JPS6056969B2 - Boiler - combustion air control method - Google Patents
Boiler - combustion air control methodInfo
- Publication number
- JPS6056969B2 JPS6056969B2 JP4530575A JP4530575A JPS6056969B2 JP S6056969 B2 JPS6056969 B2 JP S6056969B2 JP 4530575 A JP4530575 A JP 4530575A JP 4530575 A JP4530575 A JP 4530575A JP S6056969 B2 JPS6056969 B2 JP S6056969B2
- Authority
- JP
- Japan
- Prior art keywords
- signal
- sulfur
- fuel
- concentration
- amount
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Regulation And Control Of Combustion (AREA)
Description
【発明の詳細な説明】
この発明はボイラー燃焼空気制御方法に関し、特に適
正な燃焼状態を保持すると共にボイラーヘの供給空気量
を制御してN0xの生成を極力低減するようにしたボイ
ラー燃焼空気制御方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a boiler combustion air control method, and more particularly, to a boiler combustion air control method that maintains an appropriate combustion state and controls the amount of air supplied to the boiler to reduce the production of NOx as much as possible. It is related to.
重油或いはガスの単独専燃もしくは混燃方式のボイラ
ーは例えば火力発電所等において広く使用されているが
、このようなボイラーの熱効率、排ガスの環境汚染の対
策は省資源および公害対策上からも重視されていること
は周知の通りである。Boilers that burn heavy oil or gas either exclusively or mixedly are widely used in thermal power plants, etc., but the thermal efficiency of such boilers and measures to prevent environmental pollution from exhaust gas are important from the standpoint of resource conservation and pollution control. It is well known that this is the case.
従来、上記対策のための管理および制御に際しては、
そのための必要な情報要素の入手を、例えば燃料の密度
、硫黄分、発熱量等、全て手分析による方法で得ており
、このためいわゆるオンラインでの管理および制御がで
きず、さらにサンプリングの手法いかんによつてはシス
テムの信頼性をも左右し、特にボイラーの燃焼に際して
は供給空気量の制御誤差は、燃焼に必要な量以上の空気
の供給による排ガス中のN0xの増加という好ましくな
い結果を招いていた。 この発明は上述の状況に鑑みて
なされたものであり、重油或いはガス燃料によるボイラ
ーにおいて、供給される燃料の密度、該燃料中の硫黄濃
度、硫黄と炭素および水素を含めた主要組成物の総計的
な重量組成濃度をボイラーヘの燃料の供給前に連続的に
検出し、各検出値に基づいて当該燃料の燃焼に大要な所
要空気量を演算することにより、ボイラーヘの過剰な空
気の供給をなくして燃焼時に空気中の窒素によつて生成
されるNo、の排ガス中の濃度を極力低減せしめること
、および上記各検出値に基づいて当該燃料による発熱量
をも 一 −同時に演算してこれによりボイラーの熱効
率管理を集中制御可能とすることを目的とするものであ
る。Conventionally, when managing and controlling the above measures,
The necessary information elements for this purpose, such as fuel density, sulfur content, calorific value, etc., are all obtained through manual analysis, which precludes so-called online management and control, and also requires sampling methods. In some cases, this can affect the reliability of the system, and especially during boiler combustion, control errors in the amount of air supplied can lead to undesirable results such as an increase in NOx in the exhaust gas due to the supply of more air than is necessary for combustion. was. This invention has been made in view of the above-mentioned situation, and is aimed at improving the density of the supplied fuel, the sulfur concentration in the fuel, and the total amount of the main composition including sulfur, carbon, and hydrogen in a boiler using heavy oil or gas fuel. By continuously detecting the weight composition concentration of fuel before supplying it to the boiler, and calculating the amount of air required for combustion of the fuel based on each detected value, it is possible to prevent excess air from being supplied to the boiler. The purpose of the present invention is to simultaneously calculate the calorific value of the fuel based on the above-mentioned detection values, and to simultaneously calculate the calorific value of the fuel based on the above-mentioned detection values. The purpose is to enable centralized control of boiler thermal efficiency management.
すなわちこの発明のボイラー燃焼空気制御方法において
は、ボイラーへの燃料供給ライン中に物理的に独立した
値として燃料の密度を検出する密度検出器と、燃料中の
硫黄濃度のみ選択的に検出する放射線を用いた硫黄濃度
検出器と、燃料中の水素および炭素および硫黄の主要組
成物の総計的な重量組成濃度を検出する放射線を用いた
組成濃度検出器とを設け、これら各検出器の出力信号に
基づいて燃料中の主要組成物のうちの水素濃度および炭
素濃度を演算することなく燃料の完全燃焼に必要な所要
空気量の最小値を求め、また実際の供給空気量が該所要
空気量になるように制御するものであり、発熱効率を低
下させることなく過剰空気の供給をなくして排ガス中に
生成されるNOOの濃度を極力抑制すると共にこれをオ
ンタイムで果し得るようにしたものである。That is, the boiler combustion air control method of the present invention includes a density detector that detects the density of the fuel as a physically independent value in the fuel supply line to the boiler, and a radiation detector that selectively detects only the sulfur concentration in the fuel. A sulfur concentration detector using radiation and a composition concentration detector using radiation to detect the total gravimetric concentration of the main components of hydrogen, carbon, and sulfur in the fuel are provided, and the output signals of these detectors are Based on this, the minimum amount of air required for complete combustion of the fuel is determined without calculating the hydrogen concentration and carbon concentration of the main components in the fuel, and the actual amount of supplied air is equal to the required amount of air. The system is designed to suppress the concentration of NOO generated in the exhaust gas as much as possible by eliminating the supply of excess air without reducing heat generation efficiency, and to achieve this on-time. be.
