Nothing Special   »   [go: up one dir, main page]

JPS6049281A - Radiation measuring element - Google Patents

Radiation measuring element

Info

Publication number
JPS6049281A
JPS6049281A JP58158743A JP15874383A JPS6049281A JP S6049281 A JPS6049281 A JP S6049281A JP 58158743 A JP58158743 A JP 58158743A JP 15874383 A JP15874383 A JP 15874383A JP S6049281 A JPS6049281 A JP S6049281A
Authority
JP
Japan
Prior art keywords
layer
radiation
scintillator
semiconductor
photodiode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58158743A
Other languages
Japanese (ja)
Other versions
JPH0456272B2 (en
Inventor
Shotaro Oka
正太郎 岡
Toshiyuki Matsunaka
敏行 松中
Ryoichi Sawada
澤田 良一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Shimazu Seisakusho KK
Original Assignee
Shimadzu Corp
Shimazu Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, Shimazu Seisakusho KK filed Critical Shimadzu Corp
Priority to JP58158743A priority Critical patent/JPS6049281A/en
Publication of JPS6049281A publication Critical patent/JPS6049281A/en
Publication of JPH0456272B2 publication Critical patent/JPH0456272B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/2018Scintillation-photodiode combinations

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Measurement Of Radiation (AREA)
  • Nuclear Medicine (AREA)

Abstract

PURPOSE:To enable reduction in size and weight and to obtain an element particularly suitable for tomography, etc. by sandwiching a scientillator layer between a semiconductor photodetecting element layer constituting a radiation incident plane and a semiconductor photodetecting element layer facing said layer thereby increasing radiation detection output. CONSTITUTION:A silicon photodiode layer 1A of about 0.3mm. thickness constituting an X-ray incident plane is constituted of a p type semiconductor layer 11A and an n type semiconductor layer 12A. On the other hand, a photodiode layer 1B facing the layer 1A is constituted of a p type semiconductor layer 11B and an n type semiconductor layer 12B. A scintillator layer 2 consisting of NaI(Tl), CdWO4, etc. held by the layers 12A and the layer 12B is sandwiched between the layers 1A and 1B and a protective film 3 of Al, etc. is provided on the side face of the layer 2 so as to shield visible light from the outside. A photodiode may be further provided after the scintillator layer is sandwiched between the layers 1A and 1B. The radiation detection output is thus increased and the formation of a sharper tomographic (CT) image or the like is made possible.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 仁の発IJJは、放射線計測素子に間する。さらに詳し
くVよ、入11放射#It−効率良く電気信号に入換で
きる放射線計測素子に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Industrial Application Field The IJJ is used in radiation measurement elements. In more detail, V, Input 11 Radiation #It - relates to a radiation measuring element that can efficiently convert into electrical signals.

(ロ)ぜ1℃米tノ(術 近年、CT等の放射線を用いた医療機器や各種1反Q=
j I! 3111定(t′2器の技術の進歩に伴ない
、放射線の強度分布のjli1尾が重要なWiI:!l
Tlとなつ℃いる。かような放qJ線ξとにX線の回度
分布の測定器としては多数の区画t/4成された電離箱
を組み合せて各区画ごとの放射線強電を/1m定するも
のが知ら〕しているが、これらt」、振動に弱くさらに
その溝造が複雑でかつ重く、JI’V、 Rい」二や興
造上不利でちった。
(b) 1 degree Celsius (surgery) In recent years, medical devices using radiation such as CT and various 1 anti Q =
j I! 3111 constant (t'2 With the advancement of the technology, the jli1 tail of the radiation intensity distribution becomes important WiI:!l
Tl and Natsu ℃ are here. As a measuring device for measuring the frequency distribution of X-rays based on such radiation qJ-ray ξ, there is a known device that combines an ionization chamber with a large number of sections t/4 and determines the radiation intensity of each section by /1 m. However, these were weak against vibration, and their groove structure was complex and heavy, which was disadvantageous in terms of JI'V, R'2, and construction.

vI−って、よシ小洪化、移M化された分布測定しうる
/i’J、射線d1・ρす素子が望まれでいた。
There was a desire for an element that could measure vI-, a small-scale distribution, and a shifted M distribution.

