Nothing Special   »   [go: up one dir, main page]

JPS6063372A - Manufacture of thin boron nitride film of high hardness - Google Patents

Manufacture of thin boron nitride film of high hardness

Info

Publication number
JPS6063372A
JPS6063372A JP58171217A JP17121783A JPS6063372A JP S6063372 A JPS6063372 A JP S6063372A JP 58171217 A JP58171217 A JP 58171217A JP 17121783 A JP17121783 A JP 17121783A JP S6063372 A JPS6063372 A JP S6063372A
Authority
JP
Japan
Prior art keywords
boron
substrate
ions
ion
boron nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58171217A
Other languages
Japanese (ja)
Other versions
JPH0351787B2 (en
Inventor
Mamoru Sato
守 佐藤
Takeshi Sadahiro
貞廣 孟史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Tungaloy Corp
Original Assignee
Agency of Industrial Science and Technology
Toshiba Tungaloy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Toshiba Tungaloy Co Ltd filed Critical Agency of Industrial Science and Technology
Priority to JP58171217A priority Critical patent/JPS6063372A/en
Publication of JPS6063372A publication Critical patent/JPS6063372A/en
Publication of JPH0351787B2 publication Critical patent/JPH0351787B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To manufacture a thin boron nitride film of high hardness contg. cubic boron nitride as the principal component on the surface of a substrate by properly regulating the atomic ratio between boron and nitrogen contained in an evaporating source and an ion seed and the quantity of energy for accelerating ions. CONSTITUTION:An evaporating source contg. boron is vapor-deposited on a substrate, and an accelerated ion seed is irradiated simultaneously with the vapor deposition to form a thin boron nitride film of high hardness on the substrate. The vapor deposition and the irradiation may be alternately carried out. At this time, the atomic ratio between boron and nitrogen (B/N) contained in the evaporating source and the ion seed is regulated to 0.5-3, and the quantity of energy for accelerating ions in the ion seed is regulated to 5-60KeV per one boron, nitrogen or inert gas atom contained in the ion seed.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は高硬度窒化ホウ累薄膜の製造方法に関し、更に
詳しくはイオン照射法と蒸着法を組合わせて成る、立方
晶密化ホウ素(c−131N)を主体とした高硬度窒化
ホウ素薄腹の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for producing a high-hardness boron nitride thin film, and more specifically to a method for producing a thin film of cubic densified boron nitride (c- The present invention relates to a method for manufacturing a high hardness boron nitride thin film mainly composed of 131N).

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

窒化ホウ素(BN)はセラミックスの一種で、近年、非
常に注目きれている材料の1つである。
Boron nitride (BN) is a type of ceramic and is one of the materials that has received a lot of attention in recent years.

このBNには、六方晶糸(b−BN)、六方最密充填系
(w−BN)及び里方晶系(c −BN )の3種類の
結晶構造のものが存在する。これらのうち、C−B’N
ldダイヤモンドについでその硬度が高く、電気絶縁体
であり、しかもその熱体2n率は大きく耐摩耗性に優れ
るという特異な4’!I性を飢えている。
This BN has three types of crystal structures: hexagonal thread (b-BN), hexagonal close-packed system (w-BN), and rhombic system (c-BN). Among these, C-B'N
It is unique in that it has the second highest hardness after LD diamond, is an electrical insulator, and has a high heating element 2n ratio and excellent wear resistance! I'm starving for sex.

しかしながら、このc −13Nは天然には存在せず、
現実には、敵方気圧、十数百度という高温・高圧下で、
例えばマグネシウムのような触媒を用いて製造されてい
る。この方法では、粉・粒は製造できるが、基体の表面
を被覆する湖膜として製造することは極めて困難である
However, this c-13N does not exist naturally;
In reality, under enemy pressure, high temperatures and pressures of tens of hundreds of degrees,
For example, it is produced using a catalyst such as magnesium. Although powder and granules can be produced using this method, it is extremely difficult to produce a film that covers the surface of the substrate.

このため、c−BNは砥石の砥粒としてそのまま用いら
れたシ又は焼結して成る切削工具として用いられている
のが現状である。しかし、ノ、19体の表面にc−BN
の薄膜を形成することができれd:、そのことはc−B
Nの有用な特性を生かしてその用途を飛附的に拡大でき
る。7例えは、保護管の耐摩耗性保睦膜、表面をc −
B Nで被&した切削工具、ヒートシンク、半導体累伺
などである。
For this reason, c-BN is currently used as abrasive grains in grindstones as it is, or as cutting tools made by sintering. However, c-BN was found on the surface of 19 bodies.
It is possible to form a thin film of d:, which means that c-B
By taking advantage of the useful properties of N, its uses can be dramatically expanded. 7. For example, the wear-resistant protective film of the protective tube, the surface of which is c −
These include cutting tools, heat sinks, and semiconductors exposed to BN.

一方、薄膜形成は化学蒸尤法又は物理烈后法に大別でき
、とくに、イオンを用いる方法としてれ大きく次の3つ
の方法に分類される。
On the other hand, thin film formation can be roughly divided into chemical vaporization methods and physical vaporization methods, and in particular, methods using ions are broadly classified into the following three methods.

