Nothing Special   »   [go: up one dir, main page]

JPS6049008B2 - Manufacturing method of high performance filter - Google Patents

Manufacturing method of high performance filter

Info

Publication number
JPS6049008B2
JPS6049008B2 JP14017677A JP14017677A JPS6049008B2 JP S6049008 B2 JPS6049008 B2 JP S6049008B2 JP 14017677 A JP14017677 A JP 14017677A JP 14017677 A JP14017677 A JP 14017677A JP S6049008 B2 JPS6049008 B2 JP S6049008B2
Authority
JP
Japan
Prior art keywords
polyamide
fibers
component
polyester
segment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14017677A
Other languages
Japanese (ja)
Other versions
JPS5472582A (en
Inventor
邦夫 市橋
太郎 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Ltd
Original Assignee
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Ltd filed Critical Kanebo Ltd
Priority to JP14017677A priority Critical patent/JPS6049008B2/en
Publication of JPS5472582A publication Critical patent/JPS5472582A/en
Publication of JPS6049008B2 publication Critical patent/JPS6049008B2/en
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/16Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
    • B01D39/1607Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous
    • B01D39/1623Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous of synthetic origin
    • B01D39/163Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous of synthetic origin sintered or bonded

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Filtering Materials (AREA)

Description

【発明の詳細な説明】 本発明は、高性能フィルターに関するもので、特に空気
清浄器あるいは空気調和機等に用いられる高性能フィル
ター材の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a high-performance filter, and particularly to a method for producing a high-performance filter material used in air purifiers, air conditioners, and the like.

近年都市部を中心として大気の汚染がはなはだしく、環
境衛生の為、又精密機器室や医療室の清潔保持の為、あ
るいは製造工場に於ける製品の品質維持の為の空気清浄
機等の装置に用いられるエアフィルターの高性能化が望
まれる様になつて来た。
In recent years, air pollution has become particularly prevalent in urban areas, and air purifiers and other devices are needed for environmental hygiene, to maintain the cleanliness of precision equipment rooms and medical rooms, and to maintain the quality of products at manufacturing plants. It has become desirable to improve the performance of the air filters used.

一般にエアフィルターのろ過性能を向上させる為に、即
ち戸別し得る蔽細粒子の限界径をより小さくし且つ捕集
効率を高める為に、繊維径の非常に小さい繊維で構成さ
れたフェルト、不繊布等の濾材を用いている。
In general, in order to improve the filtration performance of air filters, that is, to reduce the critical diameter of fine particles that can be filtered from door to door and increase collection efficiency, felt or nonwoven fabrics made of fibers with very small fiber diameters are used. Filter media such as