この点に関し、j!E年C(IW04%のシンチレータ
と半導体光検出素子(いわゆるフォトダイメート)を組
み合せたh(射線計測素子が種々提案されている。この
Fi1’7111素子のダ(M的な構/i−1’、)よ
、第1図に示すごとく入射面e(ff成するシンチレー
タ層(2)と該シンチレータ層による可視光域のシンチ
レーション光tl−受光検知するフォトダイオード層(
1)とからなる。図中、(3))i誤差となる外部から
の可視光線を反引又はlj+閘するアlレミニウム等か
らなる保護膜、(11)はp型(又tよn型)半導体領
域、(12)はJ1況(又はp型)半導体領域、(4)
は測定表示部をそれぞれ示す。かような放射線計測素子
tよ小型化、軽爪化の条件光だもたすもので必るが、シ
ンチレータ層のシンチレーション効率、スなわらX線等
の被ff1l+定放射線を可視光に変換する効率が不充
分で^す、放射線の検出出力が低いという問題点があっ
た。
Regarding this point, j! Various ray measurement elements have been proposed that combine a scintillator with IW04% and a semiconductor photodetector element (so-called photodimate). ', ), as shown in Fig. 1, there is a scintillator layer (2) forming an incident surface e(ff) and a photodiode layer (
1). In the figure, (3)) a protective film made of aluminum or the like that recoils or blocks visible light from the outside that causes i error; (11) is a p-type (also t-type) semiconductor region; (12) ) is the J1 state (or p-type) semiconductor region, (4)
indicates the measurement display section. Such radiation measurement elements are required to meet the requirements of miniaturization and light weight, but the scintillation efficiency of the scintillator layer, which converts the received ff1l+constant radiation such as X-rays, into visible light is essential. There were problems with insufficient efficiency and low radiation detection output.

()つ発IJJの目的 この発15J#よ、前記従来の問題点に嶋みなされたも
のであシ、放射線検出出力が増大されたシンチレーショ
ン型の放射線計測素子を提供することを目的とするもの
である。
(2) Purpose of IJJ The purpose of this IJJ is to address the above-mentioned conventional problems and to provide a scintillation type radiation measurement element with increased radiation detection output. It is.

(ニ) 発リドjの47g成 かくしてこの発明によれば、放射線入射ili′rを(
7へ成する半導体光検出素子層とこれに対向配置する半
導体光検出素子層を備え、これら二つの半導体光検出素
子層間に、シンチレータ層、又IJ、半導体光検出素子
層をさらに内層するシンチレータ層を挾持しでなる放射
線計711す素子が提供される。
(d) 47g of radiation j Therefore, according to the present invention, the radiation incident ili'r is (
A scintillator layer comprising a semiconductor photodetecting element layer formed into a semiconductor photodetecting element layer 7 and a semiconductor photodetecting element layer disposed opposite to the semiconductor photodetecting element layer, and further including a scintillator layer, an IJ, and a semiconductor photodetecting element layer between these two semiconductor photodetecting element layers. A radiometer 711 element is provided, which is made by holding a .

この発りFJにおりる一つの最も特徴とする点は、従来
のシンチレータに組合わされ°Cいるフォトダイオード
すなわち半導体光検出素子自体で放射線の入射面を構成
した点である。他の最も特徴とする点は、シンチレータ
層を上記半導体光検出素子とこれにヌj向する他の半導
体光検出素子で挾むように抗層溝ハスした点である。
One of the most distinctive features of the FJ is that the radiation incident surface is composed of a photodiode, that is, a semiconductor photodetector element itself, which is in combination with a conventional scintillator. The other most distinctive feature is that the scintillator layer is sandwiched between the semiconductor photodetector element and another semiconductor photodetector element facing the scintillator layer.