まず第1は、イオン化された原子を加速後減速して基体
の表面に被沼せしめるイオンビームデボジ7 ヨ7 (
Ion beam dcposition )法、クー
y y、 ター (オンを加速して基体表面に彷突させ
一度に多鯰の原子を被着せしめるクラスターイオングレ
ーティング(C1uster ion plating
 )法、イ」ン化して加速せしめた希ガスでスパッタし
た原子を基体表面に被着セしめる一イオンビームスパッ
タ’J 7 り(Ionbeam sputterin
g )法、fx トチ’;h ル。
First, the ion beam debosses the ionized atoms by accelerating them and then decelerating them to coat the surface of the substrate.
ion beam dcposition) method, cluster ion plating (Cluster ion plating), which accelerates ion beams and causes them to wander onto the substrate surface, depositing many atoms at once.
) method, an ion beam sputtering method in which atoms sputtered with an ionized and accelerated rare gas are deposited on the surface of a substrate.
g) method, fx tochi'; h le.

これらの方法の場合、イオン種が持つイオン加速エネル
ギーは数eVから高々数十eV であシ、イオン行が基
体内に注入されるということはない。
In these methods, the ion acceleration energy of the ion species is from several eV to several tens of eV at most, and rows of ions are not implanted into the substrate.

それゆえ、これらの方法は成膜技術としては有効である
が、しかし形成された薄膜と基体との間の密着性という
点で不充分であり、薄膜が基体から剥離し易ずいという
問題かある。
Therefore, although these methods are effective as film forming techniques, they are insufficient in terms of adhesion between the formed thin film and the substrate, and there is a problem that the thin film easily peels off from the substrate. .

第2の方法はイオン種のイオン加速エネルギーを数十〜
数百k e’Vに高めて行なうイオン注入(Ionim
plantation )法である。この方法では、イ
オンは基体の内部にまで撃ち込まれ、そこで基体梠成原
子と衝突し該基体庁ト成原子との間で桑安定物乃を生成
して合金又は化合物の層を形成しノ1(体表面が改71
iされる1、この場合、形成された薄f11::、(と
基体との密第1性は向上するものの、他方では該薄膜が
準安定物P[で村・j成されているので、例えば高温に
なると基体構成原子との反応が進行したり又は注入イオ
ンの元素それ自体が析出したりし7てυ゛勺1−変化を
もたらすという間mがある1、また、この方法では多(
i゛のイオンを注入することが必要であるが、短時間で
の処理を可能にするためには、犬■イ、流のイオン注入
装置が不可欠となる。
The second method is to increase the ion acceleration energy of the ion species to several tens of
Ion implantation (Ionim
(plantation) method. In this method, ions are shot into the interior of the substrate, where they collide with the substrate's constituent atoms and form mulberry stabilizers with the substrate's constituent atoms to form an alloy or compound layer. (The body surface is revised 71
1, in this case, the formed thin film f11::, (Although the dense first property between the formed film and the substrate is improved, on the other hand, since the thin film is composed of the metastable P[, For example, when the temperature rises, reactions with atoms constituting the substrate progress, or the elements of the implanted ions themselves precipitate, resulting in changes in υ゛勺1.
It is necessary to implant i' ions, but in order to make the process possible in a short time, a highly efficient ion implantation device is essential.

第3の方法はイオンミキシング(I on mixin
g )法である。この方法は、寸ず基体表面に、(テ)
る物言の蒸′XgIff:! k形成しておき、ここに
イオン「ヒした希ガスをg+百kcVのイオン加速エネ
ルギーで照射するという方法である。この場合、蒸着原
子は照射イオンとの衝突により反跳して基体内部に侵入
し基体と蒸着115\jjJt成原子との間で新らたな
層を形成する。
The third method is ion mixing (I on mixin).
g) It is a law. In this method, (te) is applied to the surface of the substrate.
Steam'XgIff:! In this method, the ions are formed in advance and irradiated with ionized rare gas at an ion acceleration energy of g + 100 kcV. In this case, the deposited atoms recoil due to collision with the irradiated ions and enter the inside of the substrate. A new layer is then formed between the substrate and the deposited 115\jjJt atoms.

この方法は、形成された新たな層と基体との密鬼性は良
好で、才だ、高iU、王を費する4Cもかかわらずイオ
ン電流はそれほど大、きくなくてもよいという利点を有
するが1反面、蒸着膜借成原子と基体措成原子とで形成
される新たな層において各原子の混合比を一定に保持す
ることは非常に困難であるという問題を避は得ない。つ
−5,、T)、一定組成の層形成が困難なのである。
This method has the advantage that the relationship between the formed new layer and the substrate is good, the ion current is not so large, and the ion current does not need to be so large despite the high iU and 4C that consumes a large amount of energy. On the other hand, there is an unavoidable problem that it is extremely difficult to maintain a constant mixing ratio of each atom in a new layer formed of the vapor-deposited film-borrowing atoms and the substrate-bearing atoms. 5), it is difficult to form a layer with a constant composition.