従来高性能エアーフィルター材として主にその材料にガ
ラスウールが用いられ、その繊維径が0.5〜3ミクロ
ンの極めて細い短繊維のガラスウールがランダムに積層
されて構J成されており、集塵効率が高く、耐熱性に優
れたものであるが、ガラスウールは耐折れ曲げ性に乏し
く、通気時に通気によつて折れたガラス繊維が飛散する
という欠点があり、又ガラスウールは有機繊維と比較す
るとコスト高である。又通常の方ゝ法で得られる有機繊
維のフェルト、不織布より製造されるフィルターは、安
価ではあるが、繊維径はせいぜい10ミクロンであり高
性能エアフィルターとしては不適当である。ここに言う
高性能エアフィルターとは、大気中の0.3ミクロンの
塵埃を50%以上捕集し得るものを言い、繊維径は5ミ
クロン以下、好ましくは3ミクロン以下の繊維より得ら
れる不織布が高性能エアフィルター特性を備えているこ
とが分かつていみ。そこで有機繊維であつて且つ極細の
繊維径を持つ繊維構造物の製造方法としては、例えば2
種以上の高分子物質よりなる海島型複合繊維を立体的に
絡合せしめて不織布としたのち、少なくとも1種の高分
子物質を有機溶剤により抽出せしめ、島成分の高分子物
質のみを残し、不織布を構成する繊維を極細にする方法
(特公昭51−6261号公報)、あるいは不活性ガス
又は発泡性物質を含有する熱可塑性樹脂の溶融ポリマー
を口金から押し出し、押し出された溶融ポリマーを急冷
することにより気泡の破裂を利用して繊維を分割させシ
ート状に引き取る方法(特公昭48−38349号公報
、特公昭49−18508号公報)が知られている。し
かし前者は、有機溶剤で海成分の高分子物質を溶け出さ
せるに当ソー般に芳香族系の溶剤を使用し海成分抽出に
長時間を要するだけではなく海成分の高分子物質を抽出
後の不織布をメタノールで洗浄し、更に水で洗浄すると
いう二度手間を要し、且つ溶出高分子物質の溶けた廃液
の処理も必要となり、工程が複雑化し、ロスも大きいと
いう欠点がある。後者の場合は、不活性気体あるいは不
活性気体を発生する物質を溶融一ポリマー内に混練して
押し出す為紡糸工程の制御が難しく又操業性も不安定て
ある。またこの他の方法として繊維形成能を有する有機
質材料を有機溶剤に溶かし、該溶液をノズルより噴射せ
しめて極細短繊維のウェブを作り、これをフィルター材
!となす方法(特公昭46−139m号公報、特開昭5
0−108677号公報)が公知てある。この方法によ
れは超極細の有機繊維か得られ、得られた繊維より製造
されるウェブは、高性能エアフィルターとして充分な特
性を持つている。しかし該方法に於いjて得られる繊維
の径を細くする為には有機質材料の濃度を下げてやる必
要があり生産性が上がらず、又大量の溶剤が必要となれ
ば経済的なロスが大きく、更に有機溶剤による環境汚染
の恐れも生じて来る。更にこれら公知例の重大な欠点は
、極4細繊維のみからなる不織布は強度に欠け、それの
みでは全く使用不可能てあり補強材の混入が必ず必要と
なる。一方、前記の如き欠点を有しない極細の繊維を使
用した不織布の製造方法が本出願人により報告されてい
る。
Conventionally, glass wool has been mainly used as a material for high-performance air filters, and is composed of extremely thin short fiber glass wool with a fiber diameter of 0.5 to 3 microns, which are laminated randomly. Although it has high dust efficiency and excellent heat resistance, glass wool has poor bending resistance and has the disadvantage that broken glass fibers are scattered during ventilation. The cost is high in comparison. Filters made from organic fiber felt or nonwoven fabric obtained by conventional methods are inexpensive, but the fiber diameter is at most 10 microns, making them unsuitable for high-performance air filters. The high-performance air filter referred to here refers to one that can capture 50% or more of 0.3 micron dust in the atmosphere, and is a nonwoven fabric obtained from fibers with a fiber diameter of 5 microns or less, preferably 3 microns or less. It was discovered that it has high performance air filter characteristics. Therefore, as a method for manufacturing a fiber structure that is an organic fiber and has an ultrafine fiber diameter, for example, 2
After making a nonwoven fabric by three-dimensionally intertwining sea-island type composite fibers made of more than one type of polymeric substance, at least one type of polymeric substance is extracted with an organic solvent, leaving only the polymeric substance of the island component, and forming a nonwoven fabric. (Japanese Patent Publication No. 51-6261), or extruding a molten polymer of thermoplastic resin containing an inert gas or foaming substance from a die and rapidly cooling the extruded molten polymer. A method is known in which the fibers are divided into sheets by utilizing the bursting of air bubbles (Japanese Patent Publication No. 48-38349 and Japanese Patent Publication No. 49-18508). However, in the former method, aromatic solvents are generally used to dissolve the polymeric substances of the sea components using organic solvents, and not only does it take a long time to extract the sea components, but also the polymeric substances of the sea components are removed after extraction. This method requires two steps to wash the nonwoven fabric with methanol and then with water, and also requires treatment of the waste liquid containing the eluted polymeric substance, complicating the process and causing large losses. In the latter case, since an inert gas or a substance that generates an inert gas is kneaded into a molten polymer and extruded, it is difficult to control the spinning process and the operability is unstable. Another method is to dissolve an organic material with fiber-forming ability in an organic solvent and spray the solution through a nozzle to create a web of ultra-fine short fibers, which can then be used as a filter material! (Japanese Patent Publication No. 46-139m, Japanese Unexamined Patent Application Publication No. 1973)
0-108677) is publicly known. By this method, ultra-fine organic fibers are obtained, and the web produced from the obtained fibers has sufficient properties as a high-performance air filter. However, in order to reduce the diameter of the fibers obtained by this method, it is necessary to lower the concentration of the organic material, which does not increase productivity, and if a large amount of solvent is required, there is an economic loss. Moreover, there is also the risk of environmental pollution caused by organic solvents. Furthermore, a serious drawback of these known examples is that the nonwoven fabric made only of ultra-fine fibers lacks strength and cannot be used alone, and it is always necessary to incorporate a reinforcing material. On the other hand, the applicant has reported a method for producing a nonwoven fabric using ultrafine fibers that does not have the above-mentioned drawbacks.

(特開昭50−8967汚公報)該方法は、相互接着性
の低い2種の繊維形成性重合体が長手方向に沿つて接合
されその横断面に於いて放射状に分岐する一方の成分A
のセグメントと該放射状部を補完する他方の成分Bのセ
グメントから成る分割型複合繊維を用いてウェブを作成
し、複合繊維を接着又は絡合せしめたのち、複合繊維を
A成分のセグメントとB成分のセグメントに分割ノする
ものであり、該方法により得られる不織布は強度も高く
しなやかな不織布であり、同時に極細の繊維束が絡合し
ている為フィルターとしての性能にも優れているが、高
性能エアフィルターとしては、極細のガラスウールより
なるエアフィルタ.一と比較すると、まだ充分とは言え
ないのが現状である。本発明者らは、前記不織布等を再
二ードリングせしめて極細繊維を更に緻密に絡合せしめ
且つA成分をポリアミド、B成分をポリエステルとし、
ポリアミドの融点付近の温度で加圧することにより強度
も高く、高度な沖過性能を有する不織布のフィルターが
得られることを見い出し、更に種々検討を重ね本発明を
完成させたのである。
(Japanese Unexamined Patent Publication No. 50-8967) In this method, two types of fiber-forming polymers with low mutual adhesion are bonded along the longitudinal direction, and one component A branches radially in the cross section.
A web is created using a split conjugate fiber consisting of a segment of component A and a segment of component B that complements the radial portion, and the conjugate fibers are bonded or intertwined. The nonwoven fabric obtained by this method is a highly strong and flexible nonwoven fabric, and at the same time, it has excellent performance as a filter because of the entanglement of ultrafine fiber bundles. As a performance air filter, it is an air filter made of ultra-fine glass wool. The current situation is that it is still not sufficient compared to the first. The present inventors re-needled the nonwoven fabric etc. to entangle the ultrafine fibers more closely, and made the A component polyamide and the B component polyester,
They discovered that by pressurizing polyamide at a temperature near its melting point, a nonwoven fabric filter with high strength and high permeability could be obtained, and after further research, they completed the present invention.