この発明における半導体光検出素子としてはp型?1′
導体基体の表面にnm半導体領域を形成したpn li
合型のフォトダイオードやその逆のnp接合型のものが
挙けられ、これ以外にも金属−半導体接触を利用した表
面Flと壁型のものを用いてもよい。
Is the semiconductor photodetector in this invention a p-type? 1′
PN LI with a nm semiconductor region formed on the surface of a conductive substrate
Examples include a composite photodiode and an np junction type photodiode, and in addition to these, a surface Fl and wall type photodiode using metal-semiconductor contact may also be used.

また、半導体の材質社シリコンが適しているが、これ以
外にゲルマニウム、各種化合物半導体等も適用できる。
Further, while silicon is suitable as a semiconductor material, germanium, various compound semiconductors, etc. can also be used.

これらのうち、基係の不純物濃度をできるだけ少なくシ
(篩純度)、pn接合付31Lに生じる空乏層をできる
たり厚くするものが好ましい。もちろん、p型(又はn
型)半導体基体の表面に形成させるn型(又は9厘)半
導体領域を分F111形成したアレー形の半導体光検出
素子を用いてもよく、放射線分布を商い空間分解Fit
8で計測するlこめには適9J ’?1’ある。この際
クロストークを防止する点で後述する梠造を適用するの
がtlfましい。
Among these, it is preferable to reduce the base impurity concentration as much as possible (sieve purity) and to make the depletion layer formed in the pn junction 31L as thick as possible. Of course, p type (or n
It is also possible to use an array-type semiconductor photodetector element in which n-type (or 9-type) semiconductor regions are formed on the surface of a semiconductor substrate, and spatially resolved Fit based on radiation distribution may be used.
Is 9J' suitable for measuring with 8? There is 1'. At this time, it is preferable to apply the tlf structure described later in order to prevent crosstalk.

放射線入射面t?溝成する半導体光検出素子の有F&領
域の厚みはt%純度の素子としくoh〜1pta程度で
あり、これに対向配置される他の半導体光検出素子の有
感領域厚みは低純度の素子であっても比較的薄いもので
よく0.1門以下で充分である。
Radiation incidence surface t? The thickness of the F& region of the groove-forming semiconductor photodetection element is about oh~1 pta for an element with t% purity, and the thickness of the sensitive area of another semiconductor photodetection element placed opposite to this is that of a low purity element. Even if it is, it may be relatively thin, and 0.1 or less is sufficient.

なお、これらはそれぞれ当p分野で公知の方法により板
状の形態で作製できる。
Note that each of these can be produced in the form of a plate by a method known in the art.

上記二つの半導体光検出素子層の間に、シンチレータ層
を介在させることによ)この発明の放射線計測素子が得
られる。シンチレータ層の材質として1よ、 DI 1
1.王(llj’ )、 Ca1(工6す、 C5I(
Na) 、Kl(T#)、ZuS(Cu)、C6,WO
2等が挙り゛られ、局舎によっては有機シンチレータを
用いてもよい。
By interposing a scintillator layer between the two semiconductor photodetecting element layers, the radiation measuring element of the present invention can be obtained. 1 as the material of the scintillator layer, DI 1
1.王(llj'), Ca1(工6su, C5I(
Na), Kl (T#), ZuS (Cu), C6, WO
Organic scintillators may be used depending on the station.

か\るシンチレータ層の〃みtjコ通當1?〜3門で充
分である。ただし、A在させるシンチレータ層として、
その中に更に半導体光検出素子層を内層した複合シンチ
レータ層を用いてもよくこの場合、検出出力をよりJ〜
加(−うる点から好ましい。なお、露出するシンチレー
タrの周辺部分には、外部からの可視光線を反射又は遮
断する保護膜(例えば、アノI/ミニクムAζ着膜、酸
化アだオニウムCVD膜等)を被覆形成しておくことが
好ましく、散乱放射線の人IHを防止jムための保護膜
(例えば、Pb。
What does the scintillator layer look like? ~3 gates is enough. However, as a scintillator layer where A is present,
A composite scintillator layer having a semiconductor photodetecting element layer therein may be used. In this case, the detection output can be further increased by J~
It is preferable from the viewpoint that the exposed scintillator r is coated with a protective film (e.g., Ano I/Minicum Aζ film, adiazonium oxide CVD film, etc.) that reflects or blocks visible light from the outside. ) is preferably coated with a protective film (for example, Pb) to prevent human IH due to scattered radiation.