この発明の実施例図面と共に詳述すれば以下の通りであ
る。Embodiments of the present invention will be described in detail below with reference to the accompanying drawings.
第1図はこの発明の一実施例に係る制御システムの検出
部および演算部の詳細な構成を示すブロック図、第2図
は上記制御システムの全体の構成を示すブロック図であ
る。FIG. 1 is a block diagram showing a detailed configuration of a detection section and a calculation section of a control system according to an embodiment of the present invention, and FIG. 2 is a block diagram showing the overall configuration of the control system.
第1図においてeはボイラーへの燃料供給ラインから導
びかれたサンプルラインであり、該サンプルラインeに
は燃料の密度を物理的に検出する密度計1と、燃料中の
硫黄の濃度を選択的に検出する硫黄濃度検出器2と、燃
料中の所要組成物すなわち水素と炭素および硫黄の総計
的な重量組成.濃度を検出する組成濃度検出器3とが設
けられている。In Fig. 1, e is a sample line led from the fuel supply line to the boiler, and the sample line e is equipped with a density meter 1 that physically detects the density of the fuel, and a density meter 1 that selects the concentration of sulfur in the fuel. A sulfur concentration detector 2 that detects the total weight composition of hydrogen, carbon, and sulfur in the fuel. A composition concentration detector 3 for detecting concentration is provided.
上記密度検出器1は、例えは振動式密度計のような物理
的な手法によつて成分比に無関係な独立値として燃料の
密度ρ(g/Cm)を検出するもの.を用い、いわゆる
放射線応用器は用いない。The density detector 1 detects the fuel density ρ (g/Cm) as an independent value unrelated to the component ratio using a physical method such as a vibrating density meter. A so-called radiation application device is not used.
また上記硫黄濃度検出器2は、例えばアメリシウム24
1のような放射線源を使用して水素、炭素の質量吸収係
数を等しくし硫黄のみ質量吸収係数を異ならしめるよう
な例えば20〜23kevの強度の−γ線により硫黄濃
度Csにのみ関係する信号を得るようにしたものを用い
、これによつて硫黄濃度を他の成分比に無関係に選択的
に検出するようにする。さらに上記組成濃度検出器3は
、アメリシウム241の如き放射線源を使用して水素、
炭素、および硫黄の各所要組成物の質量吸収係数を全て
異ならしめるような例えば約60kevの強度のγ線に
より各組成物の総計的な重量組成濃度に関係した信号を
得るようにしたものを用いる。Further, the sulfur concentration detector 2 may contain, for example, americium 24
Using a radiation source such as 1, a signal related only to the sulfur concentration Cs is generated using -γ rays with an intensity of, for example, 20 to 23 keV, which equalizes the mass absorption coefficients of hydrogen and carbon and makes the mass absorption coefficient of sulfur different. The sulfur concentration can be selectively detected irrespective of the ratio of other components. Further, the composition concentration detector 3 uses a radiation source such as americium-241 to
A system is used in which a signal related to the total weight composition concentration of each composition is obtained using gamma rays with an intensity of, for example, about 60 keV, which makes the mass absorption coefficients of the required compositions of carbon and sulfur all different. .
上記密度検出器1の出力は、基準温度における密度信号
を変換してさらに正規化された電圧信号とするための変
換器4に入力され、該変換器出力jが密度信号としての
第1の信号EDとして制御に供されることになる。The output of the density detector 1 is input to a converter 4 for converting a density signal at a reference temperature into a further normalized voltage signal, and the converter output j is a first signal as a density signal. It will be used for control as an ED.
上記硫黄濃度検出器2の出力は、電圧信号に変換するた
めの変換器5を介して硫黄濃度をゼロスパン調整する設
定器7と除算器9の組合せ回路に入力され、該設定器7
に別に入力された上記変換器4の出力信号(第1の信号
)による温度補正と後述する演算が行なわれたのち、除
算器9の出力から基準温度における正規化された硫黄濃
度信号としての第2の信号Esとして制御に供されるこ
とになる。The output of the sulfur concentration detector 2 is inputted to a combination circuit of a setter 7 and a divider 9 for zero span adjustment of the sulfur concentration via a converter 5 for converting it into a voltage signal.
After temperature correction using the output signal (first signal) of the converter 4 inputted separately and calculations to be described later, the normalized sulfur concentration signal at the reference temperature is calculated from the output of the divider 9. The second signal Es is used for control.
さらに上記組成濃度検出器3の出力は、上記と同様に電
圧信号に変換するための変換器6を介して組成濃度をゼ
ロスパン調整する設定器8と除算器10の組合せ回路に
入力され、該設定器8に別に入力された上記変換器4の
出力信号(第1の信号)による温度補正と後述する演算
を行なわれたのち、除算器10から基準温度における正
規化された組成濃度信号としての第3の信号Ecとして
空気量演算器11および発熱量演算器12に入力される
。Further, the output of the composition concentration detector 3 is inputted to a combination circuit of a setter 8 and a divider 10 for zero span adjustment of the composition concentration via a converter 6 for converting it into a voltage signal in the same manner as described above, After temperature correction using the output signal (first signal) of the converter 4, which is separately input to the converter 8, and calculations to be described later, the divider 10 outputs the normalized composition concentration signal at the reference temperature. 3 is input to the air amount calculator 11 and the calorific value calculator 12 as the signal Ec.
