Nothing Special   »   [go: up one dir, main page]

JPS6054269B2 - dielectric porcelain composition - Google Patents

dielectric porcelain composition

Info

Publication number
JPS6054269B2
JPS6054269B2 JP56156501A JP15650181A JPS6054269B2 JP S6054269 B2 JPS6054269 B2 JP S6054269B2 JP 56156501 A JP56156501 A JP 56156501A JP 15650181 A JP15650181 A JP 15650181A JP S6054269 B2 JPS6054269 B2 JP S6054269B2
Authority
JP
Japan
Prior art keywords
mol
dielectric
dielectric porcelain
composition
porcelain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56156501A
Other languages
Japanese (ja)
Other versions
JPS5860668A (en
Inventor
宏 大内
俊一郎 河島
正光 西田
一朗 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP56156501A priority Critical patent/JPS6054269B2/en
Publication of JPS5860668A publication Critical patent/JPS5860668A/en
Publication of JPS6054269B2 publication Critical patent/JPS6054269B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Description

【発明の詳細な説明】 本発明は酸化バリウム(BaO)、酸化チタン(TI
O0)、酸化サマリウム(Sm。
DETAILED DESCRIPTION OF THE INVENTION The present invention utilizes barium oxide (BaO), titanium oxide (TI
O0), samarium oxide (Sm.

O0)およびチタン酸ビスマス(2Bi。へ・ 3Ti
O2)の成分で構成される高周波用誘電体磁器組成物に
関するものてあり、その目的とするところは比誘電率(
εに)が大きく、安定した温度特性をもち、用途に応じ
て温度係数を広範囲に変化し得る誘電体磁器を提供する
ことにある。 近年、波長が数α以下のマイクロ波やミ
リ波(以下これをマイクロ波と総称する)を取扱う高周
波回路の技術の進展にともないこの回路をを小形化する
ことを積極的に進められている。
O0) and bismuth titanate (2Bi. to 3Ti)
This book is about dielectric ceramic compositions for high frequency use composed of components of O2), and its purpose is to improve the dielectric constant
The object of the present invention is to provide a dielectric ceramic having a large ε), stable temperature characteristics, and whose temperature coefficient can be varied over a wide range depending on the application. In recent years, with advances in technology for high-frequency circuits that handle microwaves and millimeter waves (hereinafter collectively referred to as microwaves) with wavelengths of several α or less, efforts are being made to miniaturize these circuits.

これまではこの高周波回路には空胴共振器、アンテナ
などが使用されてきたがこれらの大きさはマイクロ波の
波長と同程度になるため小形化に対する障害となつてい
た。
Until now, cavity resonators, antennas, etc. have been used in these high-frequency circuits, but the size of these devices is comparable to the wavelength of microwaves, which has been an obstacle to miniaturization.

