Nothing Special   »   [go: up one dir, main page]

JPS6077365A - Operation of fuel cell - Google Patents

Operation of fuel cell

Info

Publication number
JPS6077365A
JPS6077365A JP58184711A JP18471183A JPS6077365A JP S6077365 A JPS6077365 A JP S6077365A JP 58184711 A JP58184711 A JP 58184711A JP 18471183 A JP18471183 A JP 18471183A JP S6077365 A JPS6077365 A JP S6077365A
Authority
JP
Japan
Prior art keywords
fuel cell
gas
valve
electrodes
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58184711A
Other languages
Japanese (ja)
Inventor
Yoshinori Nishihara
啓徳 西原
Masahiro Sakurai
正博 桜井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Fuji Electric Corporate Research and Development Ltd
Fuji Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Fuji Electric Corporate Research and Development Ltd, Fuji Electric Manufacturing Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP58184711A priority Critical patent/JPS6077365A/en
Publication of JPS6077365A publication Critical patent/JPS6077365A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04303Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during shut-down
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To increase operation life of a fuel cell by intermittently exchanging reaction gases supplied to each of electrodes by exhausting reaction gases in gas flow lines with inactive gas. CONSTITUTION:After a fuel cell is operated for a specified time, a fuel gas supply valve 10a and an oxidizing gas supply valve 11a are closed to stop gas supply. Inactive gas supply valve 12a and 12b are opened and inactive gas, for example, nitrogen is supplied to pipe lines and a fuel cell 5 to exhaust reaction gases in arrow directions B and D. Then valves 12a and 12b are closed, the valve 10a is opened, the valve 10b is closed, the valve 10c is opened. The valve 11a is opened, the valve 11b is closed, the valve 11c is opened. When reaction gases are supplied, former anode operates as a cathode, and former cathode operates as an anode and electricity having opposite polarity is generated in electrodes M and N and supplied to a load after changing polarity with a polarity exchanger 12.

Description

【発明の詳細な説明】 に活性を有する触媒を担持し、反応生成水に対して抗水
性を有する電極を一組として、これら電極に電解液層を
介挿してなる単位電池を、前記−組の電極にそれぞれ異
なる反応ガスを供給するガス流通系を設けて複数積層し
てなる燃料電池の運d方法に関する。
DETAILED DESCRIPTION OF THE INVENTION A unit battery is prepared by forming a unit battery comprising a set of electrodes supporting an active catalyst and having water resistance against reaction product water, and an electrolyte layer interposed between these electrodes. The present invention relates to a method for operating a fuel cell in which a plurality of fuel cells are stacked and provided with a gas flow system for supplying different reaction gases to each electrode.

〔従来技術とその問題点〕[Prior art and its problems]

燃料電池は燃料のもつ化学エネルギーを直接電気エネル
ギーに変換するものであり、その単位電池の基本構成は
電解液層を挾んで一対の多孔質電極を設けるもので、こ
れらの電極層に反応ガスとして燃料ガスと酸化ガスとそ
れぞれ供給して、こるものである。第1図は前記の単位
電池の構成を示す一例を示したものである。
A fuel cell directly converts the chemical energy of fuel into electrical energy.The basic structure of the unit cell is a pair of porous electrodes sandwiching an electrolyte layer, and a reactant gas is injected into these electrode layers. This is done by supplying fuel gas and oxidizing gas respectively. FIG. 1 shows an example of the structure of the unit battery described above.

第1図において多孔質のガス拡散性を有する燃ネ1極(
以下アノードという)1空気極(以下カソードという)
2との間に電解液層3が挾まれて単位電池が構成され、
導電性でかつガス不透過性のグレート4がそれぞれアノ
ードlおよびカソード2に接して配置され、燃料ガスは
プレート4の複数列の溝4aを、酸化ガスは複数列の溝
4bを互に直角方向に流れ、それぞれの多孔質の要素体
の%極において反応ガスおよび電解液が接触し、電気化
学反応を起こして電気を発生し、導電性のグレートよシ
亀気エネルギーを取勺出す。
In Figure 1, one fuel pole (
(hereinafter referred to as anode) 1 air electrode (hereinafter referred to as cathode)
2 and an electrolyte layer 3 is sandwiched between them to constitute a unit battery,
Electrically conductive and gas-impermeable grates 4 are arranged in contact with the anode 1 and the cathode 2, respectively, and the fuel gas flows through the plurality of rows of grooves 4a of the plate 4, and the oxidizing gas flows through the plurality of rows of grooves 4b in directions perpendicular to each other. The reactant gas and electrolyte come into contact with each other at the electrodes of each porous element, causing an electrochemical reaction to generate electricity and extract energy from the conductive grating.

