) 従来技術と問題点 以下、従来の元データ受信回路の一実施例を説明する。(b) Conventional technology and problems An example of a conventional original data receiving circuit will be described below.
第1図は従来の光データリンクの光データ受信回路を示
す。図中、1は元データ送信装置、2は元データ送信回
路、3は元ファイバ、3−1は元ファイバの先端、4は
光データ受信装置、5は光データ受信回路、6は受光素
子、7は増幅器(以下AMPと称す)、8は自動しきい
値回路(以下ATCと称す)、9は識別回路、10は出
力端子を示す。捷た図中(イ)〜(ホ)は第2図の波形
の位置を示す。FIG. 1 shows an optical data receiving circuit of a conventional optical data link. In the figure, 1 is the original data transmitting device, 2 is the original data transmitting circuit, 3 is the original fiber, 3-1 is the tip of the original fiber, 4 is the optical data receiving device, 5 is the optical data receiving circuit, 6 is the light receiving element, 7 is an amplifier (hereinafter referred to as AMP), 8 is an automatic threshold circuit (hereinafter referred to as ATC), 9 is an identification circuit, and 10 is an output terminal. (A) to (E) in the truncated diagram indicate the positions of the waveforms in FIG. 2.
第2図(イ)〜(ホ)は第1図のデータリンクの受信回
路を説明するための!柚の波形を示す。同図(イ)はパ
ルス幅TOのデータ信号で、初期のデータパルスである
。図(ロ)は伝送路を経た受信データ信号で、波高値v
Oの1/2・VOの点をしきい値にしている。図(ハ)
はしきい1/2・■0の点で図(ロ)の波形を再生した
再生パルス、図に)−1は前記の波形の振幅が大きい場
合を示し、に)−2は波形に)−1がA M Pで制限
さnたリミッタ波形、図(ホ)は図に)−2の波高値V
の1/2.Vのしきい値で識別したデータパルスで、原
波形(イ)よりΔtだけパルス幅が拡がっている。Figures 2 (A) to (E) are for explaining the data link receiving circuit of Figure 1! Showing the waveform of yuzu. The figure (A) shows a data signal with a pulse width TO, which is an initial data pulse. Figure (b) shows the received data signal via the transmission path, with the peak value v
The threshold value is set at 1/2 of O·VO. Figure (c)
The reproducing pulse that reproduces the waveform in Figure (B) at the point of threshold 1/2・■0, in the figure) -1 indicates the case where the amplitude of the above waveform is large, and in) -2 indicates the waveform) - 1 is the limiter waveform limited by AMP, the figure (e) is the peak value V of -2
1/2 of. The data pulse identified by the threshold value of V has a pulse width wider than the original waveform (A) by Δt.
第1図の元データリンクにおいて、光データ送信装置よ
り送出される第2図(イ)に示すパルス幅TOのデータ
信号は元データ送信回路2を経、元ファイバ3−元ファ
イバの先端3−1を介して受光素子6に結合され、第2
図(ロ)に示す如きデータ信号に変換される。該データ
信号はAMP7を経てATC8にて作られる第2図(ロ
)に示す如き波高値■0の1/2のしきい値において、
識別回路9で識別され、第2図(ハ)に示す如きパルス
幅Toの初期のデータ信号と同一波形のデータパルスに
再生される。上記のデータ信号(ロ)はその立上り及び
立下り特性が同一特性の傾向にあるので、波高値VOの
1/2L#い値で識別すれば初期のパルス幅TOのパル
スに再生できる。In the source data link shown in FIG. 1, a data signal with a pulse width TO shown in FIG. 1 to the light receiving element 6, and the second
It is converted into a data signal as shown in Figure (b). The data signal passes through the AMP 7 and is generated by the ATC 8. At a threshold value of 1/2 of the wave height 0 as shown in FIG.
It is identified by the identification circuit 9 and reproduced into a data pulse having the same waveform as the initial data signal of pulse width To as shown in FIG. 2(C). Since the above data signal (b) tends to have the same rise and fall characteristics, it can be reproduced into a pulse with the initial pulse width TO by identifying it with a value that is 1/2L# of the peak value VO.