上記空気量演算器11は除算器9および除算器10より
入力を受けて後述のように組成濃度信号(第2の信号)
および組成濃度信号(第3の信号)よりその燃料を完全
燃焼させるに必要な最低限の所要空気量を演算して第4
の信号Ecを出力するものてあり、また上記発熱量演算
器12は同様に除算器9および除算器10より入力を受
けて後述のように硫黄濃度信号(第2の信号)および組
成濃度信号(第3の信号)よりその際の燃焼の発熱量を
演算して第5の信号EOを出力するものである。The air amount calculator 11 receives input from the divider 9 and the divider 10 and generates a composition concentration signal (second signal) as described later.
Then, from the composition concentration signal (third signal), the minimum required air amount necessary for complete combustion of the fuel is calculated, and the fourth signal is calculated.
The calorific value calculator 12 similarly receives input from the divider 9 and the divider 10 and outputs a sulfur concentration signal (second signal) and a composition concentration signal ( The fifth signal EO is output by calculating the calorific value of combustion at that time based on the third signal (third signal).
第2図において、上述の各検出器1,2,3および第1
図にて鎖線で囲んだ演算部20は同符号で略示されてお
り、またボイラー18への燃料供給ラインLと前述サン
プリングラインlとの配置も示されている。In FIG. 2, the respective detectors 1, 2, 3 and the first
The arithmetic unit 20 surrounded by a chain line in the figure is indicated by the same reference numeral, and the arrangement of the fuel supply line L to the boiler 18 and the aforementioned sampling line I is also shown.
第2図において13は燃料供給ラインLに設けられた流
量計であり、この流量計13の出力は乗算器14に入力
されている。前述した演算部20の第1の信号EDも該
乗算器14に入力され、乗算器14の出力は前述第2、
第4、および第5の信号Es,Ec,EQを各々入力と
する乗算演算器15に入力されている。またボイラー1
8の空気供給ライン17には供給空気量調節器16が設
けられ、調節器16は乗算演算器15の出力の1つであ
る空気量制御出力Aによつて弁の開度或はファンの出力
を制御されるようになされている。尚、図中19はボイ
ラー18の煙突である。上述の構成において、密度検出
器1によつて検出された或る温度の燃料の密度ρ(g/
Cwl)は、、例えば燃料が石油の場合にはその密度が
0.65〜1.0(g/Cm)の範囲内にあることが既
知であるから、これを密度測定レンジとして使用する計
器又は演算系のレンジに対応してこれらをフールレンジ
で利用できるように、変換器4による演算により測定レ
ンジの下限として設定された基準値ρo(例えば石油で
は0.65)との差をとられると共に基準温度における
密度に変換され、使用する計器又は演算系のレンジに合
わせて次式の測定レンジ1〜5■の範囲内で変化する信
号に正規化された電圧信号の形て第1の信号として出力
される。In FIG. 2, reference numeral 13 denotes a flow meter provided in the fuel supply line L, and the output of this flow meter 13 is input to a multiplier 14. The first signal ED of the arithmetic unit 20 described above is also input to the multiplier 14, and the output of the multiplier 14 is the second signal ED described above.
The fourth and fifth signals Es, Ec, and EQ are input to a multiplication calculator 15, which receives the fourth and fifth signals Es, Ec, and EQ as inputs, respectively. Also boiler 1
The air supply line 17 of No. 8 is provided with a supply air amount regulator 16, and the regulator 16 adjusts the opening degree of the valve or the output of the fan according to the air amount control output A, which is one of the outputs of the multiplier 15. is being controlled. In addition, 19 in the figure is the chimney of the boiler 18. In the above configuration, the density ρ(g/
For example, when the fuel is petroleum, it is known that its density is within the range of 0.65 to 1.0 (g/Cm). In order to use these in a full range corresponding to the range of the calculation system, the difference from the reference value ρo (for example, 0.65 for petroleum) set as the lower limit of the measurement range is calculated by the converter 4. The first signal is in the form of a voltage signal that is converted to density at the reference temperature and normalized to a signal that varies within the measurement range 1 to 5 of the following formula according to the range of the instrument or calculation system used. Output.
(但しρoおよびρMaxは各々密度測定レンジの下限
および上限設定値)。(However, ρo and ρMax are the lower and upper limit settings of the density measurement range, respectively).
また硫黄濃度検出器2によつて検出された或る温度にお
ける硫黄濃度C,(wt%)に比例する電離電流L=I
OXe−ρt庚Cs(但しρは上記密度、tは測定路長
による係数、U,は硫黄Sの質量吸収係数)は、変換器
5による電圧信号への変換および増幅の後に変換器4か
らの基準温度における迄度信号(第1の信号E。Furthermore, the ionization current L=I is proportional to the sulfur concentration C, (wt%) at a certain temperature detected by the sulfur concentration detector 2.
OXe-ρt Cs (where ρ is the above-mentioned density, t is a coefficient depending on the measurement path length, and U is a mass absorption coefficient of sulfur S) is obtained from the converter 4 after conversion to a voltage signal by the converter 5 and amplification. Temperature signal at reference temperature (first signal E).