第2図は上述のような単位電池を積層した燃料電池の分
解斜視図である。第2図において、電池積層体5の側面
には燃料ガスの供給用マニホールド6と排気用マニホー
ルド7とが電池積層体5の対向する側面に、またこれと
直角方向の側面には酸化ガスの供給用マニホールド8と
排気用マニホールド9とが配置されている。燃料ガスは
マニホールド6の入口管6aよシマニホールド6に入シ
、電池積層体5の複数列の溝4aを矢印A、Bの方向に
流れ、マニホールド7に集められて図示されてない出口
管より排気される。−力酸化カスはマニホールド8の図
示されてない入口室よシマニホールド8に入り、電池積
層体5の複数列の溝4bを燃料ガスの流れとり、直角な
矢印C,Dの方向に流れ、マニホールド9に集められて
出口管9aよシ排気され、これら反応ガスが単位電池内
で電気化学反応をして電気を生じる。そして入口暫・、
出口管およびマニホールドは、前述したプレートの溝と
ともにカス流通系を構成している。
FIG. 2 is an exploded perspective view of a fuel cell in which unit cells as described above are stacked. In FIG. 2, a fuel gas supply manifold 6 and an exhaust manifold 7 are arranged on opposite sides of the battery stack 5, and an oxidizing gas supply manifold 7 is mounted on the opposite side of the battery stack 5. An exhaust manifold 8 and an exhaust manifold 9 are arranged. The fuel gas enters the manifold 6 through the inlet pipe 6a of the manifold 6, flows through the plurality of rows of grooves 4a in the battery stack 5 in the directions of arrows A and B, is collected in the manifold 7, and then flows out from an outlet pipe (not shown). Exhausted. - Power oxidation residue enters the manifold 8 through an inlet chamber (not shown) of the manifold 8, takes the flow of fuel gas through the plurality of rows of grooves 4b of the battery stack 5, flows in the direction of right-angled arrows C and D, and flows into the manifold 8. 9 and exhausted through the outlet pipe 9a, these reaction gases undergo an electrochemical reaction within the unit cell to generate electricity. And the entrance...
The outlet pipe and the manifold together with the grooves in the plate described above constitute a waste flow system.

さて従来技術においては燃料電池の性能はある一定時間
の運転後性能が急激に低下するのが通常であシ、この性
能の低下の原因として触媒の劣化。
Now, in conventional technology, the performance of a fuel cell usually drops rapidly after a certain period of operation, and the reason for this drop in performance is the deterioration of the catalyst.

電解液組成の劣化、電池構成側斜の腐食等、81種の原
因が考えられるが、多孔質のガス拡散性を有する電極に
おいてはガスの拡散が大きく彫りして □いると考えら
れる。すなわち電解液がじよじよに電極細孔内に移動し
、電極触媒層にぬれが生し、ガスの拡散が妨げられるこ
とに起因するものである。例えば酸性電解液を使用し、
燃料ガスとして水素、酸化ガスとして空気を用いた燃料
電池の場合には、反応生成水である水蒸気は燃料電池の
化学反応に基づきカソード側に発生し、この発生した水
蒸気はマトリックスに含浸された電解液をカソード側へ
引っばる。更に、通常燃料電池では充分なカソード反応
を確保するために、カソードには燃料ガス流量に比べて
数倍から士数倍の多量の空気が供給され、発生した水蒸
気が除去されると同時にカソード反応層に存在している
電解液の一部゛を水蒸気とともに飛散または蒸発によシ
空気通路に持ち出す。これに伴って電解液はマトリック
スを通してアノード側からカソード側へ移動し、この時
にカソード内の細孔の一部に電解液がトラップされ、い
わゆるカソード触媒層のぬれが生じ反応カスとしての空
気の拡散阻害が起シ性能が低下する。特に酸性電解液を
使用する燃料電池においてはアノードの分極に比べてカ
ソードの分極が大きいために、カソードのガス拡散不良
による特性の低下は電池全体の特性に大きく影響する。
There are 81 possible causes, such as deterioration of the electrolyte composition and corrosion of the side slopes of the battery structure, but it is thought that gas diffusion is largely □ in electrodes that have porous gas diffusivity. That is, this is caused by the electrolytic solution gradually moving into the electrode pores, causing wetting of the electrode catalyst layer and hindering gas diffusion. For example, using an acidic electrolyte,
In the case of a fuel cell that uses hydrogen as the fuel gas and air as the oxidizing gas, water vapor, which is reaction product water, is generated on the cathode side due to the chemical reaction of the fuel cell, and this generated water vapor is transferred to the electrolyte impregnated in the matrix. Pull the liquid towards the cathode. Furthermore, in normal fuel cells, in order to ensure sufficient cathode reaction, a large amount of air is supplied to the cathode, which is several times to several times as large as the fuel gas flow rate. A portion of the electrolyte present in the layer is carried out to the air passage by scattering or evaporation along with water vapor. Along with this, the electrolyte moves from the anode side to the cathode side through the matrix, and at this time, the electrolyte is trapped in some of the pores in the cathode, causing so-called wetting of the cathode catalyst layer, and the diffusion of air as reaction scum. Inhibition occurs and performance decreases. Particularly in fuel cells using an acidic electrolyte, the polarization of the cathode is greater than the polarization of the anode, so deterioration in characteristics due to poor gas diffusion at the cathode greatly affects the characteristics of the entire cell.