即ち本発明は前述して来た如き欠点を是正し、強度的に
優れ、且つ沖過性能が極めて高い高性能フィルター及び
その工業的有利な製造方法を提供することを目的とし、
かかる目的は、ポリアミドとポリエステルが長手方向に
沿つて接合比1:5〜5:1で接合された5セグメント
以上に分割可能な断面を有する単糸繊度が3デニール以
下の分割型複合繊維からなるウェブをポリアミドを膨潤
させるがポリエステルを膨潤させない溶剤で処理して該
ウェブを構成する前記複合繊維を各セグメントに分割後
二ードリングを施し、200〜250℃の温度で加圧処
理し、ポリアミド成分を融着せしめることにより達成さ
れ、得られる不織布フィルターは、ポリアミド繊維が部
分的に融着して骨格を形成しており、そのポリアミド繊
維にまとわり付く如く極細のポリエステル繊維どおしが
互いに絡合している為高度な淵過性能を有することにな
るのである。本発明に用いられるポリアミドとは、ε一
カプロラクタムの開環重合により得られるいわゆるナイ
ロンー6を主成分とするものて、ナイロンー6が9.睡
量%を構成しており、γ−ブチロラクタム、δ−バレロ
ラクタム、ヘプトラクタム、ラウリンラクタム等のラク
タム類から得られるポリアミド、又はナイロンー66の
如きジアミンとジカルボン酸の塩とを重縮合させて得ら
れるポリアミドを混合されていても良く、又含リン窒素
系化合物、チオ尿素樹脂粉末等の難燃剤、あるいは耐熱
剤、顔料等を含んていても良い。
That is, an object of the present invention is to correct the above-mentioned drawbacks, and to provide a high-performance filter with excellent strength and extremely high permeability, and an industrially advantageous manufacturing method thereof.
This object is made of a splittable composite fiber with a single fiber fineness of 3 denier or less and a cross section that can be divided into 5 or more segments, in which polyamide and polyester are joined at a joining ratio of 1:5 to 5:1 along the longitudinal direction. The web is treated with a solvent that swells the polyamide but does not swell the polyester, and the composite fibers constituting the web are divided into segments, subjected to needling, and pressure treated at a temperature of 200 to 250°C to remove the polyamide component. This is achieved by fusion bonding, and the obtained nonwoven fabric filter has polyamide fibers partially fused to form a skeleton, and the ultrafine polyester fibers are entwined with each other as if they were wrapped around the polyamide fibers. Because of this, it has a high level of perforation performance. The polyamide used in the present invention is one whose main component is so-called nylon-6 obtained by ring-opening polymerization of ε-caprolactam, and nylon-6 is 9. Polyamides obtained from lactams such as γ-butyrolactam, δ-valerolactam, heptolactam, and laurinlactam, or polycondensation of diamines such as nylon-66 and dicarboxylic acid salts. Polyamide may be mixed therein, and flame retardants such as phosphorus-containing nitrogen compounds, thiourea resin powder, heat resistant agents, pigments, etc. may also be included.

また本発明に用いられるポリエステルとは、ポリエチレ
ンテレフタレートを85重量%以上含み、ポリブチレン
テレフタレート、ポリー1,4ーシクロヘキサンジメチ
レンテレフタレート等を含んでいても良く、又共重合体
であつても良く、更に前記難燃剤、耐熱剤、顔料等を含
んでいても良い。本発明に係る分割型複合繊維の5セグ
メント以上に分割可能な断面とは、第1図a−eに示さ
れる如きものであつて、勿論異型断面系であつても良い
Further, the polyester used in the present invention contains 85% by weight or more of polyethylene terephthalate, may contain polybutylene terephthalate, poly 1,4-cyclohexane dimethylene terephthalate, etc., and may also be a copolymer. Furthermore, the above-mentioned flame retardant, heat resistant agent, pigment, etc. may be included. The cross section of the splittable conjugate fiber according to the present invention that can be divided into five or more segments is as shown in FIGS.