)および該検出器2内の燃料温度計測信号により温度補
正を設定器7にて加えられ、さらに除算器9との組合せ
で次式のように演算されて前述と同様に1〜5V信号に
正規化された電圧信号の形で第2の信号として出力され
る。(但しC″SOおよびC″S.naxは各々硫黄濃
度測定レンジの下限および上限設定値)同様に組成濃度
検出器3によつて検出された或る温度における組成濃度
に比例した電離電流1=IOe−ρt(UHCH+Uc
Cc+UsCs)は、変換器6による電圧信号への変換
および増幅の後に変換器4からの基準温度における密度
信号(第1の信号E。) and the fuel temperature measurement signal in the detector 2, a temperature correction is added in the setter 7, and further, in combination with the divider 9, it is calculated as shown in the following formula, and the signal is normalized to 1 to 5V as described above. It is output as a second signal in the form of a converted voltage signal. (However, C″SO and C″S.nax are the lower and upper limit settings of the sulfur concentration measurement range, respectively.) Similarly, the ionization current 1 proportional to the composition concentration at a certain temperature detected by the composition concentration detector 3 = IOe−ρt(UHCH+Uc
Cc+UsCs) is the density signal (first signal E) at the reference temperature from converter 4 after conversion to a voltage signal and amplification by converter 6.
)および該検出器3内の燃料温度計測信号により温度補
正を設定器8にて加えられ、されに除算器10との組合
せで次式のように演算されて前述と同様に1〜5V信号
に正規化された電圧信号の形で第3の信号として出力さ
れる。(但し、YOは上記検出器3て検出されEO=μ
HCH+μ。) and the fuel temperature measurement signal in the detector 3, a temperature correction is added in the setter 8, and then in combination with the divider 10, it is calculated as shown in the following equation to produce a 1 to 5V signal as described above. A third signal is output in the form of a normalized voltage signal. (However, YO is detected by the above detector 3 and EO=μ
HCH+μ.
Cc+μSCsが成立する組成濃度値、YcOおよびY
cmu.は組成濃度測定レンジの下限設定値および上限
設定値、CH,C.は夫々水素、炭素、および硫黄の重
量濃度(wt%)、CHO,CCOlおよびCsOは燃
料によつて特定されたCHO+CCO+CSO=1とY
cO=μHCHO+μCCHO+μ5CS0が成立する
ように定められた夫々水素、炭素、および硫黄に関する
定数、CH..aO,Ccma.およびCsmaxは燃
料によつて特定され)CHmax+Ccmax+Csm
ax:1とYcrnaxOμCCHmax+μCCla
x+μSClaxが成立するように定められた夫々水素
、炭素、および硫黄に関する定数である)。さて、石油
の元素構成は炭素、水素、硫黄てあることは公知の事実
である。Compositional concentration values, YcO and Y at which Cc+μSCs holds true
cmu. are the lower limit set value and upper limit set value of the composition concentration measurement range, CH, C. are the weight concentrations (wt%) of hydrogen, carbon, and sulfur, respectively, and CHO, CCOl, and CsO are CHO+CCO+CSO=1 and Y specified by the fuel.
Constants related to hydrogen, carbon, and sulfur, determined so that cO=μHCHO+μCCHO+μ5CS0 holds, CH. .. aO, Ccma. and Csmax is specified by the fuel) CHmax+Ccmax+Csm
ax:1 and YcrnaxOμCCHmax+μCCla
x+μSClax are constants for hydrogen, carbon, and sulfur, respectively). Now, it is a well-known fact that the elemental composition of petroleum is carbon, hydrogen, and sulfur.
石油の一定重量をw(g)、その中に含まれる炭素、水
素、硫黄の重量をそれぞれWc,WH,Wsとすると次
に様な関係が成立する。W=Wc+WH+Ws
一方、炭素、水素、硫黄による重量組成比Cc,CH,
CsをWで表わすと、それぞれ次のようになる。If the constant weight of petroleum is w (g), and the weights of carbon, hydrogen, and sulfur contained therein are Wc, WH, and Ws, the following relationship holds true. W=Wc+WH+Ws On the other hand, the weight composition ratio Cc, CH of carbon, hydrogen, and sulfur,
When Cs is represented by W, the following results are obtained.
従つて、
が変つても、その比お総和は常に1に等しい状態が保て
る。Therefore, even if changes, the sum of the ratios will always remain equal to 1.
炭素、水素、硫黄の各々の元素の単位重量当りの高発熱
量をそれぞれQcKcae/KgQHKcae/K9Q
SKCae/K9とし、それで構成される石油の単位重
量当りの高発熱量をQKCae/Kgとすると、これら
の間に次のような関係式が成立する。The high calorific value per unit weight of each element of carbon, hydrogen, and sulfur is QcKcae/KgQHKcae/K9Q.
Supposing that SKCae/K9 is the high calorific value per unit weight of petroleum composed of SKCae/K9, the following relational expression is established between them.
石油カロリ計の演算はこのようにして、(a)式および
(b)式が起点になつている。In this way, the calculations of the petroleum calorie meter are based on equations (a) and (b).
さらに、この石油製品の燃焼の際の所用酸素量は次の関
係から求められる。Furthermore, the amount of oxygen required for combustion of this petroleum product is determined from the following relationship.
今、石油製品Wg(炭素WCgl水素WHgl硫黄Ws
g)を燃焼させる時に必要な酸素量Gは次の様に求まる
。Now, petroleum products Wg (carbon WCgl hydrogen WHgl sulfur Ws
The amount of oxygen G required to burn g) is determined as follows.
炭素Wcgを燃焼させた時の酸素量は、
水素Wsgを燃焼させた時の酸素量は、
硫黄Wsgを燃焼させた時の酸素量は、
従つてWgの石油製品を燃焼させた時の所要酸素量は次
の通りである。The amount of oxygen when burning carbon Wcg is, The amount of oxygen when burning hydrogen Wsg, The amount of oxygen when burning sulfur Wsg, Therefore, the amount of oxygen required when burning Wg of petroleum products The amounts are as follows.