このようなことから、現Z−E”rでのところ、C−B
Nの薄膜−を形成するに有効な方法は未だ発表さtてい
ない。
For this reason, in the current Z-E”r, C-B
An effective method for forming a thin N film has not yet been published.

〔発明の目的〕[Purpose of the invention]

本発明は基体の表面にc−BN2主体とする高硬度のB
N薄fSを形成する新月1な方法の持供を目的とする。
The present invention is characterized in that the surface of the base is made of high hardness B mainly consisting of c-BN2.
The purpose of this invention is to provide a unique method for forming N-thin fS.

〔発明の概要〕[Summary of the invention]

本発明者らは、上記した目的を達成すべく鋭意研究を重
ねた結果、蒸発諒とイオン独とに含まれるホウ素と窒素
との原子比(I−I/N)及びイオンの加速エネルギー
を適宜に調整ずれは、基体の表面にc−BNを主体とし
た薄膜が製造できるとの事実を見出し本発明を完成する
に到った。
As a result of intensive research to achieve the above-mentioned object, the present inventors have determined that the atomic ratio of boron to nitrogen (I-I/N) contained in the evaporation and ions and the acceleration energy of the ions have been appropriately adjusted. The present invention was completed based on the discovery that a thin film mainly composed of c-BN can be produced on the surface of a substrate by adjusting the adjustment deviation.

すなわち、本番りJ方法は、基体上に、ホウ素を含イ了
する蒸発υスを蒸着させ、かつ、その蒸唐と同時又は交
互に加速されたイオン種全照射して、該基体上に該魚発
d宗と該イオン種(lこよって高硬度窒化ホウ素薄ル4
を生成せしめる方法であって、該蒸発源と該イオン種と
に@まれるホウ素と窒素との原子比CB/N) が0゜
5〜3であシ、かつ、該イメン種のイオン加速エネルギ
ーが該イメン種に含まれているホウ素若しくは窒素又は
不活性ガスの原子当シ5〜60keVであることを特徴
とする。
In other words, in the actual J method, an evaporative gas containing boron is deposited on a substrate, and all accelerated ion species are irradiated simultaneously or alternately with the evaporator to deposit the vapor onto the substrate. The fish origin and the ion species (l) are highly hard boron nitride thin
A method for producing ions, wherein the atomic ratio CB/N of boron and nitrogen contained in the evaporation source and the ion species is 0°5 to 3, and the ion acceleration energy of the ion species is is 5 to 60 keV per atom of boron, nitrogen, or inert gas contained in the rice species.

本発明方法にあって、まず基体としては、セラミックス
、超眺合金、サーメント又t;1.各fIjの金5に若
しくは合金など何であってもよく、その材質は問わない
。ただし、基体が電気絶縁材の場合には5、荷電してい
る場所と荷電していないjノ、5所とではそこに形成さ
れたス・k着ルーfのθ性が異なυ膜全体の!1.lI
性のバラツキが牛じ易すくなるので、2−ζ体としては
電気伝導体であることが好t L、い。しかし、 TI
;。
In the method of the present invention, first, the substrate may be ceramics, superalloys, ceramics, or t;1. The material may be anything, such as gold 5 or an alloy of each fIj, and the material is not limited. However, if the substrate is an electrically insulating material, the θ properties of the S-k adhesion f formed there are different between the charged and uncharged locations, and the θ properties of the entire υ film are different. ! 1. lI
It is preferable for the 2-ζ body to be an electrical conductor, since it is easier to understand the variation in gender. However, T.I.
;.

気絶縁体であってもその表面に71と法により電気伝導
体の薄膜を形成すればよい。
Even if the material is a gas insulator, a thin film of an electrically conductive material may be formed on its surface by method 71.

Btus 、BN B2O3)が用いられる。Btus, BN, B2O3) are used.

イオン種としては、所定のイオン加速エネルギーを有す
るイオン種でB(il−含有する蒸発源に作用してc−
BNの薄膜を形成するものであればよい。
The ion species are ion species that have a predetermined ion acceleration energy and act on the evaporation source containing B(il-) to
Any material that forms a thin film of BN may be used.

具体的には、窒素原5子イオン(N+) ; 窒素分子
イオン(N2+) ;アンモニアイオン(NL+)のよ
シナ窒素化合物イオンニホウ累イオン(B+); 揮発
性がランのようなホウ化水素イオン(B2H6+)%窒
化ホウ素イオン(BN”)の如きホウ素化合物イオン;
又は不活性ガスイオン(例えばAr+)のいずれか1種
であることが好ましい。
Specifically, nitrogen atom pentaton ion (N+); nitrogen molecule ion (N2+); ammonia ion (NL+), nitrogen compound ion, diborium ion (B+); volatile borohydride ion (like orchid) B2H6+)% boron compound ions such as boron nitride ions (BN'');
or an inert gas ion (for example, Ar+).

このようなイオン種は、後述する装置によって創生され
、質量分析用のマグネトロンを用いて磁気的に選択され
て供給される。
Such ion species are created by an apparatus described below, and are magnetically selected and supplied using a magnetron for mass spectrometry.