W% Au等の重金F6m)を被覆形成しておくのがよ
り好ましい。
It is more preferable to form a coating with a heavy metal (F6m) such as W% Au.

なお、か\るシン1″レーク層を二つの半導体光検出素
子間にエボギシ糸光学接着剤で接着するのが適9Jであ
る。
In addition, it is appropriate to bond the thin 1'' rake layer between the two semiconductor photodetecting elements using an elongated optical adhesive.

このようにして得られた放射線計測素子は入射放射線を
効率良く電気信号に変換でき、低エネルギー(数Kev
)/))ら中エネルギー(数百KeV )のX線やγ線
の?r6い検出出力が得られるものである。
The radiation measurement element obtained in this way can efficiently convert incident radiation into electrical signals, and has low energy (several keV).
)/)) Medium energy (several hundred KeV) X-rays and γ-rays? It is possible to obtain a high detection output.

すなわち、被jjill屋b(射線はまず、入射面を構
成する半導体光検出素子中に入射するが、ここで半導体
光検出素子自体も゛放射線に直接感応するため検出が行
なわれる。次いで半導体光検出素子で検出されない放射
線すなわち透過した放射線はシンチレータ層に入るが、
ここでシンチレーションによってその殆んどが可視光に
変換され、上面の半導体光検出素子又tiF面の半導体
光検出素子素子層に人光し゛C効率良く検出される。す
なわち、■入射面をtA成する半導体光検出素子の直接
的な放射線検出作用ど轡対向する半導体光検出素子溝A
1によるシンチレーション光の集光効率の良い検出作用
とが相俟って昌い検出効率が得られる本のと考えられる
That is, the rays of light first enter the semiconductor photodetection element that constitutes the incident surface, and detection is performed here because the semiconductor photodetection element itself is directly sensitive to radiation.Next, the semiconductor photodetection element Radiation that is not detected by the element, that is, transmitted radiation, enters the scintillator layer, but
Here, most of the light is converted into visible light by scintillation, and human light is efficiently detected by the semiconductor photodetector element on the upper surface or the semiconductor photodetector element layer on the TiF surface. That is, (1) the direct radiation detection action of the semiconductor photodetector element forming the incident surface tA;
This book is considered to be a book that, in combination with the detection effect of scintillation light collection efficiency according to No. 1, provides a high detection efficiency.

(ホ)実施例 第2図tよ、この発1夕]の放射線計測素子の具体例を
示すX線計測素子の模式的断面図である。図においてX
線計測素子をよ、X線人躬面(約1.(1(td )を
構成する厚、さ約(L5ttrrqのシリコンフォトダ
イメートN4(IA ;至乏層厚0.01 pm )と
これに対向すルル、さ約0.3 vnのシリコンフォト
ダイオード層(1B:空乏層厚(、lJ絹)との間に、
CdWOiの厚さ約1廟のシンチレータ層(2)を密着
挟持しでなる。
(e) FIG. 2 is a schematic cross-sectional view of an X-ray measuring element showing a specific example of the radiation measuring element of FIG. In the diagram
The radiation measuring element is made of a silicon photodimate N4 (IA; minimal layer thickness 0.01 pm) with a thickness of approximately 1. Between the opposing lulu and the silicon photodiode layer (1B: depletion layer thickness (, lJ silk) with a thickness of about 0.3 vn,
It consists of a scintillator layer (2) of CdWOi with a thickness of about one layer tightly sandwiched therebetween.