従つて単位重量当りの所要酸素量Gは次の様に表現出来
る。Therefore, the required oxygen amount G per unit weight can be expressed as follows.
8,Wc+8WH+Ws
G= ッ =?C+8CH+CS
このようにして、上述の(2),(3)式により空気量
演算器11にて行なわれる演算は、燃料を燃焼した場合
の所要酸素量Gが、例えば燃料が重油の場合にはの如く
理論値として既知であり、空気中に存在する酸素の量が
K=23.2wt%であるから基本的にフ所要空気量G
AがGA=G/Kで求められることに基づくものである
。8, Wc+8WH+Ws G= っ =? C+8CH+CS In this way, the calculation performed by the air amount calculator 11 using equations (2) and (3) above is such that the required oxygen amount G when burning fuel is, for example, when the fuel is heavy oil. This is known as a theoretical value, and since the amount of oxygen present in the air is K = 23.2wt%, basically the required air amount G is
This is based on the fact that A is determined by GA=G/K.
因みに所要酸素量Gは重油の場合を例にとつて示すと、
その組成が水素と炭素と硫黄で100%近く占められて
いるから、組成濃度YC,硫黄濃度CSlおよびCH+
Cc+Cs=CHO7+CCO+CSO=1なる関係と
上記(41)式により、次のようにして(5)式に示す
ような所要酸素量Gが求められる。即ち今、前記下限設
定値YcOに対応する所要酸素量をGとすると、(41
)(42)と同様にして(43)式が導びかれる。By the way, the required oxygen amount G is shown using heavy oil as an example.
Since its composition is nearly 100% hydrogen, carbon, and sulfur, the composition concentration YC, sulfur concentration CSl and CH+
Using the relationship Cc+Cs=CHO7+CCO+CSO=1 and the above equation (41), the required oxygen amount G as shown in equation (5) can be determined as follows. That is, if the required oxygen amount corresponding to the lower limit set value YcO is G, then (41
) Equation (43) is derived in the same way as (42).
(42),(43)から(44)式が導びかれる。Equation (44) is derived from (42) and (43).
一方、前述の如く検出器3て検出される組成濃度値Yc
および組成濃度測定レンジの下限設定僅■COは下式(
45)および(46)のようになつている。従つて、こ
れらの式(45),(46)から下式(45)″,(4
6)″が導びかれ、この(45)″,(46)″式から
(47)式が導かれる。この(47)式を上式(44)
に代人すると、ここで、前記下限設定値YcOを与える
硫黄に関する定数CsOと前記硫黄濃度測定レンジの下
限設定値CsOは異なるため、このC″SOの補正を加
えると下式(49)が導びかれる。On the other hand, as mentioned above, the composition concentration value Yc detected by the detector 3
and the lower limit setting of the composition concentration measurement range. CO is determined by the following formula (
45) and (46). Therefore, from these equations (45) and (46), the following equations (45)'' and (4
6)'' is derived, and formula (47) is derived from these formulas (45)" and (46)". This formula (47) is transformed into the above formula (44).
Here, since the constant CsO related to sulfur that gives the lower limit set value YcO and the lower limit set value CsO of the sulfur concentration measurement range are different, the following equation (49) can be derived by adding the correction of this C″SO. I'm scared.
ここで、前記下限設定値YcOに対する所要酸素量Gに
も上記C″SOの補正を加えて下式のように所要酸素量
G″Oを定めると、(49)式から下式(5)が導びか
れる。Here, if the required oxygen amount G for the lower limit set value YcO is also corrected by the above C″SO and the required oxygen amount G″O is determined as shown in the formula below, then the following formula (5) is obtained from the formula (49). be guided.
但しG″O=8CH0+?CO+CSO−(7一臂×上
式においては、測定値としての水素濃度CHや炭素濃度
速Cは演算に必要がない。However, G″O=8CHO+?CO+CSO−(7 one arm×In the above equation, the hydrogen concentration CH and carbon concentration speed C as measured values are not necessary for calculation.
即ち、浄述した第2の信号および第3の信号によつて、
で表わされる演算式に基づいて空気量演算器11が演算
し、なる測定レンジ1〜5V信号に正規化された電圧信
号の形で第4の信号を出力するものである。That is, by the above-mentioned second signal and third signal,
The air amount calculator 11 performs calculations based on the calculation formula expressed by , and outputs a fourth signal in the form of a voltage signal normalized to a measurement range of 1 to 5V signal.