特にA,b,dは、断面が放射状に分岐するポリアミド
成分のセグメントと該放射状部を補完するポリエステル
成分のセグメントからなる代表的なものてあり、cは、
断面が放射状に分岐するポリアミド成分のセグメントと
該放射状部を補完し且つ中心方向に向いた模型の凹部を
有するポリエステル成分のセグメントと該凹部を補完す
る楔型のポリアミド成分のセグメントからなる代表例て
ある。該分割型複合繊維は、合計5セグメント以上に分
割可能であればよく、ポリアミドとポリエステルは各々
等分割又はそれに近い比率て分割されても良いが、分割
されたポリアミドセグメントのうち少なくとも1つが0
.4デニール以上あれば更に好ましい。
In particular, A, b, and d are representative ones whose cross sections are composed of segments of a polyamide component that branches radially and segments of a polyester component that complement the radial portion, and c is
A typical example consisting of a polyamide component segment whose cross section branches radially, a polyester component segment that complements the radial portion and has a model recess facing toward the center, and a wedge-shaped polyamide component segment that complements the recess. be. The splittable composite fiber only needs to be split into a total of 5 or more segments, and the polyamide and polyester may each be split equally or at a ratio close to that, but at least one of the split polyamide segments is 0.
.. It is more preferable if it has a denier of 4 or more.

又、ポリエステル成分はより多く分割され且つ該ポリエ
ステルセグメントは0.05〜0.3デニールの極細繊
維となり得ることが望ましい。これは、後述する如くポ
リアミドの融点付近で部分的熱融着させるに建築物中の
鉄骨の如き役割を部分融着したポリアミドセグメントに
担わせて不織布の強度を保持させ、且つ極細化したポリ
エステル繊維を該ポリアミド骨格にランダムにからませ
ようとする為である。その意味からポリアミドとポリエ
ステルの接合比率は1:5〜5:1であり、且つ単糸デ
ニールか3デニール以下であることが必要である。又接
合比率が1:3〜3:1で且つ単糸デニールか2デニー
ル以下であれば好ましい。即ち、ポリアミド成分の比率
が低いと分割せしめたポリアミドセグメントを熱融着さ
せても得られた不織布の強度が充分でない。又ポリアミ
ド成分の比率が高すぎると、ポリアミド骨格が大きすぎ
、極細化したポリエステルセグメントによる泊過効果が
充分に発揮できないのである。即ち分割型複合繊維か、
その横断面に於いて放射状に分岐するポリアミド成分の
セグメントと該放射状部を補完するポリエステル成分の
セグメントから成るか、又はその横断面に於いて放射状
に分岐するポリアミド成分のセグメントと該放射状部を
補完し、且つ中心方向に向いた模型の凹部を有するポリ
エステル成分のセグメントと該凹部を補完する楔型のポ
リアミド成分のセグメントからなる複合繊維の場合は、
前記思想を十二分に満足させることが出来る。次に得ら
れた分割型複合繊維からウェブを製造する方法は常法に
従えばよい。
It is also desirable that the polyester component be divided into more segments and that the polyester segments can form ultrafine fibers of 0.05 to 0.3 denier. As described below, this is achieved by partially heat-sealing polyamide segments near the melting point of polyamide, allowing the partially fused polyamide segments to play the role of a steel frame in a building, maintaining the strength of the nonwoven fabric, and using ultra-fine polyester fibers. This is because the polyamide skeleton is to be randomly entangled with the polyamide skeleton. In this sense, it is necessary that the bonding ratio of polyamide and polyester be 1:5 to 5:1, and that the denier of the single yarn be 3 or less. Further, it is preferable that the joining ratio is 1:3 to 3:1 and the denier of the single yarn is 2 or less. That is, if the ratio of the polyamide component is low, the strength of the resulting nonwoven fabric will not be sufficient even if the divided polyamide segments are heat-sealed. Moreover, if the ratio of the polyamide component is too high, the polyamide skeleton will be too large, and the permeability effect of the ultra-fine polyester segments will not be fully exhibited. In other words, splittable composite fibers,
Consisting of segments of a polyamide component that branch radially in its cross section and segments of a polyester component that complement the radial portion, or complement segments of a polyamide component that branch radially in its cross section and the radial portion. However, in the case of a composite fiber consisting of a segment of a polyester component having a model concave portion facing toward the center and a segment of a wedge-shaped polyamide component that complements the concave portion,
The above idea can be more than satisfied. Next, a conventional method may be used to manufacture a web from the resulting splittable conjugate fibers.