本発明方法では、基体の上にBを含有する蒸発源を蒸着
させると同時に又はIn含有する蒸発源の蒸着層が形I
J!、された後に、上H[ニジたイオン種を照射する1
、前者のり、1合には、Bを含イ1する蒸ジ1−汀は基
体表面VC7ζπiするとまきにそれとijl L”+
に照射されたイオンわ1(の作用によりそ〕1仁]:B
へiCなりぞのま址層形成芒れることになる。才だ、後
者の場合には、既に蒸尤I曽として存イEする111イ
ーfする蒸発源の層がそのあとから照射されたイオン種
の作用によシIJ N [qy傑きれる1、したがって
、この後者の場合、Bを含有する蒸発源の蒸ンt7層の
形成とイオン照射を交互に反tpして行なえば順次IN
N層が厚く成長していくことになる。
In the method of the present invention, a B-containing evaporation source is deposited on the substrate, or a deposited layer of an In-containing evaporation source is formed on the substrate.
J! , and then irradiate the upper H [dirty ion species 1
, the former glue contains B and the vaporized liquid 1-layer is the substrate surface VC7ζπi and then it and ijl L"+
ion irradiated to 1 (by the action of 1 ion):B
As soon as it becomes iC, the layer formation will start. In the latter case, the layer of the evaporation source that already exists as a evaporator is then affected by the irradiated ionic species. In this latter case, if the formation of the evaporation t7 layer of the B-containing evaporation source and the ion irradiation are performed alternately with anti-tp, the IN
The N layer will grow thicker.

なお、Bを含有する蒸発源と1〜てB iN盆月1いれ
ば、必要とするイオン加速エネルギーがl」・きくです
み、かつ効率よ(c−BN薄薄膜成長させることができ
、そして、イオン種として不活性ガスイオン?用いるこ
ともできる。
In addition, if there is an evaporation source containing B and a B iN layer, the required ion acceleration energy is only 1", and it is possible to grow a c-BN thin film efficiently. , inert gas ions can also be used as the ionic species.

基体表面において、蒸ソ12源とイオン4’iliとV
C含まれるBとへとの原子比(B/N)が()、5〜3
となるように制御すること、並ひにイオンイ4iiのイ
オン加速エネルギーを該イオン1重に含壕れているt3
若しくはN又は不活性ガスの原子当シ5〜60keVに
制御することが必要である。
On the substrate surface, the evaporation source 12, ions 4'ili and V
The atomic ratio (B/N) of B and heto contained in C is (), 5 to 3
In addition, the ion acceleration energy of ion I4ii is controlled to be t3, which is contained in one layer of the ion.
Alternatively, it is necessary to control the voltage to 5 to 60 keV per atom of N or inert gas.

B/Nが0.5よシ小さい場合には、形成された薄膜の
結晶構造は非晶質又はh−BN型となり、CBNとはな
らない。またB/Nが3よシ大きくなると、形成された
薄膜は非晶tとなる。B/Nは1〜2.5程度であるこ
とがとくに好ましい。
If B/N is smaller than 0.5, the crystal structure of the formed thin film will be amorphous or h-BN type and will not be CBN. Further, when the B/N becomes larger than 3, the formed thin film becomes amorphous. It is particularly preferable that the B/N is about 1 to 2.5.

イオン種のイオン加速エネルギーが5keV未満の場合
には、蒸着膜、へのイオン種の注入針が減少してスパン
タ現象が支配的となシ、また60keV葡超えると基体
表面の蒸着層よシも可成シ深くイオン種が注入されるの
で蒸着層にc−BNを主体とする高硬度BNが生成しに
くくなり、また、蒸着層が高温になシすぎてh−BNの
生成が支配的となってc−BNを主体とする高硬度BN
が生成しにくくなる。
When the ion acceleration energy of the ion species is less than 5 keV, the number of ion species implanted into the deposited film decreases and the spanter phenomenon becomes dominant, and when it exceeds 60 keV, the deposited layer on the substrate surface also deteriorates. Since the ion species are implanted fairly deeply, it becomes difficult to generate high-hardness BN mainly composed of c-BN in the deposited layer, and the deposition layer is not heated to too high a temperature so that the formation of h-BN becomes dominant. High hardness BN mainly composed of c-BN
becomes difficult to generate.

本発明方法は、図に例示した装置を用いて次のように行
なわれる。
The method of the present invention is carried out as follows using the apparatus illustrated in the figures.

まず、イオン化されるべきガス例えばN2はリークパル
プ1を経てイオン源2に導入され、ここでイオン化され
たのち、加速器3で加速されて所定のイオン加速エネル
ギーが付与される。イオンは次に分析マグネット4に導
入され、ここで必蒙とするイオン種のみが磁気的に選択
されて反応室5に供給される。
First, a gas to be ionized, for example, N2, is introduced into the ion source 2 via the leak pulp 1, where it is ionized, and then accelerated by the accelerator 3 to be given a predetermined ion acceleration energy. The ions are then introduced into the analysis magnet 4, where only the desired ion species are magnetically selected and supplied to the reaction chamber 5.