そこで燃料電池の寿命を長時間にわたり維持するためK
は電解液による電極内の細孔の閉塞を防ぎ、燃料ガスお
よび酸化剤ガスの拡散を良好な状態を保つことが望まれ
る。
Therefore, in order to maintain the life of the fuel cell for a long time, K
It is desirable to prevent the pores in the electrode from being blocked by the electrolyte and to maintain good diffusion of fuel gas and oxidant gas.

このために電極での抗水性を増加することにより、長時
間の運転においても電極内にガスの拡散不良が起らない
構造としているものがある。しかし7ながら、この抗水
性を増すために加えられる溌水剤2例えばポリテトラフ
ロロエチレンは触媒の活性点に付着して触媒の活性表面
を少なくするため、過剰な添加は燃料電池の特性の低下
をひき起こす。また長時間にわたる運転において、運転
条件あるいは電極材料の物件変化によシひとたび重臣の
抗水性が低下し、電極内の細孔に電、解液の浸透が起と
シガスの拡散不良が起きた場合は、もはやその特性が回
復する可能性は少なかった。
For this reason, some devices have a structure in which poor gas diffusion within the electrode does not occur even during long-term operation by increasing the water resistance of the electrode. However, water repellent agents 2, such as polytetrafluoroethylene, which are added to increase this water resistance, adhere to the active sites of the catalyst and reduce the active surface area of the catalyst, so excessive addition will reduce the characteristics of the fuel cell. cause In addition, during long-term operation, once the water resistance of the senior official decreases due to operating conditions or changes in the electrode material, electrolyte and electrolyte permeate into the pores in the electrode, resulting in poor diffusion of gas. was no longer likely to regain its properties.

〔発明の目的〕[Purpose of the invention]

この発明は上記従来技術の欠点に鑑み、反応ガスの拡散
を良好に保持し、長時間の燃料電池の運転においてもそ
の性能を維持して燃料電池の運転寿命を延長できる運転
方法を提供することを目的とする。
In view of the above-mentioned drawbacks of the prior art, an object of the present invention is to provide an operating method that can maintain good diffusion of reaction gas, maintain its performance even during long-time fuel cell operation, and extend the operating life of the fuel cell. With the goal.

〔発明の要旨〕[Summary of the invention]

この目的は本発明によれば燃料ガスおよび酸化剤ガスの
双方に活性を有する触媒を担持し、反応生成水に対して
抗水性を有する電極を一組として、これら電極に電解液
層を介挿してなる単位電池を、前記−組の電極にそれぞ
れ異なる反応ガスを供給するガス流通系を設けて複数積
層してなる燃料電池において、不活性ガスによシ前記ガ
ス流通系の反応ガスを抜きとる行程を介して、前記−組
の電極にそれぞれ供給される反応ガスを間欠的に交換す
ることによシ達成される。
According to the present invention, this purpose is achieved by forming a set of electrodes that support a catalyst that is active on both fuel gas and oxidant gas and that has water resistance against reaction product water, and interposing an electrolyte layer between these electrodes. In a fuel cell formed by stacking a plurality of unit cells each having a gas distribution system for supplying a different reaction gas to each of the sets of electrodes, the reaction gas in the gas distribution system is extracted by an inert gas. This is accomplished by intermittent exchange of the reactant gases supplied to each of the sets of electrodes throughout the process.

前述したように、例えば酸性電解液を使用する燃料電池
ではカソードに反応生成水としての水蒸気が発生し、こ
の水蒸気がマトリックスに含浸された電解液をカソード
側へ引っばることによシ、カソード触媒層のぬれが生じ
反応ガスとしての空気の拡散阻害を起こす。この電解液
による電極触媒層のぬれは電極に抗水性をもたせること
によシある程度低減することができ、逆に抗水性を持た
ない電極では電極触媒層のぬれは急激に進行する〇しだ
がって、−組の電極をアノードおよび、カソードとして
交互に使用する本発明では、これら−組の電極に反応生
成水に対して抗水性をもたせることが肝要であり、また
−組の電極に担持される触媒は、燃料極および空気極の
双方に活性を有するものでなければならない。
As mentioned above, for example, in a fuel cell that uses an acidic electrolyte, water vapor as reaction product water is generated at the cathode, and this water vapor pulls the electrolyte impregnated into the matrix toward the cathode, causing the cathode catalyst to Wetting of the layer occurs, which inhibits the diffusion of air as a reactive gas. This wetting of the electrode catalyst layer by the electrolyte can be reduced to some extent by providing the electrode with water resistance; on the other hand, if the electrode does not have water resistance, wetting of the electrode catalyst layer will progress rapidly. In the present invention, in which the electrodes of the set are used alternately as anodes and cathodes, it is important that the electrodes of the set have water resistance against the water produced by the reaction. The catalyst used must be active at both the fuel electrode and the air electrode.