しかし、広いダイナミックレンジを有する受信データに
あって受信データのレベルが高<AMP7において、そ
のAMP7の増幅過程で第2図に)−1に示す如く飽和
され、この飽和によりデータ信号はAMP7でリミッタ
されるため、波形に)−1はリミッタ波形に)−2とな
る。However, when the received data has a wide dynamic range and the level of the received data is high < AMP7, the data signal is saturated as shown in Figure 2)-1 during the amplification process of AMP7, and due to this saturation, the data signal is limited by AMP7. Therefore, the waveform becomes )-1 and the limiter waveform becomes )-2.
上記のIJ ミッタ波形に)−2は、飽和波形に)−1
の波高値の上位レベル部分が制限されているため初期の
データ信号をもつデータの立下り点の位相を示す部分が
制限されるため、パルスの立上りと立下りの夫々の特性
の傾向が異なりこのII ミッタ波形より初期のパルス
を再生することは出来ない。The above IJ mitter waveform)-2 is the saturation waveform)-1
Since the upper level part of the peak value of the pulse is limited, the part that indicates the phase of the falling point of the data with the initial data signal is limited, so the tendency of the characteristics of the rising and falling edges of the pulse is different. II It is not possible to reproduce the initial pulse from the Mitter waveform.
即ちこのリミッタ波形に)−2の波高値Vの1/2のし
きい値をATC8にて作り、このしきい値V・百で、識
別回路9にて前記のリミッタ波形に)−2を識別すると
第2図(ホ)に示すパルス幅T 1 (=TO十△t)
のデータパルスが再生される。このデータパルス(ホ)
は初期のデータパルスより△tだけパルス幅が広くなっ
ている。That is, for this limiter waveform, a threshold value of 1/2 of the peak value V of -2 is created by the ATC 8, and at this threshold value V 100, the identification circuit 9 identifies -2 for the limiter waveform. Then, the pulse width T 1 (=TO + △t) shown in Fig. 2 (e)
data pulses are regenerated. This data pulse (E)
The pulse width is wider by Δt than the initial data pulse.
通常、データ伝送装置におけるパルス幅変動は±lO%
以下程度の値が要求されるため、上述したような受信回
路では入力信号レベルのダイナミックレンジが小さいと
いう欠点を有する。Normally, the pulse width variation in data transmission equipment is ±lO%
Since a value of the following order is required, the receiving circuit as described above has the disadvantage that the dynamic range of the input signal level is small.
(c) 発明の目的
本発明は前記の欠点を解決するために、受信データの振
幅を非線形振幅圧縮回路で圧縮することにより、初期の
データパルスと等しいパルスを再生する元データ受信回
路を提供することを目的とする。(c) Object of the Invention In order to solve the above-mentioned drawbacks, the present invention provides an original data receiving circuit that reproduces pulses equal to initial data pulses by compressing the amplitude of received data using a nonlinear amplitude compression circuit. The purpose is to
(d) 発明の構成
不発明は前記目的を達成するために受信データ信号は自
動しきい値調整回路で決められたしきい値で識別され発
なる元データ受信回路において、差動増幅器の出力回路
にダイオードと抵抗挿入して構成した非直線振幅圧縮回
路と該回路より出力されるデータパルスの立上りを決め
る第1しきい値と該パルスの立下りを決める第2しきい
値の夫々を整形する自動しきい値調整回路と該第1及び
第2しきい値で前記受信データ信号を識別する識別回路
を有することを特徴とする。(d) Structure of the Invention In order to achieve the above-mentioned object, a received data signal is identified by a threshold value determined by an automatic threshold adjustment circuit, and an output circuit of a differential amplifier is used in the original data receiving circuit. A nonlinear amplitude compression circuit configured by inserting a diode and a resistor into the circuit, and a first threshold value that determines the rise of a data pulse output from the circuit, and a second threshold value that determines the fall of the pulse, respectively, are shaped. The present invention is characterized in that it includes an automatic threshold adjustment circuit and an identification circuit that identifies the received data signal using the first and second thresholds.