例えは口金孔より押し出された分割型複合繊維を延伸し
、単系デニール3デニール以下となした後、短繊維に切
断し、又望ましくはこの時捲縮加工を施した后、短繊維
に切断し、次に該複合繊維をランダムウエバーでウェブ
とした后、ニードルパンチを施し3次元化したり、紡糸
した該複合繊維を直接にベルト上に集積し、ウェブを形
成させた所謂スパンボンドを得る方法(これには短繊維
の不織布を作る所謂スプレイドフアイバー法と長繊維の
不織布を作る所謂スパンボンデツド法とがある。)等が
ある。尚前記した短繊維としては、25〜10抽、特ノ
に30〜80T!Rmの長さにカットされたものが好適
に使用し得る。斯くして得られた不織布を構成する分割
型複合繊維をポリアミドを膨潤させるかポリエステルを
膨潤させない溶剤を用いて5セグメント以上に分7割処
理を行う。
For example, the splittable composite fiber extruded from the spinneret hole is stretched to have a monolithic denier of 3 deniers or less, and then cut into short fibers, and preferably after being crimped at this time, the fibers are cut into short fibers. Then, after forming the composite fibers into a web using a random webber, the composite fibers are needle punched to make them three-dimensional, or the spun composite fibers are directly accumulated on a belt to form a web, so-called spunbond. (This includes the so-called sprayed fiber method, which produces nonwoven fabrics made of short fibers, and the so-called spunbonded method, which produces nonwoven fabrics made of long fibers.). In addition, the aforementioned short fibers are 25 to 10 T, especially 30 to 80 T! A material cut to a length of Rm can be suitably used. The splittable conjugate fibers constituting the nonwoven fabric thus obtained are divided into 5 or more segments and subjected to a 70% treatment using a solvent that swells polyamide or does not swell polyester.

これに用いられる溶剤は、ポリエステルを膨潤させない
溶剤であれば何でも良く、例えばペンシルアルコール及
びその誘導体、フェノール、ギ酸、酢酸等であつて、こ
れらの1〜99%、好ましくは5〜30%の水溶液又は
水系エマルクジヨンとしたものである。又、処理温度は
40〜90℃が望ましい。前記不織布を該水溶液又は水
系エマルジョン中に2分以上浸漬し、マングルで絞つた
后、水洗する。浸漬時間は長い程分割は均一であるが、
あまり浸漬が長すぎるとポリアミドが膨張しすぎてもろ
くなる欠点があるので5〜6紛間の浸漬が望ましい。水
洗后の不織布は第2図に示した如く絡合する複合繊維は
完全に5セグメント以上に分割されている。該不織布を
乾燥した后再びニードルパンチを施す。これにより絡合
している極細繊維束は更にほぐされより緻密化される。
但し、この時極細繊維であるが故にニードル貫通による
糸の切断が若干生じ強度低下をもたらすが、これは本発
明に於いては特に問題とならない。即ち、次いで再二ー
ドリングされた不織布を上下面に熱板を有する金属平板
油圧式ブレス機等により200〜250℃、好ましくは
210〜230℃の温度で加圧熱処理を行うからである
。200℃未満の温度では、ポリアミドが全く融着せず
、250℃を越えるとポリアミドの融着が激しすぎてポ
リアミドのフィルム状層の感触が強くなりすぎ又ポリエ
ステルまでもが熱融着してしまうことがある。
The solvent used for this may be any solvent as long as it does not swell the polyester, such as pencil alcohol and its derivatives, phenol, formic acid, acetic acid, etc., and an aqueous solution of 1 to 99%, preferably 5 to 30% of these. Or it is made into a water-based emulsion. Further, the treatment temperature is preferably 40 to 90°C. The nonwoven fabric is immersed in the aqueous solution or aqueous emulsion for 2 minutes or more, squeezed with a mangle, and then washed with water. The longer the soaking time, the more uniform the division.
If the immersion is too long, the polyamide will expand too much and become brittle, so it is desirable to immerse the polyamide for 5 to 6 times. After washing with water, the nonwoven fabric has entangled composite fibers that are completely divided into five or more segments, as shown in FIG. After drying the nonwoven fabric, it is needle punched again. As a result, the entangled ultrafine fiber bundles are further loosened and densified.
However, since the fibers are ultra-fine, the threads are slightly cut due to needle penetration, resulting in a decrease in strength, but this does not pose a particular problem in the present invention. That is, the re-needled nonwoven fabric is then subjected to pressure heat treatment at a temperature of 200 to 250°C, preferably 210 to 230°C, using a metal flat plate hydraulic press machine having hot plates on the upper and lower surfaces. At temperatures below 200°C, the polyamide will not fuse at all, and at temperatures above 250°C, the melting of the polyamide will be too intense and the film-like layer of polyamide will feel too strong, and even the polyester will be heat-fused. Sometimes.

熱加圧に要する時間は不織布中の極細化されたポリアミ
ドが熱可塑化乃至半溶融して該ポリアミド極細繊維が部
分融着される範囲であれば良く、240〜,250゜C
の範囲ではできるだけ短時間て行う方が良い。以上の方
法により製造された不織布は、第3図に示された如く分
割、融着されたポリアミドが不織布中に於いて建築物中
の鉄骨の如くに骨格を形2成し、又該ポリアミド骨格に
保持された極細ポリエステル繊維が互いにからみ合つて
いる。
The time required for heating and pressing may be within a range in which the ultrafine polyamide in the nonwoven fabric is thermoplasticized or semi-melted and the polyamide ultrafine fibers are partially fused, and the temperature is 240 to 250°C.
Within this range, it is better to do it in the shortest possible time. In the nonwoven fabric produced by the above method, as shown in FIG. Ultra-fine polyester fibers held together are intertwined with each other.