反応室5は真空ポンプ(例えばターボ分子ポンプ)6に
よって10 ’1?orr以下の高It空に維持される
。基体7は基体ホルダ8に固ボさJz、ここに上記した
イオンa=tが照射される。照射に際しては、基体に均
一にイオン種を照射するために、収束レンズ9にイオン
種を通過させる。
The reaction chamber 5 is heated to 10' by a vacuum pump (for example, a turbomolecular pump) 6. It is kept high It empty below orr. The substrate 7 has a hard surface Jz on the substrate holder 8, and is irradiated with the above-mentioned ions a=t. During irradiation, the ion species are passed through a converging lens 9 in order to uniformly irradiate the substrate with the ion species.

10は、基体7の下に配置された蒸着装置11である。10 is a vapor deposition device 11 arranged under the base 7.

装置の加熱方法は、電子ビーム加熱、レーザ線加熱など
適宜な方法が用いられる。この中にはBを會有する蒸発
係が収容されている。Bを@有する蒸発源の蒸着n及び
蒸着速度は、基体ホルダ8の横に配設した例えば石英板
使用の振動壓膜厚計11によって測定すればよい。
As a heating method for the device, an appropriate method such as electron beam heating or laser beam heating is used. The evaporator with B is housed in this. The evaporation rate n and the evaporation rate of the evaporation source containing B may be measured by a vibrating film thickness meter 11 using, for example, a quartz plate, which is disposed beside the substrate holder 8.

また、イオン種の原子数、すなわち、イオン電流は、二
次電子追返し@極12をイ;」設した電流が【算計13
によって正確に測定することができる。
In addition, the number of atoms of the ion species, that is, the ion current is calculated as follows:
It can be measured accurately by

このような装置において、基体7を所定位置にセントし
、反応室5内を所定の真空度に保ち、蒸着装置10を作
動してBを@有する蒸発源を基体7に所定量蒸着さぜ、
そこにβ「足のイオン揺全所定のイオン加速エネルギー
で照射すれば、基体表面にはc−UNを主体とする高硬
度Bへの薄膜が形成される。
In such an apparatus, the substrate 7 is placed in a predetermined position, the interior of the reaction chamber 5 is kept at a predetermined degree of vacuum, and the vapor deposition device 10 is operated to deposit a predetermined amount of an evaporation source containing B onto the substrate 7.
By irradiating it with a predetermined ion acceleration energy, a thin film with high hardness B mainly composed of c-UN is formed on the surface of the substrate.

なお、このときB fa−含イ了する蒸発源、イオン種
はいずれも基体の1方向からのみ蒸着又は照射されるの
で、基体の全表面tg−c −B N主体の高硬度B 
N ii!!、膜を形成する場合にはこの基体に回転、
揺動などの運vJJを与えればよい。
At this time, since the evaporation source and ion species containing Bfa- are evaporated or irradiated only from one direction of the substrate, the entire surface of the substrate tg-c-B has a high hardness B mainly composed of N.
Nii! ! , to form a film, rotate this substrate,
It is sufficient to give luck vJJ such as swinging.

〔発明の実施例〕[Embodiments of the invention]

実施例1〜3 図に示した装置を用いて高純iNz ガスをIJ−クバ
ルプlからPIG型イオン諒2に導入した。
Examples 1 to 3 High purity iNz gas was introduced into the PIG type ion chamber 2 from the IJ-Kvalp 1 using the apparatus shown in the figure.

発生したイオンに加速器3で種々の加速エネルギーを付
与し穴。このイオンビームを分析マグネット4で質最分
析しN2 のみを磁気的に選択した。
The generated ions are given various types of acceleration energy by an accelerator 3. This ion beam was subjected to quality analysis using an analysis magnet 4, and only N2 was magnetically selected.

他方、基体としてタンタル板を用い、こ肛f&体ホルダ
8にセントし反応室5内を650 A/Secのターボ
力子ポンプでI X I Q−”1.”orrの真空U
 i/C保持した。
On the other hand, a tantalum plate was used as the base, and the inside of the reaction chamber 5 was heated to a vacuum U of I
I/C was maintained.

ついで、金JQ3 Bを収容する亀子ビーム蒸着装置1
0を作動して金属Bを魚介、させ、r′12+イオンの
照射と同時にタンタル板7の十にnX循さ−Uた。
Next, Kameko beam evaporation equipment 1 containing gold JQ3B is installed.
0 was activated to cause the metal B to evaporate, and at the same time as the r'12+ ions were irradiated, nX was circulated to the surface of the tantalum plate 7.

Bの蒸メT ii’+、蒸シ、′j蛙度ね、振動型H゛
、5厚泪J1で1ljl定し、N2 イオンの個数は−
61「、積31削1コ1で1ltll定し、B/Nを算
出した。
Steaming method T ii'+ of B, steaming, 'j frog degree, vibration type H', 1ljl with 5 thickness and J1, and the number of N2 ions is -
61", 1ltll was determined by 1 piece of product 31 cuts, and the B/N was calculated.