各フォトダイオード層tJ: p !51半導体層(I
IA)、(IIB)にIl型半導体VI域(、L2A)
、(12B)をそれぞれ拡散形成【2てなり、これらの
11型半導体領域面が対向するように氏置4M成されて
いる。なお、(3)は目出するシンチレータ(2)の側
腕に被覆形成さiした反射膜であり、(4つは各半導体
光検出素子からの出力を)r3′?、L*換して表示す
るnlす定表示部にポす。
Each photodiode layer tJ: p! 51 semiconductor layer (I
IA), (IIB) with Il type semiconductor VI region (, L2A)
, (12B) are each formed by diffusion formation [2], and are spaced 4M apart so that the surfaces of these 11-type semiconductor regions face each other. Note that (3) is a reflective film coated on the side arm of the scintillator (2) to be exposed, and (4 is the output from each semiconductor photodetector element) r3'? , L* and place it on the constant display section.

上記構成のX線計測素子について、120 KV。For the X-ray measurement element with the above configuration, 120 KV.

管電圧を持つX線管から放射されたX線が、lrmのア
μ/ミニウム板製フイIVター及びO〜30σの水層(
CTにおける人体と仮定)を通過して検出されるシミュ
レーションモデルを設定し、検出出力を算出した。その
結果を11〕軟例と共に第6図及び表1に示した。なお
、比較例1は、第1図に示すごとき構成からなる従来の
構成を採用しfc際に得られる検出出力を、比較例2V
よ対向するフォトダイオード層(」1υを除いた以外、
第2図と同様のX線n1測累子で得られる検出出力をそ
れぞg示すものである3、 表 1 このように、この発りrjのX線MI+!’!11素子
り、畠い検出出力を発揮することが判る。
X-rays emitted from an X-ray tube with a tube voltage pass through an aluminum plate IV filter of lrm and a water layer of O~30σ (
A simulation model was set up to detect the object passing through a human body (assumed to be a human body in CT), and the detection output was calculated. The results are shown in FIG. 6 and Table 1 together with 11] soft examples. In addition, Comparative Example 1 adopts the conventional configuration shown in FIG. 1, and the detection output obtained during fc is
The opposite photodiode layers (except for 1υ)
The detection outputs obtained with the same X-ray n1 detector as shown in FIG. '! It can be seen that the 11 elements provide excellent detection output.

なお、シンチレータR(2)にさらにフォトダイオード
層を内層させた具体例ir、”153図に示した。
A specific example ir in which a photodiode layer is further provided inside the scintillator R(2) is shown in FIG. 153.

図においで、シンチレータ層(2つは三層からなるシン
チレータR(21)とそれぞれの間に内層された二層の
7:Aトダイオード層(22)からなり、他は第2図と
同様の構成からなる。かような多層放I(線計測素子t
よとくに透過性の大きい放射線の計it!II用として
有用である。
In the figure, the scintillator layers (two are composed of a three-layer scintillator R (21) and a two-layer 7:A diode layer (22) interlayered between each scintillator layer, and the others are the same as in Figure 2). It consists of a multilayer radiation I (ray measurement element t).
It is a measure of especially highly penetrating radiation! It is useful for II.

また、フォトダイオード層としてアレー形のフォトダイ
オード層を用いた具体例をt4’54図及び第51図に
示した。図において、(12Aつ、(12Bつはp型半
導体基体(」IAつ、(11B′)の表面に多数分画拡
散形成されtなるn展半導体領域であり、各フォトダイ
オード層(IAつ(113りのn凰牛導体領域(12八
〇と(128りもそれぞれ対向するよう構成されている
Further, a specific example using an array type photodiode layer as the photodiode layer is shown in Fig. t4'54 and Fig. 51. In the figure, (12A, (12B') are n-extended semiconductor regions t formed by multiple fractional diffusion on the surface of a p-type semiconductor substrate (11B'), and each photodiode layer (12A, (11B') The 113 n-shaped conductor regions (1280 and 128) are also configured to face each other.