故に本発明方法により得られる不織布は強度が高く、極
細繊維が緻密に絡合している為単位容積当りの表面積が
大きく、淵過効率が極めて高い高性能フィ3ルターとし
て単体としての使用が可能となるのである。
ぇ8次に本発明の
方法について実施例をもつて具体的に説明する。尚実施
例1%ョとあるは、特に断わりのない限り1重量%ョを
意味する。実施例1 ナイロンー6とポリエチレンテレフタレートを各々エク
ストルーダーにより溶融し、複合紡糸用口金から押し出
し、ナイロン6とポリエチレンテレフタレートの接合比
率が1:8,1:5,1:3,1:1,3:1,5:1
,8:1の7種の第21図bの如き横断面を有する分割
型複合フィラメントを10007T1./Minの速度
で捲取つた后、ローラ・ヒータ85℃、プレートヒータ
ー150℃の延撚機で延伸倍率3.2で延伸し、45d
/28fの複合フィラメントを得た。
Therefore, the nonwoven fabric obtained by the method of the present invention has high strength, has a large surface area per unit volume because the ultrafine fibers are tightly intertwined, and can be used as a single unit as a high-performance filter with extremely high filtering efficiency. It becomes.
8. Next, the method of the present invention will be specifically explained using examples. Incidentally, "1%" in Examples means 1% by weight unless otherwise specified. Example 1 Nylon-6 and polyethylene terephthalate were each melted using an extruder and extruded from a composite spinning nozzle, and the bonding ratios of nylon-6 and polyethylene terephthalate were 1:8, 1:5, 1:3, 1:1, 3: 1,5:1
, 8:1, seven types of split composite filaments having cross sections as shown in FIG. After winding at a speed of /Min, it is stretched at a stretching ratio of 3.2 with a roller heater at 85°C and a plate heater at 150°C to form a 45d
/28f composite filament was obtained.

該フィラメントは第1図bに於けるAがナイロンー6成
分、Bがポリエチレンテレフタレート成分であつた。こ
の複合フィラメントを51w!nの短繊維に切断し、ラ
ンダムウエバーにてウェブとなし、該ウェブを200X
./dニードルパンチして得られた不織布を15%のベ
ンジルアルコールの50℃の水系エマルジョンに5分間
浸漬した后マングルで絞り、30゜Cの水浴中で水洗し
、100℃の温風乾燥機中て乾燥した。該不織布を1部
切り取り電子顕微鏡て観察した所第2図の如くであつた
。得られた不織布を再度10CyX./dニードルパン
チした后上下面の熱板を215℃に保つた金属平板油圧
式ブレス機て10k9/d、1分間加圧した。得られた
不織布フィルターの形状を再び電子顕微鏡て観察した所
第3図の如きてあつた。各工程に於ける不織布のフィル
ター性能を第1表に、又最終的に得られた不織布フィル
ターの強度を第2表に示した。前記2表より接合比率は
、ナイロン6:ポリエチレンテレフタレートが1:5〜
5:1がろ過効率が高く且つ強度も高いことが明らかで
ある。
In the filament, A in FIG. 1b was a nylon-6 component and B was a polyethylene terephthalate component. This composite filament is 51w! Cut into n short fibers, use a random webber to make a web, and heat the web at 200X
.. The nonwoven fabric obtained by needle punching was immersed in an aqueous emulsion of 15% benzyl alcohol at 50°C for 5 minutes, then squeezed with a mangle, washed in a 30°C water bath, and placed in a hot air dryer at 100°C. and dried. A portion of the nonwoven fabric was cut out and observed under an electron microscope, and the result was as shown in FIG. The obtained nonwoven fabric was again treated with 10CyX. /d After needle punching, the hot plates on the upper and lower surfaces were pressurized at 10 k9/d for 1 minute using a metal flat plate hydraulic press machine that was kept at 215°C. The shape of the obtained nonwoven fabric filter was observed again using an electron microscope and was found to be as shown in FIG. The filter performance of the nonwoven fabric in each step is shown in Table 1, and the strength of the finally obtained nonwoven fabric filter is shown in Table 2. From the above two tables, the bonding ratio is 1:5 to nylon 6:polyethylene terephthalate.
It is clear that 5:1 has high filtration efficiency and high strength.

実施例2ナイロン6とポリエチレンテレフタレートを各
々エクストルーダーにより溶融し複合紡糸用口金から押
し出しナイロン6とポリエチレンテレフタレート接合比
率が1:2の第1図cの如き横断面を有する分割型複合
フィラメントを1000rr1,/Mlnの速度て捲取
つた后、3.2倍に延伸し、50C1/28fの複合フ
ィラメントを得た。
Example 2 Nylon 6 and polyethylene terephthalate were each melted using an extruder and extruded from a composite spinning nozzle to form a split composite filament having a cross section as shown in FIG. After winding at a speed of /Mln, the filament was drawn 3.2 times to obtain a composite filament of 50C1/28f.