〔発明の実施例〕[Embodiments of the invention]

以下図面に基づいて本発明の詳細な説明する。 The present invention will be described in detail below based on the drawings.

第3図は本発明の運転方法を実施して得られた燃料電池
の出力特性の経時変化を示した特性図であり、第4図は
本発明による燃料電池の運転方法の系統を示す回路図で
ある。図において第1図および第2図と同じ部分に対し
ては同じ符号がつけられる。
FIG. 3 is a characteristic diagram showing changes over time in the output characteristics of a fuel cell obtained by carrying out the operating method of the present invention, and FIG. 4 is a circuit diagram showing the system of the fuel cell operating method according to the present invention. It is. In the figure, the same parts as in FIGS. 1 and 2 are given the same reference numerals.

第3図においては勺ん酸寛解賀形燃料電池の単位電池の
例が示され、燃料ガスと酸化ガスとの双方に電気化学的
に反応が可能なガス拡散性のある要素体、すなわち、燃
料ガスおよび酸化剤ガスの双方に活性を有する触媒とし
て白金を担持し、この触媒に対し50wt%の抗水性を
有する電極をアノードおよびカソードとして、このアノ
ードおよびカソードにマニホールド、プレートの溝およ
び電極の孔を含むガス流通系を用いてそれぞれ供給され
る反応ガスを、不活性ガスによシ前記ガス流通系の反応
ガスを抜きとる行程を介して間欠的に交換し、アノード
をカソードとして、カソードをアノードとして動作させ
たときの出力電圧と経過時間との関係を特性曲線Pで示
したものである。
FIG. 3 shows an example of a unit cell of a phosphoric acid fuel cell. Platinum is supported as a catalyst that is active against both gases and oxidizing gases, and electrodes that have water resistance of 50 wt % with respect to this catalyst are used as anodes and cathodes. The reactant gases supplied using the gas flow system containing the gas flow system are intermittently exchanged with an inert gas through a step of removing the reactant gas from the gas flow system, and the anode is used as the cathode, and the cathode is used as the anode. A characteristic curve P shows the relationship between the output voltage and the elapsed time when the device is operated as follows.

すなわち、はじめの反応ガスの流れによシ燃料電池の出
力電圧はAボルトを示していたものが、時間の経過に伴
いB点の手前よ多出力電圧は落ちはじめ、そのま\反応
ガスを流し続けた場合には破線で示したBD線のように
出力電圧は急激に低下していく。しかしB点で不活性ガ
スによシガス流通系の反応ガスを抜きとった後反応ガス
を交換し、アノードに流していた燃料ガスの流れをカソ
ードへ、またカソードに流していた酸化ガスをアノード
に流し、今までのアノードをカソードに、またカソード
をアノードにして単位電池における電気化学反応の向き
を逆にして電気を発生させれば、B点で出力電圧は低下
せずに回復して特性曲線POBC間のように出力−1圧
が保持される。しかしある一定時間の運転後再びC息子
前で出力電圧は急激に低下しはじめるので、6点で前と
同じように反応ガスを交換し初期の状態に戻せば、出力
電圧は急激に低下せずに回復して出力電圧は保持される
。ここで反応ガスの流れを交換すると、アノードはカソ
ードに、カソードはアノードとして作用し、電気化学反
応が逆になるので特性図では極性を転換し、て電圧が表
示されている0なお、出力電圧が低下した時点で、従来
の運転方法と本発明の運転方法とによる単位電池におけ
るアノードからカソードへ、またカソードからアノード
への反応ガスの透過の有無を確認したが、いづれもガス
透過は検出されず、従来の運転方法における特性低下は
前述したように電極のぬれと考えられる。従って供給さ
れる反応ガスを交換し単位電池における電気化学反応の
方向を間欠的に切り換える本発明の運転方法によれば、
反応生成物の移動方向が変わることによシ、一方の電極
に片寄っていた電解液が引き戻されて電極のぬれが抑制
され、ガス拡散が良好に保たれると考えられる。
In other words, the output voltage of the fuel cell was initially A volt due to the flow of the reactant gas, but as time passed, the output voltage began to drop before point B, and the reactant gas continued to flow. If this continues, the output voltage will rapidly drop as shown by the broken line BD line. However, at point B, after removing the reactive gas from the gas distribution system with an inert gas, the reactive gas is replaced, and the fuel gas that was flowing to the anode is transferred to the cathode, and the oxidizing gas that was flowing to the cathode is transferred to the anode. If we reverse the direction of the electrochemical reaction in the unit cell by using the conventional anode as the cathode and the cathode as the anode to generate electricity, the output voltage will recover at point B without dropping and the characteristic curve will change. Output-1 pressure is maintained as between POBC. However, after driving for a certain period of time, the output voltage starts to drop rapidly again in front of C, so if you replace the reactant gas at point 6 as before and return to the initial state, the output voltage will not drop suddenly. The output voltage is maintained. If we exchange the flow of reactant gases, the anode acts as a cathode and the cathode acts as an anode, and the electrochemical reaction is reversed, so the polarity is reversed in the characteristic diagram, and the voltage is displayed as 0. Note that the output voltage At the point when the value decreased, the presence or absence of permeation of reactive gas from the anode to the cathode and from the cathode to the anode in the unit cell in the conventional operating method and the operating method of the present invention was confirmed, but gas permeation was not detected in either case. First, the deterioration in characteristics in the conventional operating method is thought to be due to wetting of the electrodes, as described above. Therefore, according to the operating method of the present invention, in which the direction of the electrochemical reaction in the unit cell is intermittently switched by exchanging the supplied reaction gas,
It is thought that by changing the direction of movement of the reaction products, the electrolytic solution that was biased toward one electrode is pulled back, suppressing wetting of the electrode and maintaining good gas diffusion.