そしてシンチレータ層(2′りには入射方向に平行に1
)J欠714(りが対応して多数設けられておシ、その
117J欠溝の内面はアルミニウム(例えば、蒸着やス
パッタリング膜; 51 )で被覆さ7tでいる。この
切欠溝は第5図に示すようにシンチレータ層(2′つに
入った放rj′jMによるシンチレーション光を反射し
て(12AりにZjL+”、する下方のn型半導体領域
(12y)咬たはぞの同辺に形成さiLる空乏層に効率
良く導くよう作用する。従っていわゆるり日ストーク現
象がp和されアレー形のフォトダイオードとの組合せに
より凸い空間分解前で放射線分布をn1測できるもので
ある。もちろんこの際にもやはり従来に比してtカい4
食出出力が発揮されることとなる。
Then, the scintillator layer (on the 2' side, 1 layer parallel to the incident direction)
) A large number of J-cut grooves 714 (ri) are provided correspondingly, and the inner surface of the 117 J-cut grooves is coated with aluminum (e.g., vapor-deposited or sputtered film; 51). This groove is shown in FIG. As shown, a scintillator layer (2') is formed on the same side of the lower n-type semiconductor region (12y) that reflects the scintillation light due to the radiation rj'jM (ZjL+'' at 12A). It acts to efficiently guide iL to the depletion layer. Therefore, the so-called Stokes phenomenon is p summed, and in combination with an array type photodiode, it is possible to measure the radiation distribution n1 before convex spatial resolution. Of course, at this time However, it is still t larger than before.4
Eating output will be exerted.

なお、切欠Mを有するシンチレータ層の代わシにP11
垂直状に伸びる多数の11181状区画構造を有するシ
ンチレータ層を用いることによシ同様な効果を得ること
ができる。
Note that P11 is used instead of the scintillator layer having the notches M.
A similar effect can be obtained by using a scintillator layer having a large number of vertically extending 11181-shaped compartment structures.

(へ)発すjの効果 以上述べたように、この発IJJの放射線計IT!11
素子Vよ、入射放射線を無駄なく電気信号に変換でき、
従来に比して検出効率の優iしたものである。そして従
来の電離箱を用いたものに比して小屋化、軽量化された
ものであり、Kl扱いや設置」二有利である。従って種
々の放射線計測用とし゛C有用でちシ、ことにCT 両
像用のアレーセンザーに用いた際に超、像の鮮IJI化
が可能となり有用である。
(To) The effect of emitted j As mentioned above, this emitted IJJ radiation meter IT! 11
Element V, it is possible to convert incident radiation into an electrical signal without waste,
The detection efficiency is superior to that of the conventional method. In addition, compared to the conventional ionization chamber, it is smaller and lighter in weight, and has advantages in terms of ease of handling and installation. Therefore, it is useful for various radiation measurements, and is especially useful when used in an array sensor for both CT and CT images, as it allows for extremely sharp IJI images.

また、11(側線の入射面に保護膜を形成する必要か1
、ないという利点も備えたものでらる。
In addition, 11 (Is it necessary to form a protective film on the incident surface of the side line? 1)
It also has the advantage of not having any.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来の放射線計測素子を例示する模式的断面
図、第2図は、この発’;It−]の放射線計測素子を
例示する模式的断面図、第3図及び第4図はそれぞれこ
の発IJ11の放射線計測素子の他の一例を示ず模式的
R1i而図面第5図は第4図の要部拡大図、第6図はこ
の発IJJの放射線計測素子の検出出力を比較例と共に
例示するグラフである。 (1) 、(LA、) 、(IB) 、(、LAリ 、
(IB’J 、(22)・・・フォトダイオード層、 (2)、(2す、(2//)・・・シンチレータ層(3
)・・・保護膜、 (す、(4つ・・・測定表示部。 第1図 第2図 第3図 第4図 第5図
FIG. 1 is a schematic sectional view illustrating a conventional radiation measuring element, FIG. 2 is a schematic sectional view illustrating a radiation measuring element of this invention, and FIGS. 3 and 4 are 5 is an enlarged view of the main part of FIG. 4, and FIG. 6 is a comparative example of the detection output of the radiation measuring element of this IJJ. This is a graph illustrating the same. (1) ,(LA,),(IB),(,LAli,
(IB'J, (22)...Photodiode layer, (2), (2S, (2//)...Scintillator layer (3)
)...Protective film, (4...Measurement display section. Figure 1 Figure 2 Figure 3 Figure 4 Figure 5

Claims (1)