尚、上述においてG″Amaxは前記上限設定値Ycn
laXに対応する空気量、G″AOは前記下限設定値Y
cOに対応する空気量を表わす。発熱量演算器12によ
つてなされる発熱量の演算は、上述第3の信号によつて
各組成物の濃度の比が与えられ、また第2の信号によつ
て硫黄の濃度が与えられるので、水素理論高発熱量QH
=34200kca′/Kg、炭素理論高発熱量α=8
080kcae/K9、硫黄理論高発熱量α=2500
kCae/K9が既知であるから燃焼方程式の理論式Q
=QHCH+QcCc+QsCsおよび(ト)=QHC
HO+QcCcO+QsCsOから理論高発熱量Qおよ
び発熱量下限値(ト)が求められ、CH+Cc+Cs=
CHO+CcO+CsO=1の関係および前述したYc
およびYcOから発熱量差ΔQ=Q−QOが次のように
して求められる。In addition, in the above, G″Amax is the upper limit setting value Ycn
The air amount corresponding to laX, G″AO is the lower limit setting value Y
It represents the amount of air corresponding to cO. The calculation of the calorific value performed by the calorific value calculator 12 is performed because the ratio of the concentrations of each composition is given by the third signal, and the concentration of sulfur is given by the second signal. , hydrogen theoretical high calorific value QH
=34200kca'/Kg, carbon theoretical high calorific value α=8
080kcae/K9, sulfur theoretical high calorific value α=2500
Since kCae/K9 is known, the theoretical formula Q of the combustion equation
=QHCH+QcCc+QsCs and (g)=QHC
From HO+QcCcO+QsCsO, the theoretical high calorific value Q and lower limit value of calorific value (g) are calculated, and CH+Cc+Cs=
The relationship of CHO+CcO+CsO=1 and the above-mentioned Yc
The calorific value difference ΔQ=Q−QO is obtained from YcO and YcO as follows.
即ち、ここで、CH=1−CC−CS,.CHO=1−
CCO−CSOが成巧!るから、〜 一、 一ー 一
ーここで、前記(47)式のCCO−CC=,1+7ぃ
× (μH−μs)(Yc−YcO)+?x(
Cs−CsO)を代人 (μH−U,c)する
と
〜ノQυノ
ここで、前記記下限設定値YcOを与える硫黄に関する
定数CsOと前記硫黄濃度測定レンジの下限設定値C″
SOは異るため、このC″SOの補正を加えると、ここ
で、前記下限設定値YcOに対応する石油発熱量QOに
も上記C″SOの補正を加え下式のように石油発熱量9
″0を定めると、次の式のように発熱量差ΔQが導びき
出される。That is, here, CH=1-CC-CS, . CHO=1-
CCO-CSO is Seiko! Therefore, ~ 1, 1- 1-Here, CCO-CC of the above formula (47) =,1+7ぃ× (μH-μs)(Yc-YcO)+? x(
Cs-CsO) as (μH-U,c) ~ノQυ Here, the constant CsO related to sulfur that gives the lower limit set value YcO and the lower limit set value C'' of the sulfur concentration measurement range
Since the SO is different, if this C″SO correction is added, the oil calorific value QO corresponding to the lower limit set value YcO is also corrected for the above C″SO, and the oil calorific value 9 is calculated as shown in the formula below.
When ``0'' is determined, the calorific value difference ΔQ is derived as shown in the following equation.
上述の一連の式において(QH−Qc),(QH一Qs
) (μH−μc)、および(μs−μH)は定数と
なるから、(Yc−YcO)および(Cs一CsO)の
各信号に基づいてΔQが演算できるようになる。In the above series of equations, (QH-Qc), (QH-Qs
) (μH−μc) and (μs−μH) are constants, so ΔQ can be calculated based on the signals (Yc−YcO) and (Cs−CsO).
但し、上記発熱量の信号として第5の信号は、説明の都
合上次式なる前述と同様に1〜5V信号に正規化された
電圧信号で表わすものとする。However, for convenience of explanation, it is assumed that the fifth signal as the signal of the amount of heat generated is expressed by a voltage signal normalized to a 1 to 5 V signal in the following formula as described above.
(但しQmaxは測定レンジ上限値)−小愼春 伽ふI
ア呑執蔓玉明信G象QnOnkca(8)式をΔQとの
関係で成立させることができる。(However, Qmax is the upper limit of the measurement range)
The equation (8) can be established in relation to ΔQ.
上述によつて明らかなことは、(1)(2)(3)式の
ような電圧信号を得ることにより、燃料の水素や炭素等
の成分に関して独立して濃度検査をしなくても、または
Cc/CH(CH比)を求めずとも、所要空気量あるい
ひ発熱量を求めることが可能であることである。すなわ
ち、前記組成濃度検出器によつて検出されたある温度に
おける組成濃度に比例した電離電流1=IOe−ρ゛(
μHCH+μCCc+μSCS)から、μHCH+PC
CC+PSCS=モTen青が導びかれる。また、前記
密度検出器および硫黄濃度検出器によつて夫々ρおよび
Csが測定されるため、メTen青およびμScsは定
数となる。更に、前記(a)式のCsも定数となる。従
つて、μHCH+μCcc=メ)En吉−μSCS=(
定・数)とCH+Cc=1−Cs=(定数)からなる連
立方程式を解くことにより、CHおよびCcが求まる。
すなわち、前記(a)式のCC+CH+CS=1なる条
件を考慮し、前記密度検出器、組成濃度検出器、および
硫黄検出器で夫々得られる信号であるρ,μHCH+μ
CCc+μSCSlおよびCsに基づいて演算システム
を構成することにより、石油発熱量Q=QHCH+QC
CC+QSCSl所要酸素量G=RCC+8CH+CS
lおよび所要空気量GA=G/K・(但し、K=0.2
38)が求まるようになる。従つて、このような演算シ
ステムの構成は極めて簡単となり、得られた信号によつ
てボイラーの燃焼管理がオンラインで行なわれるように
なる。すなわち第2図に示したように、燃料供給ライン
Lに流量計13を配置し、基準温度で流量信号VCd/
Sec〕と第1の信号である密度信号ED(Kg/d)
とを乗算器14にて積算すれば質量流量信号(ED●■
)〔K9/Sec〕が得られ、この質量流量信号と第4
の信号である空気量信号〔K9/・K9〕とを乗算演算
器15にて積算すれば単位時間当りに必要な所要空気量
ACk9/Sec〕が得られ、この信号Aによつて供給
空気量調節器16を制御すればボイラー18内に送入す
る空気量を発熱効率を低下させずに最小値にすることが
できる。What is clear from the above is that by obtaining voltage signals such as equations (1), (2), and (3), it is possible to detect components such as hydrogen and carbon in fuel without having to independently test their concentrations. It is possible to determine the required air amount or calorific value without determining Cc/CH (CH ratio). That is, the ionization current 1=IOe-ρ゛(
μHCH+μCCc+μSCS) to μHCH+PC
CC+PSCS=MoTen Blue is derived. Further, since ρ and Cs are measured by the density detector and the sulfur concentration detector, respectively, METenblue and μScs become constants. Furthermore, Cs in the above formula (a) is also a constant. Therefore, μHCH + μCcc = Me) Enkichi - μSCS = (
CH and Cc are found by solving simultaneous equations consisting of CH+Cc=1−Cs=(constant).