このフイラメン゛トは第1図Cに於けるAがナイロン6
成分、Bがポリエチレンテレフタレート成分であつた。
該フィラメントを51wnの短繊維に切断しランダムウ
エバーにてウェブとなし該ウェブを20鉢/dニードル
パンチに得られた不織布を15%のベンジルアルコール
の水系エマルジョン中に浸漬し、3吟で80゜Cに昇温
し川分間処理した后水洗し乾燥した。該不織布を再度1
00本/dニードルパンチした后上下面の熱板温度を変
えた金属平板油圧式ブレス機て10k9/dて1叩冫〜
1吟間加圧した。得られた不織布フィルターの性能を第
3表に示した。以上のことから温度が200゜C未満て
は引張強度、枦過効率の面て十分でなく、又250゜C
よりも高いと通気性が悪くなることが分る。実施例3ナ
イロン6とポリエチレンテレフタレートを各々エクスト
ルーダーで溶融し、複合紡糸用口金から押し出し、ナイ
ロン6とポリエチレンテレフタレートの接合比率が1:
1の第1図bの如き横断面を有する分割型複合フィラメ
ントを7007TL/Mlnの速度で捲き取つた后3.
5倍に延伸し、75d/48fの複合フィラメントを得
た。
In this filament, A in Figure 1 C is nylon 6.
Component B was a polyethylene terephthalate component.
The filament was cut into short fibers of 51 wn and made into a web using a random webber. The web was needle punched at 20 pots/d. The obtained nonwoven fabric was immersed in an aqueous emulsion of 15% benzyl alcohol, and 80° The temperature was raised to C and treated for a few minutes, followed by washing with water and drying. The nonwoven fabric is 1
00 pieces/d After needle punching, a metal flat plate hydraulic press machine that changes the temperature of the hot plate on the top and bottom surfaces punches 10k9/d ~
Pressure was applied for 1 minute. Table 3 shows the performance of the obtained nonwoven fabric filter. From the above, if the temperature is less than 200°C, the tensile strength and tensile efficiency are insufficient, and if the temperature is less than 250°C.
It can be seen that when the temperature is higher than that, the ventilation becomes poor. Example 3 Nylon 6 and polyethylene terephthalate were each melted using an extruder and extruded from a composite spinning nozzle, and the bonding ratio of nylon 6 and polyethylene terephthalate was 1:
3. After winding a split composite filament having a cross section as shown in FIG. 1b of 1 at a speed of 7007TL/Mln.
It was stretched 5 times to obtain a composite filament of 75d/48f.

このフィラメントは、第1図bに於けるAがナイロン6
成分、Bがポリエチレンテレフタレート成分であつた。
該フィラメントに捲縮加工を施した后75wurLの長
さに切断し短繊維とした。次いでランダムウエバーでウ
ェブとし該ウェブを10吐/dニードルパンチした。得
られた不織布を10%のベンジルアルコール水系エマル
ジョン中に500Cで3紛浸漬しマングルでしぼつた后
水洗し、乾燥した。乾燥后再度100本/dニードルパ
ンチした后金属平板油圧式ブレス機で20k9/dで2
10℃、1分間押圧した。得られた不織布フィルターの
密度は0.075y/C!11厚さは5.1Tr0nで
あり引張強度11.5k9/α、枦過効率89%、又0
.17TL,/Secの通気に対して圧力損失は10.
2?H2Oであつた。
In this filament, A in Figure 1b is nylon 6.
Component B was a polyethylene terephthalate component.
After the filament was crimped, it was cut into a length of 75 wurL to obtain short fibers. Next, a random web was used to form a web, and the web was needle punched at 10 discharges/d. The obtained nonwoven fabric was immersed in a 10% aqueous benzyl alcohol emulsion at 500C, wrung out with a mangle, washed with water, and dried. After drying, 100 needles/d were punched again, and then 2 needles were punched at 20k9/d using a metal flat plate hydraulic press machine.
Pressing was carried out at 10° C. for 1 minute. The density of the obtained nonwoven fabric filter is 0.075y/C! 11 thickness is 5.1Tr0n, tensile strength is 11.5k9/α, overload efficiency is 89%, and 0
.. For ventilation of 17TL,/Sec, the pressure loss is 10.
2? It was H2O.

【図面の簡単な説明】[Brief explanation of drawings]

第1図a−eは、本発明に使用する分割型複合繊維例の
横断面図。 図中、Aはポリアミド成分のセグメント、Bはポリエス
テル成分のセグメントを示す。
FIGS. 1a to 1e are cross-sectional views of examples of splittable composite fibers used in the present invention. In the figure, A indicates a segment of the polyamide component, and B indicates a segment of the polyester component.

Claims (1)