【特許請求の範囲】[Claims] (υ放射線入射面を構成する半導体光検出素子層とこれ
に7を内配置する半導体光検出素子層を&え、これら二
つの半導体光検出水子膚間に、シンチレータ層、叉νよ
半導体光検出水子Rをさらに内層するシンチレータat
−挟持し′Cなる放射線計測素子。
(A semiconductor photodetector layer constituting the υ radiation incident surface and a semiconductor photodetector layer 7 disposed therein, and between these two semiconductor photodetector layers, a scintillator layer, and a semiconductor photodetector layer 7) A scintillator at which further layers the detection water molecules R
- A radiation measuring element which is held by 'C'.
JP58158743A 1983-08-29 1983-08-29 Radiation measuring element Granted JPS6049281A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58158743A JPS6049281A (en) 1983-08-29 1983-08-29 Radiation measuring element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58158743A JPS6049281A (en) 1983-08-29 1983-08-29 Radiation measuring element

Publications (2)

Publication Number Publication Date
JPS6049281A true JPS6049281A (en) 1985-03-18
JPH0456272B2 JPH0456272B2 (en) 1992-09-07

Family

ID=15678364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58158743A Granted JPS6049281A (en) 1983-08-29 1983-08-29 Radiation measuring element

Country Status (1)

Country Link
JP (1) JPS6049281A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6415690A (en) * 1987-07-09 1989-01-19 Toshiba Corp Radiation detector
JP2002062359A (en) * 2000-08-21 2002-02-28 Aloka Co Ltd Radiation-measuring apparatus
JP2008286550A (en) * 2007-05-15 2008-11-27 Toshiba Corp Detection element, detector, and manufacturing method for the detection element

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52142573A (en) * 1976-05-20 1977-11-28 Siemens Ag Semiiconductor xxray detector
JPS55142262A (en) * 1979-04-24 1980-11-06 Toshiba Corp Semiconductor radiant ray detector

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52142573A (en) * 1976-05-20 1977-11-28 Siemens Ag Semiiconductor xxray detector
JPS55142262A (en) * 1979-04-24 1980-11-06 Toshiba Corp Semiconductor radiant ray detector

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6415690A (en) * 1987-07-09 1989-01-19 Toshiba Corp Radiation detector
JP2002062359A (en) * 2000-08-21 2002-02-28 Aloka Co Ltd Radiation-measuring apparatus
JP4643809B2 (en) * 2000-08-21 2011-03-02 アロカ株式会社 Radiation measurement equipment
JP2008286550A (en) * 2007-05-15 2008-11-27 Toshiba Corp Detection element, detector, and manufacturing method for the detection element

Also Published As

Publication number Publication date
JPH0456272B2 (en) 1992-09-07

Similar Documents

Publication Publication Date Title
TWI652499B (en) Method for making an X-ray detector
US11063082B2 (en) Methods of making semiconductor X-ray detector
EP1876955B1 (en) Double decker detector for spectral ct
JPS59122988A (en) Radiation measuring element
JPH01165984A (en) Apparatus for converting video to electric signal
JP2004080010A (en) Imaging x-ray detector based on direct conversion
JPS61110079A (en) Radiation detector
WO2007113898A1 (en) Radiation detector
JPS6049281A (en) Radiation measuring element
JPWO2007113899A1 (en) Radiation detector
JPS6276478A (en) Two-dimensional radiation detector
JPS603792B2 (en) Multichannel semiconductor radiation detector
JPH01269083A (en) Radiant ray detecting element
JPS61259577A (en) Radiation detector
JP3220500B2 (en) Soft X-ray detector
Wang et al. New concepts for scintillator/HgI/sub 2/gamma ray spectroscopy
JPH0442640B2 (en)
Alvarez et al. Imaging detector development for nuclear astrophysics using pixelated CdTe
JPH051428B2 (en)
Vittori et al. Crystals and light collection in nuclear medicine
JPS61221689A (en) Detector for radial rays
JPS59196447A (en) Radiation detector
JPS602788B2 (en) Multi-channel semiconductor radiation detector
US10921467B2 (en) Detector array for imaging modality
JPH0436472B2 (en)