N2+イオンのイオン加速エネ/lギーも:変え、8蒸
xi扇會変化させて′Aq脱形数形成j庁っ/c0その
結束を一括して表に示した。
The ion acceleration energy/l energy of N2+ ions was also changed, and the 8 vaporization fan was changed, and the unity of 'Aq deformation number formation/c0 was collectively shown in the table.

結擢から明らかなように1本発明方法で得られた薄膜は
その電気比1Jモ抗がI X 10 〜2XiO!ノ、
C’fiであp、その結晶惜逓はc −13N 7(!
Iが主体であるが、しかし、本発明の成膜条f4=を夕
1れるものは、c B N T (tl す(主1!:
 t、 テh −13N又t1非晶賀Bへと構成されて
いることが判明し7た。
As is clear from the crystallization, the thin film obtained by the method of the present invention has an electrical resistance of 1 J of IX10 to 2XiO! of,
Up with C'fi, the crystal value is c -13N 7 (!
I is the main character, however, the film forming strip f4= of the present invention is mainly c B N T (tl (Main 1!)
It was found that t, teh -13N and t1 amorphous B were constructed.

実施例4 基体がWC−Co系の超硬合金であったこと、N2+イ
オンのイオン加速エネルギーが40keVであったこと
、を除いては実施例Iと同様の方法で薄膜形成を行なっ
た。’/Nは2.5であった。蒸発時間は120分であ
った。
Example 4 A thin film was formed in the same manner as in Example I, except that the substrate was a WC-Co-based cemented carbide and the ion acceleration energy of N2+ ions was 40 keV. '/N was 2.5. Evaporation time was 120 minutes.

厚み約20000Aの薄膜が形成された。この薄膜につ
きX線回折分析を行々つだところc −B Nの回折線
が認められた。
A thin film with a thickness of about 20,000 Å was formed. When this thin film was subjected to X-ray diffraction analysis, a c-BN diffraction line was observed.

また、マイクロビッカース硬さく荷重5g)を測定した
ところ、基体の硬度は200QHvであったが膜上では
3890)IVであった。
Further, when a micro Vickers hardness load of 5 g was measured, the hardness of the substrate was 200 QHv, but the hardness of the film was 3890 IV).

実施例5 図の装置を用いて、電子ビームでh−IJ N @、加
速エネルギー601ceVのAr イオンの照射と同時
にAlzOa −TiC系のアルミナセラミックス基体
の上に60分間蒸発させた。l−′/Nは1.0である
Example 5 Using the apparatus shown in the figure, an electron beam was used to irradiate h-IJN@ with Ar ions with an acceleration energy of 601 ceV and simultaneously evaporate the AlzOa-TiC-based alumina ceramic substrate for 60 minutes. l-'/N is 1.0.

厚み約5000OAの薄膜が形成された。この薄膜につ
きX線回折分析を行なったところc −B Nの回折線
が認められた。
A thin film with a thickness of about 5000 OA was formed. When this thin film was subjected to X-ray diffraction analysis, a c-BN diffraction line was observed.

”t、 タ、マイクロビッカース硬さく荷i5 g )
B基体のそれが2050)iv 、 膜上からの硬度は
4130Hv であった。
"t, ta, micro Vickers hard load i5 g)
The hardness of the B substrate was 2050 iv, and the hardness from the top of the film was 4130 Hv.

実施例6 図の装置を用いて、−子ビームで金属Bを、加速エネル
ギー4Qkeもp−atw之イオンの照射と同時にシリ
コンウェハー基体の上VC120分出]蒸発きせた。L
3/Nは3.0とした。
Example 6 Using the apparatus shown in the figure, metal B was evaporated with an acceleration energy of 4 Qke onto a silicon wafer substrate at a VC of 120 minutes at the same time as the p-atw ions were irradiated. L
3/N was set to 3.0.

pJlみ約20000Aの博し!が形成され/こ。この
薄膜につきX線回折分析を行なったところc −B N
の回折線が認められた。
About 20,000A of pJl! is formed/this. When X-ray diffraction analysis was performed on this thin film, c -B N
A diffraction line was observed.

また、マイクロビッカース硬さく荷重5g )k測定し
たところ、基体の硬度は100 o Hv であったが
膜上では405Q)ivであった。
Further, when the micro-Vickers hardness was measured under a load of 5g)k, the hardness of the substrate was 100 o Hv, but on the film it was 405Q)iv.

〔発明の効果〕〔Effect of the invention〕

本発明方法によれば、基体の表ω1&′(イ、i’ l
i、lなC−13Nを主体とする配−6硬度IJ Nの
t1外を形成う゛ることができること、そして七のY込
月し3はイλンlI1% JjJ 4′iIよって基体
との界面で楔ん1宋をイ]するので密九−性VC優れで
いることなどの点て工臭的に資フーるところ大でおる。
According to the method of the present invention, the surface ω1&′(a, i′ l
i, l C-13N as the main component -6 hardness IJN Since it intersects the Sung Dynasty at the interface, it is of great benefit from an engineering point of view to have excellent VC.