この問題を解決するために誘電率の大きい誘電体磁器を
使用することにより波長そのものを短縮する方法がとら
れてきた。このような用途に適する材料としてはTiO
2系のものがよく使用され、たとえばTiO2−ZrO
2一sno2系、CaTiOa−MgTiO3−Ll2
Oa−肝iO2系、最近ではBa(Znll墳゛a21
3)0。−Ba(ZnlI3Nb213)O、系などの
誘電体磁器が知られている。しかしながら、これらの材
料で誘電体磁器を作つた場合には、比誘電率が30〜4
曜度と低いため、たとえば共振周波数が約11GH2(
7)X帯の誘電体共振器ではEに■30の材料を使用し
た場合、直径5.6Tfn、厚さ2.2問程度の小さな
ユニットになるが、周波数が下つて2GH2程度のu什
帯での使用となる同じEに■30の材料のときには直径
30.7wglt、厚さ12.3wm程度と形状が著し
く大きくなる。ここで使用する材料の比誘電率が8曜度
に大きくてきればその大きさを直径18.8Twt、厚
さ7.5Tnm程度と小形化することができるが、従来
の材料ではこのような要求を満足させることはできなか
つた。 本発明は上記の問題点を解決するためになされ
たものであり、比誘電率が大きく、安定した温度特性を
もち、用途に応じてその温度係数を広範囲に変化させう
る誘電体磁器を提供しようとするものである。発明者ら
は前記の要望を満足する材料について種々検討した結果
、XBaO−YTiO2−ZSm2O3で表わされる組
成において、5≦x≦23(モル%),57≦y≦82
.5(モル%),2.5≦z≦37.5(モル%),x
+y+z=100(モル%)の範囲にある主成分に対し
て2Bi203・3Ti02が合計量のうちの10重量
%を超えない量だけ添加含有している組成の磁器がすぐ
れた高周波用誘電体磁器になることを見出した。
In order to solve this problem, a method has been used to shorten the wavelength itself by using dielectric ceramics with a high dielectric constant. TiO is a material suitable for such applications.
2-based materials are often used, such as TiO2-ZrO
21 sno2 system, CaTiOa-MgTiO3-Ll2
Oa-liver iO2 system, recently Ba (Znll mound a21
3) 0. -Ba(ZnlI3Nb213)O, and other dielectric ceramics are known. However, when dielectric porcelain is made from these materials, the dielectric constant is 30 to 4.
For example, the resonance frequency is about 11 GH2 (
7) In the case of an X-band dielectric resonator, if a material of ■30 is used for E, it will be a small unit with a diameter of 5.6 Tfn and a thickness of about 2.2 mm, but the frequency will drop and the u-band of about 2 GH2 will be produced. When using the same material E as in 30, the diameter is 30.7 wglt and the thickness is about 12.3 wm, which makes the shape significantly larger. If the dielectric constant of the material used here increases to 8 degrees, the size can be reduced to about 18.8 Twt in diameter and 7.5 Tnm in thickness, but conventional materials meet such requirements. I couldn't satisfy you. The present invention has been made to solve the above problems, and aims to provide dielectric porcelain that has a large dielectric constant, stable temperature characteristics, and whose temperature coefficient can be varied over a wide range depending on the application. That is. The inventors conducted various studies on materials that satisfy the above requirements, and found that in the composition represented by XBaO-YTiO2-ZSm2O3, 5≦x≦23 (mol%), 57≦y≦82.
.. 5 (mol%), 2.5≦z≦37.5 (mol%), x
Porcelain with a composition in which 2Bi203/3Ti02 is added to the main component in the range of +y+z=100 (mol%) in an amount not exceeding 10% by weight of the total amount is an excellent dielectric porcelain for high frequency use. I discovered that.

主成分組成の範囲を限定した理由を説明すると、BaO
量Xが23モル%を超えあるいはTiO2量yが57モ
ル%未満あるいはSml2O3量yが2.5モル%未満
になると磁器の焼結が困難となり、無負荷Qが低下して
測定不能となるためである。
To explain the reason for limiting the range of the main component composition, BaO
If the amount X exceeds 23 mol%, the TiO2 amount y is less than 57 mol%, or the Sml2O3 amount y becomes less than 2.5 mol%, it becomes difficult to sinter the porcelain, and the no-load Q decreases, making measurement impossible. It is.

またxが5モル%未満あるいはzが37.5モル%を超
えると磁器の焼結が不安定となるともに無負荷Qが低下
して測定不能となり、また、yが82.5モル%を超え
ると磁器の焼結が不安定となるとともに温度特性の変化
が著しく大きくなるために本発明の範囲から除かれる。
副成分の2B1203・3Ti02の添加については、
添加量を増加するにつれて比誘電率を大きくすることが
てき、また、温度特性を変化することができるが、主成
分との合計量に対して1睡量%を超えて添加物含有させ
ると焼結が不安定となり、無負一荷Qが低下するために
、本発明の範囲から除かれる。
Furthermore, if x is less than 5 mol% or z exceeds 37.5 mol%, the sintering of the porcelain will become unstable and the no-load Q will decrease, making measurement impossible, and if y exceeds 82.5 mol%. This method is excluded from the scope of the present invention because the sintering of the porcelain becomes unstable and the temperature characteristics change significantly.
Regarding the addition of the subcomponent 2B1203/3Ti02,
As the additive amount increases, the dielectric constant can be increased and the temperature characteristics can be changed, but if the additive is added in an amount exceeding 1% by weight based on the total amount of the main components, it may cause sintering. This method is excluded from the scope of the present invention because the connection becomes unstable and the no-load Q decreases.