(e) 発明の実施例
本発明は、受信データを非直線振幅圧縮回路で圧縮し、
該圧縮されたデータの立上り点と立下り点の夫々の近傍
に、第1及び第2しきい値を設は該第1及び第2しきい
値で、圧縮されたデータを識別するデータ受信回路であ
る。(e) Embodiments of the invention The present invention compresses received data using a non-linear amplitude compression circuit,
A data receiving circuit that identifies compressed data using the first and second thresholds, the first and second thresholds being provided near the rising and falling points of the compressed data, respectively. It is.
以下、本発明の元データ受信回路を図に基いて説明する
。第3図(a)は本発明の光データ受信回路の一実施例
構成図である。図中、3〜10は第1図と同一部材を示
し、11は光データ受信回路、12は非直線振幅圧縮回
路、13はATCを示す。Hereinafter, the original data receiving circuit of the present invention will be explained based on the drawings. FIG. 3(a) is a block diagram of an embodiment of the optical data receiving circuit of the present invention. In the figure, 3 to 10 indicate the same members as in FIG. 1, 11 is an optical data receiving circuit, 12 is a nonlinear amplitude compression circuit, and 13 is an ATC.
第3図(b)はATCによって整形されるしきい値の特
性を示す。FIG. 3(b) shows the characteristics of the threshold value shaped by ATC.
第4図は前記、非直線振幅圧縮回路(以下、振幅圧縮回
路と称す)12の人、出力特性を示し、特性Aは非直線
特性を示し、入力信号レベルv1−1で折線特性になっ
ている。特性Bはこの回線12を直線特性にした時の想
定を示す。FIG. 4 shows the output characteristics of the nonlinear amplitude compression circuit (hereinafter referred to as amplitude compression circuit) 12, where characteristic A shows a nonlinear characteristic and becomes a broken line characteristic at the input signal level v1-1. There is. Characteristic B shows an assumption when this line 12 has linear characteristics.
第5図(へ)〜(イ)は第3図の各点の波形を示す。同
図(へ)は受信波形、図(ト)は振幅圧縮回路12の出
力波形、(ト)は識別回路9の出力波形を示す。FIGS. 5(f) to (a) show waveforms at each point in FIG. 3. FIG. 5(f) shows the received waveform, FIG. 1(g) shows the output waveform of the amplitude compression circuit 12, and FIG.
第3図の説明を第4図、第5図を用いて行う。FIG. 3 will be explained using FIGS. 4 and 5.
第3図において、第1図で示した同様に第2図(イ)に
示したパルス幅TOのデータ信号を送信側の光データ伝
送装置1(第1図参照)より送出する。In FIG. 3, similarly to the data signal shown in FIG. 1, a data signal having a pulse width TO shown in FIG.
このデータ信号は元ファイバ3−元ファイバ先端に示す
如くなる。この受信データ(へ)は、振幅圧縮回路12
にて第4図に示す如く入力信号Vi−1〜V i −4
の範囲において娠幅比m/nに振幅圧縮され、第5図(
ト)に示す如き波形を得る。ここにmlnは入力信号V
i−4における折線A、直線Bの振幅値を示す。図中、
点線で示した部分は同回路12の入カンベルVi−10
−1,0−2に対する出力波形で、図(ト)の立下り点
@−2と〇−2の点間の立下り特性が点線のレベルで、
折線特性に変化し、第4図のA特性[相]−1から[相
]−2の撮幅圧wl特性に対応した波形に圧縮されてい
る。This data signal becomes as shown at the source fiber 3-source fiber tip. This received data (to) is sent to the amplitude compression circuit 12
Input signals Vi-1 to Vi-4 as shown in FIG.
The amplitude is compressed to the amplitude ratio m/n in the range of
Obtain the waveform shown in (g). Here mln is the input signal V
The amplitude values of broken line A and straight line B at i-4 are shown. In the figure,
The part indicated by the dotted line is the input Campbell Vi-10 of the same circuit 12.
In the output waveform for -1, 0-2, the falling characteristic between the falling point @-2 and the point ○-2 in figure (G) is at the level of the dotted line,
The waveform changes to a broken line characteristic and is compressed into a waveform corresponding to the imaging width pressure wl characteristic of A characteristic [phase]-1 to [phase]-2 in FIG.