壕だ、反応ガスの拡散阻害を低減する本発明の効果が、
供給される反応ガスを交換することにより得られるもの
であることを確認するため、出力電圧が低下しはじめた
B点でガス流通系の反応ガスを不活性ガスによシ抜きと
る操作だけを行ない、再び同じ反応ガスをそれぞれ流し
続けたときの出力電圧の変化を測定したが、結果は第3
図のB−8曲線に示すように出力電圧は降下する傾向に
あシ、反応ガスを交換したときのような回復は見られな
かった。
The effect of the present invention in reducing diffusion inhibition of reactive gases is
In order to confirm that the reaction gas is obtained by exchanging the supplied reaction gas, at point B, where the output voltage begins to decrease, only the operation of removing the reaction gas from the gas distribution system with inert gas is performed. , we measured the change in output voltage when the same reaction gas continued to flow, but the results were as follows.
As shown by curve B-8 in the figure, the output voltage tended to drop, and no recovery was observed as when the reactant gas was replaced.

次に第4図によシ、本発明による燃料電池の運転方法に
ついて説明する。第4図において符号5は単位電池を積
層した燃料電池である。まず、燃料ガスはその供給源1
0よシ弁10a、弁10bを経由して矢印Aよ多燃料電
池5を通り、矢印Bより排気される。この場合弁10c
は閉とし矢印E方向に流れないようにし、捷だ弁12a
も閉とし、不活性ガス供給源12よシの不活性ガスの流
れはとめられる。酸化ガスはその供給源11よシ弁11
a 。
Next, referring to FIG. 4, a method of operating a fuel cell according to the present invention will be explained. In FIG. 4, reference numeral 5 denotes a fuel cell in which unit cells are stacked. First, the fuel gas is its source 1
The fuel passes through the multi-fuel cell 5 as indicated by arrow A, via valve 10a and valve 10b, and is exhausted as indicated by arrow B. In this case valve 10c
Close the valve 12a to prevent it from flowing in the direction of arrow E.
The inert gas supply source 12 is also closed, and the flow of inert gas from the inert gas supply source 12 is stopped. The oxidizing gas is supplied from its source 11 to the valve 11.
a.

弁11bを経由して矢印Cよ多燃料“電池5に流れ、矢
印りより排気される。このとき、燃料ガスの場合と同じ
ように弁11cは閉とし矢印Fの方向に流れないように
し、苔だ不活性ガスの供給用の弁12bは閉としている
The fuel flows to the multi-fuel cell 5 in the direction of arrow C via valve 11b and is exhausted in the direction of arrow C. At this time, as in the case of fuel gas, valve 11c is closed to prevent it from flowing in the direction of arrow F. The valve 12b for supplying the moss inert gas is closed.

この状態において、燃料電池は反応ガスと単位電池とが
電気化学反応をして、燃料電池の集電板の電極M、Nに
正、負の電気を生じ、との電極M。
In this state, the fuel cell undergoes an electrochemical reaction between the reactant gas and the unit cell, producing positive and negative electricity at the electrodes M and N of the current collector plate of the fuel cell.