以下、実施例にもとついて本発明を説明す*1る。出発
原料には化学的に高純度のBacO3,TiO2,Sm
2O3およびあらかじめ調製された?I2O3・3Ti
02を所定の組成になるように秤量し、めのうボールを
備えたゴム内張りのボールミルで純水とともに湿式混合
した。
The present invention will be explained below based on Examples*1. Starting materials include chemically high-purity BacO3, TiO2, and Sm.
2O3 and pre-prepared? I2O3・3Ti
02 was weighed to have a predetermined composition, and wet-mixed with pure water in a rubber-lined ball mill equipped with an agate ball.

この混合物をボールミルからとり出して乾燥したのち、
空気中において900′Cの温度で2時間仮焼した。仮
焼物は純水とともに前記のボールミル中で湿式粉砕し・
た。粉砕泥しようを脱水乾燥したのち、粉末にバインダ
ーとして濃度3%のポリビニールアルコール溶液を8重
量%添加して均質としたのち、32メッシュのふるいを
通して整粒した。整粒粉体は金型と油圧ブレスを用いて
成形圧力800k9/CFlfで直径2亡,厚さ約1i
の円板に成形した。成形体を高純度のアルミナ製のたや
鉢の中に入れ、組成に応じて空気中において1250〜
155(代)の範囲内の温度で1〜2時間保持して焼成
し、表に示す配合組成の誘電体磁器を得た。得られた磁
器素子を使用した誘電体共振器法による測定から共振周
波数と無負荷Qと比誘電率を求めた。共振周波数の温度
依存性は、−30℃から70℃の範囲で測定し、温度係
数τfを求めた。共振周波数は2〜4GHzであつた、
それらの実験結果を表に示す。なお、表において*印し
た試料は本発明の範囲外の比較例であり、これ以外の試
料が本発明の範囲内の実施例である。 ■ ←
! ′ 〜υ■ , −V,
表から明らかなように、本発明の範囲内の誘電体磁器は
マイクロ波周波数帯において、比誘電率を大きくするこ
とができるとともに無負荷Qも大きい値をもち、しかも
安定した温度特性を示している。
After taking out this mixture from the ball mill and drying it,
It was calcined in air at a temperature of 900'C for 2 hours. The calcined product is wet-pulverized with pure water in the ball mill mentioned above.
Ta. After the crushed slurry was dehydrated and dried, 8% by weight of a 3% polyvinyl alcohol solution was added as a binder to the powder to make it homogeneous, and then the powder was sized through a 32 mesh sieve. The sized powder was molded using a mold and a hydraulic press at a pressure of 800k9/CFlf, with a diameter of 2mm and a thickness of about 1i.
It was formed into a disc. The molded body is placed in a high-purity alumina pot and heated to 1250~1250 in air depending on the composition.
The mixture was fired at a temperature within the range of 155° C. for 1 to 2 hours to obtain dielectric porcelain having the composition shown in the table. The resonant frequency, no-load Q, and dielectric constant were determined from measurements using the dielectric resonator method using the obtained ceramic element. The temperature dependence of the resonance frequency was measured in the range of -30°C to 70°C, and the temperature coefficient τf was determined. The resonant frequency was 2 to 4 GHz,
The experimental results are shown in the table. Note that the samples marked with * in the table are comparative examples outside the scope of the present invention, and the other samples are examples within the scope of the present invention. ■ ←
! ′ 〜υ■ , −V,
As is clear from the table, the dielectric ceramic within the scope of the present invention can have a large dielectric constant and a large no-load Q value in the microwave frequency band, and also exhibits stable temperature characteristics. There is.

したがつて、本発明の誘電体磁器は発振器や共振器の温
度依存性を安定化するのに有用であり、とくに比誘電率
が大きいことからUHF帯での使用に適し、小形で高性
能の電子回路部品を作ることができる。さらに、材料の
組成を変えることによつて広い範囲で任意のγfを選ぶ
ことができるので、この磁器で誘電体共振器を組立てた
とき周囲の金属板などによる温度特性におよぼす影響を
なくする温度補償作用をもたせることができる。以上の
ように本発明の誘電体磁器組成物は、マイクロ波の誘電
体共振器のみならず、マイクロ波用の基板や誘電体調整
棒などに有用な素材を提供することができ、工業的に利
用価値の大きいものである。
Therefore, the dielectric ceramic of the present invention is useful for stabilizing the temperature dependence of oscillators and resonators, and is particularly suitable for use in the UHF band due to its large dielectric constant, and is a compact and high-performance device. Can make electronic circuit parts. Furthermore, by changing the composition of the material, it is possible to select any γf within a wide range, so when a dielectric resonator is assembled using this porcelain, it is possible to maintain a temperature that eliminates the influence of surrounding metal plates on the temperature characteristics. It can have a compensatory effect. As described above, the dielectric ceramic composition of the present invention can provide useful materials not only for microwave dielectric resonators, but also for microwave substrates, dielectric adjustment rods, etc., and can be used industrially. It has great utility value.