前記圧縮された受信−データ(ト)はATC13と識別
回路9に夫々入力される。The compressed received data (g) is input to the ATC 13 and the identification circuit 9, respectively.
ATC13において、受信データ■より第5図[相]−
3に示すしきい値曲線が整形される。この曲線O−3よ
り、受信データ信号■の立上り点[相]−1の近傍を識
別する第1しきい値が整形され、受信データ信号■の立
下り点[相]−2の近傍を識別する第2しきい値が整形
される。At ATC13, from the received data ■, Fig. 5 [phase] -
The threshold curve shown in 3 is shaped. From this curve O-3, the first threshold value that identifies the vicinity of the rising point [phase] -1 of the received data signal ■ is shaped, and the first threshold that identifies the vicinity of the falling point [phase] -2 of the received data signal ■ is shaped. A second threshold value is shaped.
これらの第1.第2しきい値は識別回路9にて前記受信
データ信号■を識別し、第5図(ト)に示すデータパル
ス;パルス幅TOの初期のデータ信号を再生する。The first of these. As for the second threshold, the identification circuit 9 identifies the received data signal (2) and reproduces the initial data signal having the data pulse shown in FIG. 5(g); pulse width TO.
ここに、前記データ信号■の立上り点[相]−1と性質
上その近傍にしきい値を設けてパルスを識別しても初期
のパルスと同一のパルスが得られる。Here, even if the pulse is identified by providing a threshold value at the rising point [phase] -1 of the data signal (1) and its vicinity, the same pulse as the initial pulse can be obtained.
なおATC13は次の如く構成されている。受信データ
信号パルスを整形して、しきい値を作成する回路におい
て、前記受信データ信号パルスは識別回路と積分回路に
入力し、該積分回路の出力をレベルシフト回路に入力し
て第1しきい値を整形する手段を設け、該第1しきい値
は該識別回路に入力して前記受信データ信号パルスの立
上りを識別し、該識別回路の出力で定電流制御回路を駆
動する手段を設け、該定電流制御回路より出力される定
電流は前記レベルシフト回路に入力して前記第1しきい
値を第2しきい値に整形する手段を設け、該第2しきい
値は識別回路に入力して前記入力パルスの立下がりを識
別することを特徴とする。Note that the ATC 13 is configured as follows. In a circuit for shaping a received data signal pulse to create a threshold, the received data signal pulse is input to an identification circuit and an integrating circuit, and the output of the integrating circuit is input to a level shift circuit to create a first threshold. providing means for shaping the value; providing means for inputting the first threshold value to the identification circuit to identify a rising edge of the received data signal pulse; and providing means for driving a constant current control circuit with the output of the identification circuit; Means is provided for inputting the constant current output from the constant current control circuit to the level shift circuit to shape the first threshold value into a second threshold value, and the second threshold value is input to the identification circuit. The method is characterized in that a falling edge of the input pulse is identified.
第6図は本発明の振幅圧縮回路12の一実施例構成図で
ある。図中、R1−R4は抵抗、Dlはダイオード、T
RI、TR2はトランジスタ、18は定電流源、19は
入力データ(第5図(へ)を参照)20は出力データ(
第5図(ト)を参照)、vlは入力信号、Voutは出
力信号、Vccは電源、Vref は基準電圧、VB2
.VH2は電圧を示す・
第7図は第6図の振幅圧縮回路の入、出力の圧縮特性を
示す。図中、入力レベルVj−1の点の特性VR2は抵
抗R2の電圧降下を示し、それ以降はダイオードD1の
特性が加わわって折り曲がり、Vi−2以降はダイオー
ドD1と抵抗R2の合成抵抗による直線になっている。FIG. 6 is a block diagram of an embodiment of the amplitude compression circuit 12 of the present invention. In the figure, R1-R4 are resistors, Dl is a diode, and T
RI and TR2 are transistors, 18 is a constant current source, 19 is input data (see Figure 5), 20 is output data (
5 (g)), vl is the input signal, Vout is the output signal, Vcc is the power supply, Vref is the reference voltage, VB2
.. VH2 indicates voltage. FIG. 7 shows the input and output compression characteristics of the amplitude compression circuit of FIG. 6. In the figure, the characteristic VR2 at the point of input level Vj-1 shows the voltage drop of the resistor R2, and after that, the characteristic of the diode D1 is added and curved, and after Vi-2, it is due to the combined resistance of the diode D1 and the resistor R2. It's in a straight line.