Nは極性切換装置12を経由して負荷13にっなかれる
。しかし図示し々いタイムスケジュール装置によっであ
る一定の運転時間がたつと、このタイムスケジュール装
置は、燃料ガスの供給用の弁10aおよび酸化ガスの供
給用の弁11aを閉にして、 流れを止め、不活性ガス
の供給用の弁12a、12bを開にして、今まで流れて
いた燃料ガス、酸化ガスの管路および燃料電池内に不活
性ガス、例えば窒素等を流してそれぞれ矢印BおよびD
の方向に反応ガスを排出する。不活性ガスによシガス流
通系の反応ガスを抜きとった後、不活性ガス供給用弁1
2a 、12bを閉にし、燃料ガスの供給用の弁10a
を開にし、弁10bを閉、弁10cを開にし、捷だ酸化
ガスの供給用の弁11aを開にし、弁11bを閉、弁l
ieを開にして、反応ガスの供給を行なえば、燃料ガス
は管路を矢印Eの方向に流れ、燃料電池内を矢印C,D
の方向に、一方酸化ガスは管路を矢印Fの方向に流れ、
燃料電池内を矢印A、Bの方向に流れ、今寸でのアノー
ドはカソードとして。
N is connected to the load 13 via the polarity switching device 12. However, after a certain period of operation time has elapsed, the time schedule device (not shown) closes the fuel gas supply valve 10a and the oxidation gas supply valve 11a to stop the flow. Then, open the inert gas supply valves 12a and 12b, and flow an inert gas, such as nitrogen, into the fuel gas and oxidizing gas pipes and the fuel cell, as indicated by the arrows B and 12b, respectively. D
The reaction gas is discharged in the direction of. After removing the reaction gas from the gas distribution system with inert gas, inert gas supply valve 1
2a and 12b are closed, and the fuel gas supply valve 10a is closed.
open, close valve 10b, open valve 10c, open valve 11a for supplying the oxidizing gas, close valve 11b, and close valve l.
When the reactant gas is supplied with the ie opened, the fuel gas flows through the pipe in the direction of arrow E, and inside the fuel cell in the direction of arrows C and D.
, while the oxidizing gas flows through the pipe in the direction of arrow F.
The fuel flows in the directions of arrows A and B within the fuel cell, and the anode at this point is the cathode.

−まだカソードはアノードとして反応し、電極M。- The cathode still reacts as an anode, the electrode M.

Nには逆の極性の電気が生じ、極性切換装置12によシ
極性を切換えて負荷につながれる。
Electricity of opposite polarity is generated at N, and the polarity is switched by the polarity switching device 12 and connected to the load.

このように反応ガスの交換を所定時間ごとに繰返して行
ない、燃料電池の運転が行なわれる。なお、不活性ガス
によシ反応ガスの漢流通系を@′換している間は、極性
切換装置12において電気回路を開の状態にして、負荷
とのつながりが切シ離される。しかし必要ならば負荷は
他の電源、例えば燃料電池を複数並列に運転しておけば
、切シ換え時には他の燃料電池から電気を供給すること
ができる。また反応ガスを交換する所定の時間は反応ガ
スの交換によシ、出力特性が低下する場合、再び反応ガ
スを交換して出力特性を賦活しうる時と 間tすることができる。
In this way, the reaction gas is exchanged repeatedly at predetermined time intervals, and the fuel cell is operated. Note that while the reactant gas flow system is being replaced with an inert gas, the electric circuit is opened in the polarity switching device 12 and the connection with the load is disconnected. However, if necessary, the load can be supplied with electricity from another power source, such as a plurality of fuel cells, by operating them in parallel at the time of switching. In addition, the predetermined time for exchanging the reaction gas can be set to a time period in which the output characteristics can be activated by exchanging the reaction gas again if the output characteristics are deteriorated due to the exchange of the reaction gas.

上記実施例の説明においては、所定の周期で供給される
反応ガスを交換する例について説明し、たが本発明はこ
れに限られるものではなく、例えば燃料電池の出力電圧
値を常時監視しておき、この出力電圧値が所定の値を下
回ったときに供給される反応ガスを交換するものであっ
てもよい。1だ実施例では、本発明の運転方法をりん酸
型の燃料電池に適用した場合について説明したが、本発
明はアルカリ型燃料電池に適用ないし実施することがで
き、この場合反応生成物はアノード側に発生する。
In the description of the above embodiment, an example in which the reactant gas supplied at a predetermined period is exchanged is explained, but the present invention is not limited to this, and for example, the output voltage value of the fuel cell is constantly monitored. The reaction gas supplied may be replaced when the output voltage value falls below a predetermined value. In the first embodiment, the case where the operating method of the present invention was applied to a phosphoric acid fuel cell was explained, but the present invention can also be applied or implemented to an alkaline fuel cell, and in this case, the reaction product is the anode. Occurs on the side.