Claims (1)

【特許請求の範囲】[Claims] 1 酸化バリウムと酸化チタンと酸化サマリウムとチタ
ン酸ビスマスからなる誘電体磁器で、その主成分組成を
xBaO−yTiO_2−zSm_2O_3と表わした
とき、x,y,zが5≦x≦23(モル%),57≦y
≦82.5(モル%),2.5≦z≦37.5(モル%
),x+y+z=100(モル%)の範囲にあり、この
主成分との合計量に対してチタン酸ビスマス2Bi_2
O_3・3TiO_2が10重量%を超えない量だけ添
加含有されていることを特徴とする誘電体磁器組成物。
1 Dielectric porcelain consisting of barium oxide, titanium oxide, samarium oxide, and bismuth titanate, whose main component composition is expressed as xBaO-yTiO_2-zSm_2O_3, where x, y, and z are 5≦x≦23 (mol%) ,57≦y
≦82.5 (mol%), 2.5≦z≦37.5 (mol%
), x+y+z=100 (mol%), and bismuth titanate 2Bi_2 is in the range of the total amount with this main component.
A dielectric ceramic composition characterized in that O_3.3TiO_2 is added in an amount not exceeding 10% by weight.
JP56156501A 1981-09-30 1981-09-30 dielectric porcelain composition Expired JPS6054269B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56156501A JPS6054269B2 (en) 1981-09-30 1981-09-30 dielectric porcelain composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56156501A JPS6054269B2 (en) 1981-09-30 1981-09-30 dielectric porcelain composition

Publications (2)

Publication Number Publication Date
JPS5860668A JPS5860668A (en) 1983-04-11
JPS6054269B2 true JPS6054269B2 (en) 1985-11-29

Family

ID=15629136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56156501A Expired JPS6054269B2 (en) 1981-09-30 1981-09-30 dielectric porcelain composition

Country Status (1)

Country Link
JP (1) JPS6054269B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61265724A (en) * 1985-05-20 1986-11-25 Tokico Ltd Magnetic head
JPS63106912A (en) * 1986-10-24 1988-05-12 Hitachi Ltd Magnetic disk device
JPH01248371A (en) * 1988-03-30 1989-10-03 Toshiba Corp Magnetic head supporting device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61265724A (en) * 1985-05-20 1986-11-25 Tokico Ltd Magnetic head
JPS63106912A (en) * 1986-10-24 1988-05-12 Hitachi Ltd Magnetic disk device
JPH01248371A (en) * 1988-03-30 1989-10-03 Toshiba Corp Magnetic head supporting device

Also Published As

Publication number Publication date
JPS5860668A (en) 1983-04-11

Similar Documents

Publication Publication Date Title
JPS5937526B2 (en) dielectric magnetic composition
JPS6054269B2 (en) dielectric porcelain composition
JPS5951096B2 (en) dielectric porcelain composition
JPS6056306A (en) Dielectric porcelain composition
JPS6051201B2 (en) dielectric porcelain composition
JPS6141863B2 (en)
JPS5951095B2 (en) dielectric porcelain composition
JPH0126123B2 (en)
JPS6343338B2 (en)
JPS6112865B2 (en)
JPS5914215A (en) Dielectric porcelain composition
JPS5951088B2 (en) dielectric porcelain material
JPS6348132B2 (en)
JPS6117083B2 (en)
JPH0372165B2 (en)
JPS59223271A (en) Dielectric ceramic composition
JPS6196603A (en) Dielectric ceramic composition
JPS6141860B2 (en)
JPS6256606B2 (en)
JPH0346923B2 (en)
JPS59196502A (en) Dielectric porcelain composition
JPS6256607B2 (en)
JPS6151703A (en) Dielectric porcelain composition
JPS6348133B2 (en)
JPH0253883B2 (en)