特性VR3は抵抗R3の電圧降下による。The characteristic VR3 is due to the voltage drop across the resistor R3.
第7図の特性を用いて、第6図の動作説明を述べる。第
6図において、入力データViがトランジスタTRIの
ベースに入力され、基準電圧Vrefを所要の値に設定
しておけば、入力データVtはトランジスタTRIのコ
レクタにVoutとして出力される。この場合、入力デ
ータのレベルがVi−1の範囲においてはダイオードD
1が導通していないので、第7図のVB2の特性は直線
性になり、入力レベルがVi−1を超すとダイオードD
1が動作し、その特性は図示の如く曲線を呈し、それ以
降は直線となる。VoutはVout=VR2+VR3
によって作られる。The operation of FIG. 6 will be described using the characteristics of FIG. 7. In FIG. 6, input data Vi is input to the base of transistor TRI, and if reference voltage Vref is set to a required value, input data Vt is output to the collector of transistor TRI as Vout. In this case, when the input data level is in the range of Vi-1, the diode D
1 is not conducting, the characteristic of VB2 in Figure 7 becomes linear, and when the input level exceeds Vi-1, the diode D
1 operates, its characteristics exhibit a curve as shown in the figure, and thereafter become a straight line. Vout is Vout=VR2+VR3
made by.
次に出力データの特性Voutと次式よりめる。Next, the output data characteristic Vout is calculated from the following equation.
Vout = VB2−+VR3
−ドD1の電流、IcはトランジスタTROのコレクタ
電流、Vref は基準電圧でトランジスタTRIのバ
イアス電圧、qは電荷°、kはボルツマン定数、Tはダ
イオードDlの飽和電流、IOは定電源の定電流を示す
。Vout = VB2-+VR3 - current in D1, Ic is collector current of transistor TRO, Vref is reference voltage and bias voltage of transistor TRI, q is charge °, k is Boltzmann constant, T is saturation current of diode Dl, IO is Indicates the constant current of a constant power supply.
第8図は本発明の他の実施例である。図中、第6図と同
一番号、符号は同一部材を示す。R5゜R6は抵抗、D
2はダイオードを示す。FIG. 8 shows another embodiment of the present invention. In the figure, the same numbers and symbols as in FIG. 6 indicate the same members. R5゜R6 is resistance, D
2 indicates a diode.
第9図は第8図の人、出力特性を示す。第9図を用いて
、第8図を説明する。Figure 9 shows the person and output characteristics of Figure 8. FIG. 8 will be explained using FIG. 9.
第8図において、並列接続したダイオードDI。In FIG. 8, diodes DI are connected in parallel.
抵抗R2と並列接続したダイオードD2.抵抗R3を直
列接続し、トランジスタTRIのコレクタに直列接続す
る。入力データ信号電圧Vi−1にて、ダイオードD1
がON(オン)し、人、出力特性は第9図に示すA点で
第1折線特性となり、次に入力データ信号電圧Vi−2
にてダイオードD2がON(オン)し、人、出力特性は
第9図B点に示−1′OB点で第2折線特性となり、こ
の様にダイオードの個数に対応して、人、出力特性に折
点fを作ることができる。Diode D2 connected in parallel with resistor R2. A resistor R3 is connected in series and connected in series to the collector of the transistor TRI. At input data signal voltage Vi-1, diode D1
is turned on, the output characteristic becomes the first broken line characteristic at point A shown in FIG. 9, and then the input data signal voltage Vi-2
Diode D2 turns ON at , and the output characteristics become the second broken line characteristic at point -1'OB shown at point B in Figure 9. In this way, the output characteristics change depending on the number of diodes. A break point f can be created at
この様な複数の折線特性により、振幅圧縮回路の圧縮特
性を緩和できるので、しきい値に対するパルス幅の増加
を小さく押えることができ、再生したデータパルスのパ
ルス幅TOを初期のデータパルスのパルス幅にダイオー
ド1ケの時より、より良く近似できる利点を有する。Due to these multiple broken line characteristics, the compression characteristics of the amplitude compression circuit can be relaxed, so the increase in pulse width with respect to the threshold value can be suppressed to a small value, and the pulse width TO of the reproduced data pulse can be changed to the pulse width of the initial data pulse. This has the advantage that the width can be more closely approximated than when using only one diode.