〔発明の効果〕〔Effect of the invention〕

以上説明したとおシ、本発明によれば不活性ガスによシ
ガス流通系の反応ガスを抜きとる行程を介して、−組の
電極にそれぞれ供給される反応ガスを間欠的に交換する
という簡明な方法によって、燃料電池の運転寿命を延長
できるという顕著な効果が得られる。この効果は前述の
ように電池内の反応生成水の移動方向が変わることによ
り、電極のぬれが抑制されるという一種の賦活作用ない
しは機能の回復作用を有することに基づくもので、間欠
的な交換を繰シ返すことにょシ燃料電池の長い運転期間
中には寿命を2倍以上に延ばす効果が産まれるのである
As explained above, according to the present invention, the reaction gas supplied to each set of electrodes is intermittently exchanged through a process of removing the reaction gas from the gas flow system using an inert gas. The method has the significant effect of extending the operating life of the fuel cell. As mentioned above, this effect is based on the fact that by changing the direction of movement of the water generated by the reaction within the battery, it has a kind of activating effect or function recovery effect, in which wetting of the electrode is suppressed, and is caused by intermittent replacement. By repeating this process repeatedly, the lifespan of the fuel cell can be more than doubled during its long operating period.

燃料電池の大容量化、すなわち電極面私の大形化の要請
にともなって、電池の運転寿命はむしろ短縮される傾向
にある。特にカソードのガス拡散不良による特性の低下
は電池の寿命に大きく影響し、この低下は経時的に加速
される傾向がある。
With the demand for increasing the capacity of fuel cells, that is, increasing the size of the electrode surface, the operating life of the battery tends to be shortened. In particular, deterioration in characteristics due to poor gas diffusion in the cathode greatly affects the battery life, and this deterioration tends to accelerate over time.

本発明による運転方法はかかるガス拡散不良の問題を未
然に防止し、あるいは少なくともガス拡散不良による特
性の低下の加速を防止する効果をもち、燃料電池の大容
量化が進むにしたがってその実用化に重要な意味あいを
もつものである。
The operating method according to the present invention has the effect of preventing the problem of poor gas diffusion, or at least preventing the acceleration of the deterioration of characteristics due to poor gas diffusion, and as fuel cells become larger in capacity, they will be put into practical use. It has important implications.

なお、−組の電極にそれぞれ供給される反応ガスを間欠
的に交換する本発明によれは、燃料電極に担持された触
媒が被毒物資を含むカスによシ被毒された際、これを酸
化剤ガスによシ酸化除去して清浄化できるという付随効
果も期待できる。
In addition, according to the present invention, in which the reaction gas supplied to each set of electrodes is intermittently exchanged, when the catalyst supported on the fuel electrode is poisoned by scum containing poisonous substances, the catalyst is removed. The accompanying effect of cleaning by oxidation removal using oxidant gas can also be expected.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は燃料電池の単位電池の基本構成を示す分解斜視
図、第2図は単位電池を積層した燃料電池の分解斜視図
、第3図は本発明の運転方法による燃料電池の単位箱、
池の出力特性の経時変化を示す特性図、第4図は本発明
の運転方法の系統を示す回路図である。 1ニアノード、2:カソード、3:電解液層、5:燃料
電池、12:極性切換装動°。 才1図 才2図 才3図
FIG. 1 is an exploded perspective view showing the basic structure of a unit cell of a fuel cell, FIG. 2 is an exploded perspective view of a fuel cell in which unit cells are stacked, and FIG. 3 is a unit box of a fuel cell according to the operating method of the present invention.
FIG. 4 is a characteristic diagram showing changes in the output characteristics of the pond over time, and FIG. 4 is a circuit diagram showing the system of the operating method of the present invention. 1 near node, 2: cathode, 3: electrolyte layer, 5: fuel cell, 12: polarity switching device. 1 figure, 2 figures, 3 figures

Claims (1)