4 タ1 d++の伴、1卓な説明 図は本虻り」方法ケ行なうVこ当り好適な装置の1例を
示すものでりる。
This is an explanatory diagram showing an example of a suitable apparatus for carrying out this method.

J・・リークパルプ、2・・・イメンu51、:3・・
・加外器。
J...Leak pulp, 2...Imen u51, :3...
・External device.

4・・・分析マグネフト、5・・・反尾、b:、’rm
6・・・真突ポンプ、7・・・基体、8・・・基体ホル
ダ、9・・・イメン収東レンズ510・・・kζ2α装
置N、11・・石英板使用の振動型1換厚h1.12・
・・二次電子追い返し用電極、J3・・・電流わ゛を算
B1゜
4... Analysis magnetoft, 5... Anti tail, b:,'rm
6... True thrust pump, 7... Substrate, 8... Substrate holder, 9... Imen convergence lens 510... kζ2α device N, 11... Vibration type 1 conversion thickness h1 using quartz plate .12・
・Electrode for repelling secondary electrons, J3...Calculate the current value B1゜

Claims (1)

【特許請求の範囲】 1、 基体上に、ホウ素を含有する然発υ東を蒸着させ
、かつ、その蒸着と同時又は交互VC加速されたイオン
種を照射して、該基体上に該蒸発源と該イオン種ycよ
って高硬度窒化ホウ素薄11.3を生成せしめる方法で
あって、 該蒸発分と該イオン種とに含壕れるホウ素と窒素との原
子比(11/N )がO05〜3であシ、かつ、該イオ
ン種のイオン加速エネルギーが該イオン種に含捷れてい
るホウ常着しくはウスへ又は不活性ガスの原子当シ5〜
60 keVであることを特9((とする高硬度窒化ホ
ウ素薄膜の製造方法。 2 該ホウ素含有の蒸発源が、金1ζ1471つ累、ホ
ウ素化合物又はこれらの相互固溶体の/!I;から選ば
れる少なくとも1種である特許請求の範囲第1項記載の
高硬度窒化ホウ素薄膜の製造方法、。 3、 該イオン種が、窒素原子イオン、窒素分子イオン
、窒素化合物イオン、ホウ素イオン、ホウ累化合物イオ
ン又は不活性ガスイオンのいずれがである特許請求の範
囲第1項記載の高硬度窒化ホウ素薄膜の製造方法。 4、 該基体が、超硬合金、サーメット、セラミックス
、又は各種の金ハ若しくは合金である特許請求の範囲第
1項記載の高(iJi度窒化ホウ累薄膜の製造方法。
[Scope of Claims] 1. The evaporation source is deposited on the substrate by vapor depositing a spontaneous vapor containing boron, and simultaneously or alternately irradiating the VC-accelerated ionic species with the vapor deposition. and the ionic species yc to produce high hardness boron nitride thin 11.3, the atomic ratio (11/N) of boron and nitrogen contained in the evaporated content and the ionic species is O05 to 3. 5~
60 keV. 2. The boron-containing evaporation source is selected from gold, a boron compound, or a mutual solid solution of these. A method for producing a high hardness boron nitride thin film according to claim 1, wherein the ion species is at least one of nitrogen atom ions, nitrogen molecular ions, nitrogen compound ions, boron ions, and boron compound ions. or inert gas ions. 4. The substrate is made of cemented carbide, cermet, ceramics, or various gold metals or alloys. A method for producing a high (iJi) boron nitride thin film according to claim 1.
JP58171217A 1983-09-19 1983-09-19 Manufacture of thin boron nitride film of high hardness Granted JPS6063372A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58171217A JPS6063372A (en) 1983-09-19 1983-09-19 Manufacture of thin boron nitride film of high hardness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58171217A JPS6063372A (en) 1983-09-19 1983-09-19 Manufacture of thin boron nitride film of high hardness

Publications (2)

Publication Number Publication Date
JPS6063372A true JPS6063372A (en) 1985-04-11
JPH0351787B2 JPH0351787B2 (en) 1991-08-07

Family

ID=15919206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58171217A Granted JPS6063372A (en) 1983-09-19 1983-09-19 Manufacture of thin boron nitride film of high hardness

Country Status (1)