(f) 発明の効果
本発明によnば、データ受信回路において、広いダイナ
ミックレンジを有する受信データのパルス波形に非直線
振幅圧縮回路を用いることにより該データパルスにリミ
ッタがかかることを防止し前記非直線振幅圧縮回路の出
力データパルスの立上り点の第1しきい値、立下り点の
第2しきい値の夫々のしきい値で前記振幅圧縮回路の出
力データを識別再生してパルス幅の変動を微小に抑制す
ることが出来、忠実なデータパルスを再生出来る利点を
有する。(f) Effects of the Invention According to the present invention, in the data receiving circuit, by using a non-linear amplitude compression circuit for the pulse waveform of received data having a wide dynamic range, it is possible to prevent the data pulse from being limited by a limiter. The output data of the amplitude compression circuit is identified and reproduced using the first threshold value at the rising point and the second threshold value at the falling point of the output data pulse of the non-linear amplitude compression circuit to determine the pulse width. It has the advantage of being able to suppress fluctuations to a minute level and reproducing faithful data pulses.
第1図は従来の元データリンクの受信回路、第2図は第
1図の各種波形、第3図は本発明の概要を示す図、第4
図は振幅圧縮特性、第5図は第3図の各点の波形、第6
図は本発明の振幅圧縮回路、第7図は第6図の動作特性
図、第8図は本発明の他の振幅圧縮iol路、第9図は
第8図の動作特性図先端、4は元データ受信装置、5は
光データ受信回路、6は受光素子、7は増幅器、8はA
TC19は識別回路、10は出力端子、11は光データ
受信回路、12は振幅圧縮回路、13はATC1■−1
,4)−2は入力レベルV i −1に対する出力波形
、■−1,[相]−2は折線の特性範囲、波形(ト)の
o−1は立上り点、波形(ト)のo−2は立下り、o−
1は波形(へ)の立より点、O−2は波形(へ)の立下
り点、18は定電流源、19は入力信号、20は出力信
号を示す。
1(腸
\J −)
L 0 (
第 6 図
茅 7 図
VLIVi−I Vi
第 B 図
邦 9 図FIG. 1 shows a conventional original data link receiving circuit, FIG. 2 shows various waveforms shown in FIG. 1, FIG. 3 shows an overview of the present invention, and FIG.
The figure shows the amplitude compression characteristics, Figure 5 shows the waveform at each point in Figure 3, and Figure 6 shows the waveform at each point in Figure 3.