【特許請求の範囲】 1)燃料ガスおよび酸化剤ガスの双方に活性を有する触
媒を担持し、反応生成水に対して抗水性を有する電極を
一組として、これら電極間に電解液 3層を介挿してな
る単位電池を、前記−組の電極にそれぞれ異なる反応ガ
スを供給するガス流通系を設けて複数積層してなる燃料
電池において、不活性ガスによシ前記ガス流通系の反応
ガスを抜きとる行程を介して、前記−組の電極にそれぞ
れ供給される反応ガスを間欠的に交換することを特徴と
する燃料電池の運転方法。 2、特許請求の範囲第1項記載の運転方法において、−
組の電極に供給される反応ガスを所定の周期で交換する
ことを特徴とする燃料電池の運転方法0 3)特許請求の範囲第1項記載の運転方法において、−
組の電極に供給される反応ガスを燃料電池換することを
特徴とする燃料電池の運転方法。 4)特許請求の範囲第3項記載の運転方法において、燃
料電池の性能を表わす性能値が燃料電池の出力電圧値で
あることを特徴とする燃料電池の運転方法。
[Claims] 1) A set of electrodes that support a catalyst that is active on both fuel gas and oxidizing gas and have water resistance against reaction product water, and three layers of electrolyte between these electrodes. In a fuel cell in which a plurality of unit cells are stacked with gas distribution systems for supplying different reaction gases to each of the sets of electrodes, the reaction gas in the gas distribution system is replaced by an inert gas. A method of operating a fuel cell, characterized in that the reactant gas supplied to each of the two sets of electrodes is intermittently replaced through a withdrawal process. 2. In the operating method according to claim 1, -
A method of operating a fuel cell characterized by exchanging the reactant gas supplied to a set of electrodes at a predetermined period 3) The method of operating a fuel cell according to claim 1, comprising: -
A method of operating a fuel cell, characterized in that a reaction gas supplied to a set of electrodes is converted into a fuel cell. 4) The method of operating a fuel cell according to claim 3, wherein the performance value representing the performance of the fuel cell is an output voltage value of the fuel cell.
JP58184711A 1983-10-03 1983-10-03 Operation of fuel cell Pending JPS6077365A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58184711A JPS6077365A (en) 1983-10-03 1983-10-03 Operation of fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58184711A JPS6077365A (en) 1983-10-03 1983-10-03 Operation of fuel cell

Publications (1)

Publication Number Publication Date
JPS6077365A true JPS6077365A (en) 1985-05-01

Family

ID=16158026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58184711A Pending JPS6077365A (en) 1983-10-03 1983-10-03 Operation of fuel cell

Country Status (1)

Country Link
JP (1) JPS6077365A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003123812A (en) * 2002-10-07 2003-04-25 Matsushita Electric Ind Co Ltd Method of property recovery of polymer electrolyte fuel cell
US6881510B1 (en) 1999-09-17 2005-04-19 Matsushita Electric Industrial Co., Ltd. Method for resorting characteristics of polymer electrolyte fuel cell

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6881510B1 (en) 1999-09-17 2005-04-19 Matsushita Electric Industrial Co., Ltd. Method for resorting characteristics of polymer electrolyte fuel cell
EP1536502A2 (en) * 1999-09-17 2005-06-01 Matsushita Electric Industrial Co., Ltd. Method for resorting characteristics of polymer electrolyte fuel cell
JP2003123812A (en) * 2002-10-07 2003-04-25 Matsushita Electric Ind Co Ltd Method of property recovery of polymer electrolyte fuel cell
JP4547853B2 (en) * 2002-10-07 2010-09-22 パナソニック株式会社 Operation method and characteristic recovery method of polymer electrolyte fuel cell

Similar Documents

Publication Publication Date Title
US6472090B1 (en) Method and apparatus for operating an electrochemical fuel cell with periodic reactant starvation
JP3475869B2 (en) Polymer electrolyte fuel cell and method for recovering its characteristics
CA2316380C (en) Method and apparatus for operating an electrochemical fuel cell with periodic fuel starvation at the anode
JP3382708B2 (en) Gas separator for solid polymer electrolyte fuel cells
CA2377604C (en) Method and apparatus for increasing the temperature of a fuel cell with polymer electrolyte
US8323415B2 (en) Fast recycling process for ruthenium, gold and titanium coatings from hydrophilic PEM fuel cell bipolar plates
US20110195324A1 (en) Methods and processes to recover voltage loss of pem fuel cell stack
US20070287057A1 (en) Method for making a hydrophilic corrosion resistant coating on low grade stainless steel/alloys for bipolar plates
JP2017145187A (en) Electrochemical type hydrogen pump
KR101575415B1 (en) Performance recovery method for fuel cell stack
JP3358222B2 (en) Activation method of polymer electrolyte fuel cell
JPH05251097A (en) Solid high polymer electrolyte type fuel cell
JP3673252B2 (en) Fuel cell stack
JPS6077365A (en) Operation of fuel cell
JP2006004702A (en) Separator for solid polymer fuel cell
JP2000100458A (en) Solid polymer fuel cell
US8389047B2 (en) Low-cost hydrophilic treatment method for assembled PEMFC stacks
JP2002141090A (en) Operation method of solid polymer fuel cell system
JP4498681B2 (en) Polymer electrolyte fuel cell
JPH06333581A (en) Solid poly electrolyte fuel cell
KR100531822B1 (en) Apparatus for supplying air of fuel cell
JP2005141994A (en) Polyelectrolyte fuel cell
JP3905027B2 (en) Polymer electrolyte fuel cell
JP2001332282A (en) Regeneration method for solid polyelectrolyte fuel cell
JP4090956B2 (en) Polymer electrolyte fuel cell