That is, considering the condition that CC+CH+CS=1 in the above equation (a), ρ, μHCH+μ, which are the signals obtained by the density detector, composition concentration detector, and sulfur detector, respectively.
By configuring the calculation system based on CCc+μSCSl and Cs, the oil calorific value Q=QHCH+QC
CC+QSCSL Required oxygen amount G=RCC+8CH+CS
l and required air amount GA=G/K・(However, K=0.2
38) can now be found. Therefore, the configuration of such a calculation system is extremely simple, and the combustion management of the boiler can be performed online based on the obtained signals. That is, as shown in FIG. 2, a flow meter 13 is arranged in the fuel supply line L, and the flow rate signal VCd/
Sec] and the first signal, the density signal ED (Kg/d)
If they are integrated in the multiplier 14, the mass flow rate signal (ED●■
) [K9/Sec] is obtained, and this mass flow rate signal and the fourth
The required air amount ACk9/Sec] required per unit time is obtained by integrating the air amount signal [K9/・K9], which is the signal of By controlling the regulator 16, the amount of air fed into the boiler 18 can be minimized without reducing heat generation efficiency.
尚、第2図においてSは上記質量流量信号(EO・■)
と第2の信号Esとを乗算演算器15に積算して得た硫
黄量信号〔K9/SeO〕、Qは同じく(ED・■)と
第5の信号EQとを乗算演算器15で積算して得た発熱
量信号〔Kcae/Sec〕である。In addition, in Fig. 2, S is the mass flow rate signal (EO・■)
The sulfur amount signal [K9/SeO] obtained by integrating and the second signal Es in the multiplier 15, Q is obtained by integrating (ED・■) and the fifth signal EQ in the multiplier 15. This is the calorific value signal [Kcae/Sec] obtained by
以上に延べた如くこの発明によれば、測定系演算系の回
路構成が簡略化され、ボイラーへの供給空気量を適切に
制御して過剰の空気の供給を最小限に抑え、供給された
空気中の酸素が全て燃料中の水素、炭素、硫黄の燃焼に
供されて可能な限り窒素の酸化を防ぐようにすることが
できるので排出ガス中にNOxが生成されることが極め
て少なくなり、また余剰空気による熱損失をも有効に防
止できるばかりか、同時に発熱量および硫黄量を求める
ことができるのでボイラーの熱効率管理およびSO.の
総量規制にも効果を得ることが可能であり、さらに燃料
の燃焼前にその組成等を検知できるので熱効率の管理お
よび供給空気量の制御がプロセスの無駄時間なくオンタ
イムで行ない得るものである。As described above, according to the present invention, the circuit configuration of the measurement system calculation system is simplified, the amount of air supplied to the boiler is appropriately controlled, excessive air supply is minimized, and the supplied air is All the oxygen in the fuel is used to burn the hydrogen, carbon, and sulfur in the fuel, preventing the oxidation of nitrogen as much as possible, which greatly reduces the generation of NOx in the exhaust gas. Not only can heat loss due to surplus air be effectively prevented, but also the calorific value and sulfur content can be determined at the same time, which can be used to manage boiler thermal efficiency and SO. Furthermore, since the composition of fuel can be detected before it is combusted, thermal efficiency management and supply air volume control can be carried out on-time without wasting process time. .
第1図はこの発明の一実施例に係る制御システムの検出
部と演算部の詳細構成を示すブロック図、第2図は上記
制御システムの全体の構成を示すブロック図である。
1・・・・・・密度検出器、2・・・・・・硫黄濃度検
出器、3・・・・組成濃度検出器、4,5,6・・・・
・変換器、7,8・・・・・・設定器、9,10・・・
・・除算器、11・・・・・・空気量演算器、12・・
・・・・発熱量演算器、13・・・・・流量計、14・
・・・・乗算器、15・・・・乗算演算器、16・・・
・・・空気量調節器、18・・・・・・ボイラー。FIG. 1 is a block diagram showing the detailed configuration of a detection section and a calculation section of a control system according to an embodiment of the present invention, and FIG. 2 is a block diagram showing the overall configuration of the control system. 1... Density detector, 2... Sulfur concentration detector, 3... Composition concentration detector, 4, 5, 6...
・Converter, 7, 8... Setting device, 9, 10...
...Divider, 11... Air amount calculator, 12...
... Calorific value calculation unit, 13 ... Flow meter, 14.
... Multiplier, 15... Multiplication operator, 16...
...Air volume regulator, 18...Boiler.