7 is an operating characteristic diagram of FIG. 6, FIG. 8 is another amplitude compression iol path of the present invention, FIG. 9 is a tip of the operating characteristic diagram of FIG. Original data receiving device, 5 is an optical data receiving circuit, 6 is a light receiving element, 7 is an amplifier, 8 is A
TC19 is an identification circuit, 10 is an output terminal, 11 is an optical data receiving circuit, 12 is an amplitude compression circuit, 13 is ATC1■-1
, 4)-2 is the output waveform for input level V i -1, ■-1, [phase]-2 is the characteristic range of the broken line, o-1 of the waveform (G) is the rising point, o- of the waveform (G) 2 is falling, o-
1 is the rising point of the waveform (to), O-2 is the falling point of the waveform (to), 18 is a constant current source, 19 is an input signal, and 20 is an output signal. 1 (intestine\J-) L 0 (Figure 6) Figure 7 Figure VLIVi-I Vi Figure B Figure 9
Claims (1)
きい値で識別されてなるデータ受信回路において、前記
受信データ信号が入力される差動増幅器の出力回路にダ
イオードと抵抗を挿入して構成した非直線振幅圧縮回路
と該非直線振幅圧縮回路より出力される該受信データ信
号のパルスの立上りを識別する第1しきい値と該受信デ
ータ信号パルスの立下りを識別する第2しきい値との夫
々を整形する自動しきい値調整回路と前記自動しきい値
調整回路より出力される第1及び第2しきい値で前記受
信データ信号を識別する識別回路を有することを特徴と
する。In a data receiving circuit in which a received data signal is identified by a threshold value shaped by an automatic threshold adjustment circuit, a diode and a resistor are inserted in the output circuit of a differential amplifier to which the received data signal is input. a first threshold value for identifying a rising edge of a pulse of the received data signal output from the non-linear amplitude compression circuit; and a second threshold value for identifying a falling edge of the received data signal pulse. and an identification circuit that identifies the received data signal using first and second threshold values output from the automatic threshold adjustment circuit.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18826883A JPS6080347A (en) | 1983-10-07 | 1983-10-07 | Data reception circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18826883A JPS6080347A (en) | 1983-10-07 | 1983-10-07 | Data reception circuit |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6080347A true JPS6080347A (en) | 1985-05-08 |
Family
ID=16220694
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18826883A Pending JPS6080347A (en) | 1983-10-07 | 1983-10-07 | Data reception circuit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6080347A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5327021A (en) * | 1991-06-10 | 1994-07-05 | Shinko Electric Ind., Co., Ltd. | Waveform synthesizing circuit |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56104562A (en) * | 1980-01-10 | 1981-08-20 | Int Standard Electric Corp | Data transmission system |
JPS57118449A (en) * | 1980-08-27 | 1982-07-23 | Int Standard Electric Corp | Symmetrical clamp optical fiber receiver |
-
1983
- 1983-10-07 JP JP18826883A patent/JPS6080347A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56104562A (en) * | 1980-01-10 | 1981-08-20 | Int Standard Electric Corp | Data transmission system |
JPS57118449A (en) * | 1980-08-27 | 1982-07-23 | Int Standard Electric Corp | Symmetrical clamp optical fiber receiver |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5327021A (en) * | 1991-06-10 | 1994-07-05 | Shinko Electric Ind., Co., Ltd. | Waveform synthesizing circuit |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4773096A (en) | Digital switching power amplifier | |
US4363977A (en) | Device for discriminating between two values of a signal with DC offset compensation | |
US4528601A (en) | Digital signal reproducing apparatus | |
JPS6080347A (en) | Data reception circuit | |
JPH0250522B2 (en) | ||
JPH0765503A (en) | Analog/digital converting circuit in information reproducing apparatus | |
JPS6223224A (en) | Dc restoration circuit for digital repeater | |
US4845573A (en) | System with filter system for improved reliability for recording data on a magnetic recording medium | |
US3944754A (en) | Record disc recording system with signal amplitude controlled by stylus arm position | |
JP3912626B2 (en) | Optical receiver circuit | |
JPH0265408A (en) | Waveform shaping circuit | |
JPS59221026A (en) | Receiving circuit of digital signal | |
JP2937328B2 (en) | Nonlinear emphasis / deemphasis circuit | |
JP2755017B2 (en) | Recording signal check circuit | |
SU1220012A1 (en) | Device for reproducing frequency-modulated signal from magnetic record medium | |
JPH05152863A (en) | Optical receiver | |
SU917200A1 (en) | Device for reproducing frequency-modulated signals | |
JPS6025319A (en) | Level comparator | |
JPS6139607A (en) | Temperature compensating circuit | |
JPS623496B2 (en) | ||
JPS6089139A (en) | Optical receiver | |
JPS58147814A (en) | Data signal detecting circuit | |
JPS60197909A (en) | Pcm magnetic reproducing circuit constituted of cmos invertor | |
JPS6091400A (en) | Voice feature extractor | |
JPH04263521A (en) | Repeater |