【特許請求の範囲】 1 ポリアミドとポリエステルが長手方向に沿つて接合
比1:5〜5:1で接合された5セグメント以上に分割
可能な断面を有する単糸繊度が3デニール以下の分割型
複合繊維からなるウェブをポリアミドを膨潤させるがポ
リエステルを膨潤させない溶剤で処理して該ウェブを構
成する前記複合繊維を各セグメントに分割後ニードリン
グを施し、200〜250℃の温度で加圧処理しポリア
ミド成分を融着せしめることを特徴とする高性能フィル
ターの製造方法。 2 分割型複合繊維がその横断面に於いて放射状に分岐
するポリアミド成分のセグメントと該放射状部を補完す
るポリエステル成分のセグメントからなるか、又はその
横断面に於いて放射状に分岐するポリアミド成分のセグ
メントと該放射状部を補完し且つ中心方向に向いた楔型
の凹部を有するポリエステル成分のセグメントと該凹部
を補完する楔型のポリアミド成分のセグメントからなる
複合繊維である特許請求の範囲第1項記載の方法。 3 ウェブが短繊維状の分割型複合繊維を用いて形成さ
れたものである特許請求の範囲第1項記載の方法。 4 分割型複合繊維が捲縮を与えられた後に切断され短
繊維化されたものである特許請求の範囲第3項記載の方
法。 5 溶剤がベンジルアルコールである特許請求の範囲第
1項記載の方法。
[Scope of Claims] 1. A split-type composite in which polyamide and polyester are bonded in a longitudinal direction at a bonding ratio of 1:5 to 5:1 and have a cross section that can be divided into 5 or more segments and have a single fiber fineness of 3 denier or less. A web made of fibers is treated with a solvent that swells polyamide but not polyester, and the composite fibers constituting the web are divided into segments, then needled, and pressure treated at a temperature of 200 to 250°C to form polyamide. A method for producing a high-performance filter characterized by fusing components. 2. The splittable conjugate fiber consists of a segment of a polyamide component that branches radially in its cross section and a segment of a polyester component that complements the radial portion, or a segment of a polyamide component that branches radially in its cross section. Claim 1, which is a composite fiber comprising: a segment of a polyester component having a wedge-shaped concave portion that complements the radial portion and faces toward the center; and a segment of a wedge-shaped polyamide component that complements the concave portion. the method of. 3. The method according to claim 1, wherein the web is formed using splittable conjugate fibers in the form of short fibers. 4. The method according to claim 3, wherein the splittable composite fiber is crimped and then cut into short fibers. 5. The method according to claim 1, wherein the solvent is benzyl alcohol.
JP14017677A 1977-11-22 1977-11-22 Manufacturing method of high performance filter Expired JPS6049008B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14017677A JPS6049008B2 (en) 1977-11-22 1977-11-22 Manufacturing method of high performance filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14017677A JPS6049008B2 (en) 1977-11-22 1977-11-22 Manufacturing method of high performance filter

Publications (2)

Publication Number Publication Date
JPS5472582A JPS5472582A (en) 1979-06-11
JPS6049008B2 true JPS6049008B2 (en) 1985-10-30

Family

ID=15262646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14017677A Expired JPS6049008B2 (en) 1977-11-22 1977-11-22 Manufacturing method of high performance filter

Country Status (1)

Country Link
JP (1) JPS6049008B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01202514A (en) * 1988-02-05 1989-08-15 Nippon Denso Co Ltd Air conditioner for automobile

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57117317A (en) * 1981-01-12 1982-07-21 Kuraray Co Ltd Synthetic fiber filter
JPS60122019A (en) * 1984-07-25 1985-06-29 Kanebo Ltd Filter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01202514A (en) * 1988-02-05 1989-08-15 Nippon Denso Co Ltd Air conditioner for automobile

Also Published As

Publication number Publication date
JPS5472582A (en) 1979-06-11

Similar Documents

Publication Publication Date Title
JP5266050B2 (en) High-strength and durable micro and nanofiber fabrics produced by fibrillating bicomponent fibers with sea-island structure
US5124194A (en) Hot-melt-adhesive, micro-fiber-generating conjugate fibers and a woven or non-woven fabric using the same
KR100509539B1 (en) Entangled nonwoven fabrics and methods for forming the same
US20050215157A1 (en) Multi-component fibers, fiber-containing materials made from multi-component fibers and methods of making the fiber-containing materials
JP3436913B2 (en) Non-woven fabric made from heat-bondable yarn or fiber
JP3240819B2 (en) Non-woven fabric and its manufacturing method
JP3233988B2 (en) Filter cloth and method for producing the same
JPS6049008B2 (en) Manufacturing method of high performance filter
JPH10204765A (en) Waterproof multi-layered nonwoven fabric having good vapor permeability and reduced in weight and its production
JP3102451B2 (en) Three-layer nonwoven fabric and method for producing the same
JPH10331063A (en) Composite nonwoven fabric and its production
JPH08226064A (en) Tubular formed article and its production
JP4140996B2 (en) Polyester long fiber nonwoven fabric and method for producing the same
JP3259936B2 (en) Laminated nonwoven fabric and method for producing the same
JP2000271417A (en) Filter medium sheet and pleat filter using the same
JPH1096156A (en) Base fabric for disposable clothes
JP2586125B2 (en) Long-fiber nonwoven fabric and its manufacturing method
JPH08109567A (en) Laminated nonwoven structure and its production
JP3221200B2 (en) Laminated nonwoven fabric and method for producing the same
JPH02169720A (en) Thermal splitting type conjugate fiber and nonwoven fabric thereof
TW202336308A (en) Nonwoven fabrics including recycled polyester
JPH10140471A (en) Nonwoven wiping cloth and its production
JPH10273870A (en) Composite non-woven fabric and its production
US20220203330A1 (en) Fibrillated bicomponent fibers and methods of making and uses thereof
JPH10273864A (en) Composite nonwoven fabric and its production