Claims (1)
いずに検出して第1の信号を得、炭素と水素の質量吸収
係数を等しくするように予じめ定められた強度の放射線
を用いて燃料中の硫黄の濃度を選択的に検出して第2の
信号を得、炭素および水素および硫黄の各質量吸収係数
が互いに異なるように予め定められた強度の放射線を用
いて燃料中の炭素と水素と硫黄の各組成物の総計的な重
量組成濃度を検出して第3の信号を得、第1の信号を基
準温度における値に変換して正規化し、この正規化され
た第1の信号と硫黄濃度検出時の燃料温度とに基づいて
第2の信号を前記基準温度に補正したうえで正規化し、
前記正規化された第1の信号と重量組成濃度検出時の燃
料温度とに基づいて第3の信号を前記基準温度における
値に補正したうえで正規化し、各々正規化された第2の
信号と第3の信号とに基づいて燃焼に要する所要空気量
を演算して第4の信号を得、ボイラーへの燃料供給量と
前記正規化された第1の信号との積および第4の信号に
基づいてボイラーに供給すべき空気量を過剰にならない
ように制御することを特徴とするボイラー燃焼空気制御
方法。1 A first signal is obtained by detecting the density of the fuel as a physically independent value without using radiation, and using radiation of a predetermined intensity to equalize the mass absorption coefficients of carbon and hydrogen. selectively detect the concentration of sulfur in the fuel to obtain a second signal, and detect the concentration of carbon in the fuel using radiation of a predetermined intensity such that the mass absorption coefficients of carbon, hydrogen, and sulfur are different from each other. The total weight composition concentration of each composition of hydrogen and sulfur is detected to obtain a third signal, the first signal is converted to a value at a reference temperature and normalized, and this normalized first signal is correcting the second signal to the reference temperature based on the signal and the fuel temperature at the time of detecting the sulfur concentration, and then normalizing it;
The third signal is corrected to the value at the reference temperature based on the normalized first signal and the fuel temperature at the time of detecting the weight composition concentration, and then normalized, and the third signal is normalized to the normalized second signal. A fourth signal is obtained by calculating the amount of air required for combustion based on the third signal, and the product of the fuel supply amount to the boiler and the normalized first signal and the fourth signal are A boiler combustion air control method characterized in that the amount of air to be supplied to a boiler is controlled based on the amount of air so as not to become excessive.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4530575A JPS6056969B2 (en) | 1975-04-16 | 1975-04-16 | Boiler - combustion air control method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4530575A JPS6056969B2 (en) | 1975-04-16 | 1975-04-16 | Boiler - combustion air control method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS51120435A JPS51120435A (en) | 1976-10-21 |
JPS6056969B2 true JPS6056969B2 (en) | 1985-12-12 |
Family
ID=12715593
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4530575A Expired JPS6056969B2 (en) | 1975-04-16 | 1975-04-16 | Boiler - combustion air control method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6056969B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5289833A (en) * | 1976-01-22 | 1977-07-28 | Sumitomo Metal Ind Ltd | Controlling method for combustion |
JPS5553624A (en) * | 1978-10-14 | 1980-04-19 | Daido Steel Co Ltd | Furnace pressure controller for combustion furnace |
JP6263492B2 (en) * | 2015-03-19 | 2018-01-17 | 三菱日立パワーシステムズ株式会社 | Boiler and boiler combustion control method |
JP7004599B2 (en) * | 2018-03-29 | 2022-01-21 | 大阪瓦斯株式会社 | Hydrogen production equipment |
-
1975
- 1975-04-16 JP JP4530575A patent/JPS6056969B2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS51120435A (en) | 1976-10-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0498809B1 (en) | combustion control | |
US4188190A (en) | Input control method and means for nitrogen oxide removal means | |
AU2005207563B2 (en) | System and method for flame stabilization and control | |
US20100330517A1 (en) | Continuous Real Time Heating Value (BTU)/Coal Flow Balancing Meter | |
EP0543273A2 (en) | Method and apparatus for measuring mass flow and energy content using a linear flow meter | |
JPH0342930B2 (en) | ||
CN110243174B (en) | Roller kiln atmosphere control method and device and storage medium | |
CN107544288A (en) | A kind of denitration optimal control method and system | |
US8682499B2 (en) | Combustion air control | |
KR890000342B1 (en) | Control system of combustible materials and oxygen present in the flue during combustion process | |
CN110133007A (en) | Coal consumption on-line metering system | |
JPS6056969B2 (en) | Boiler - combustion air control method | |
JP5644645B2 (en) | Heating furnace air-fuel ratio control method, heating furnace air-fuel ratio control apparatus, and program | |
JP4225698B2 (en) | Combustion equipment | |
US2931718A (en) | Method and apparatus for automatically measuring and controlling moisture in a sinter mix or the like | |
KR100804233B1 (en) | Control of Oxygen Concentration in Combustion of Multiple Fuels | |
JPH09250734A (en) | Automatic controller for boiler | |
JP2008089302A (en) | Combustion control method for rotary melting furnace | |
JP2988960B2 (en) | Boiler air supply device | |
Gordin et al. | Mathematical Model of Hot Water Boiler and its Experimental Validation | |
JPS6056968B2 (en) | Low oxygen combustion method for gaseous fuel | |
JPH08320300A (en) | Device and method for measuring calorific value of gas containing carbon compound | |
CN108949194A (en) | The measurement method of the outer waste gas circulation amount of coke oven furnace | |
JPS5918303A (en) | Method of controlling steam generator | |
JPS60203696A (en) | Calorie control in mixed gas |