Country Link
JP (1) JPS6063372A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60152677A (en) * 1984-01-20 1985-08-10 Sumitomo Electric Ind Ltd Cubic boron nitride coated hard material and its production
JPS61157674A (en) * 1984-12-29 1986-07-17 Agency Of Ind Science & Technol Manufacture of high hardness boron nitride film
JPS6293366A (en) * 1985-10-18 1987-04-28 Nissin Electric Co Ltd Manufacture of boron nitride film
JPS62164869A (en) * 1986-01-16 1987-07-21 Nissin Electric Co Ltd High hardness coating material and its production
JPS6318050A (en) * 1986-07-11 1988-01-25 Mitsubishi Heavy Ind Ltd Cbn coating method
JPS63134662A (en) * 1986-11-22 1988-06-07 Sumitomo Electric Ind Ltd Method for synthesizing high hardness boron nitride
JPH01225767A (en) * 1988-03-07 1989-09-08 Nissin Electric Co Ltd Production of silicon nitride film
JPH02155531A (en) * 1988-12-07 1990-06-14 Agency Of Ind Science & Technol Forging die and its manufacture
JPH02159362A (en) * 1988-12-13 1990-06-19 Mitsubishi Heavy Ind Ltd Method and apparatus for production of thin film
JPH02259059A (en) * 1989-03-31 1990-10-19 Mitsubishi Heavy Ind Ltd Formation of boron nitride
EP0429993A2 (en) * 1989-11-17 1991-06-05 Nissin Electric Company, Limited Method of forming thin film containing boron nitride, magnetic head and method of preparing said magnetic head
JPH04124259A (en) * 1990-09-12 1992-04-24 Nissin Electric Co Ltd Formation of boron nitride thin film
JPH04124258A (en) * 1990-09-12 1992-04-24 Nissin Electric Co Ltd Formation of boron nitride thin film

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5282699A (en) * 1975-12-29 1977-07-11 Youichi Murayama Hard boronnitride c0ating

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5282699A (en) * 1975-12-29 1977-07-11 Youichi Murayama Hard boronnitride c0ating

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60152677A (en) * 1984-01-20 1985-08-10 Sumitomo Electric Ind Ltd Cubic boron nitride coated hard material and its production
JPH0542509B2 (en) * 1984-01-20 1993-06-28 Sumitomo Electric Industries
JPH0515788B2 (en) * 1984-12-29 1993-03-02 Kogyo Gijutsu Incho
JPS61157674A (en) * 1984-12-29 1986-07-17 Agency Of Ind Science & Technol Manufacture of high hardness boron nitride film
JPS6293366A (en) * 1985-10-18 1987-04-28 Nissin Electric Co Ltd Manufacture of boron nitride film
JPS62164869A (en) * 1986-01-16 1987-07-21 Nissin Electric Co Ltd High hardness coating material and its production
JPS6318050A (en) * 1986-07-11 1988-01-25 Mitsubishi Heavy Ind Ltd Cbn coating method
JPS63134662A (en) * 1986-11-22 1988-06-07 Sumitomo Electric Ind Ltd Method for synthesizing high hardness boron nitride
JPH01225767A (en) * 1988-03-07 1989-09-08 Nissin Electric Co Ltd Production of silicon nitride film
JPH02155531A (en) * 1988-12-07 1990-06-14 Agency Of Ind Science & Technol Forging die and its manufacture
JPH02159362A (en) * 1988-12-13 1990-06-19 Mitsubishi Heavy Ind Ltd Method and apparatus for production of thin film
JPH02259059A (en) * 1989-03-31 1990-10-19 Mitsubishi Heavy Ind Ltd Formation of boron nitride
EP0429993A2 (en) * 1989-11-17 1991-06-05 Nissin Electric Company, Limited Method of forming thin film containing boron nitride, magnetic head and method of preparing said magnetic head
EP0429993B1 (en) * 1989-11-17 1995-08-02 Nissin Electric Company, Limited Method of forming thin film containing boron nitride, magnetic head and method of preparing said magnetic head
JPH04124259A (en) * 1990-09-12 1992-04-24 Nissin Electric Co Ltd Formation of boron nitride thin film
JPH04124258A (en) * 1990-09-12 1992-04-24 Nissin Electric Co Ltd Formation of boron nitride thin film

Also Published As

Publication number Publication date
JPH0351787B2 (en) 1991-08-07

Similar Documents

Publication Publication Date Title
US4656052A (en) Process for production of high-hardness boron nitride film
US4657774A (en) Method for thin film formation
US4844785A (en) Method for deposition of hard carbon film
JPH0751752B2 (en) Plasma energized magnetron sputter deposition method and apparatus
JPS6063372A (en) Manufacture of thin boron nitride film of high hardness
JPS60195094A (en) Production of diamond thin film
JPH026830B2 (en)
US4415420A (en) Cubic boron nitride preparation
JPH0259862B2 (en)
US6200649B1 (en) Method of making titanium boronitride coatings using ion beam assisted deposition
JPS6326349A (en) Formation of cubic boron nitride film
JPS60181262A (en) Production of boron nitride film having high hardness
JP2611521B2 (en) Method of forming boron nitride thin film
JPS61227163A (en) Production of high hardness boron nitride film
JP2603919B2 (en) Method for producing boron nitride film containing cubic boron nitride crystal grains
EP0280198B1 (en) Method of forming diamond film
JPH0515788B2 (en)
JPH0663087B2 (en) Method for forming titanium nitride film
JPS60127299A (en) Gas-phase synthesis of diamond
JPS63262457A (en) Preparation of boron nitride film
JP2611522B2 (en) Method of forming boron nitride thin film
JPS58100672A (en) Method and device for formation of thin film
JPH1068070A (en) Formation of compound coating
JPH0733580B2 (en) Method for producing cubic boron nitride film
Nenadović Atomic collision on surfaces and material implementation