Nothing Special   »   [go: up one dir, main page]

JPS6049849B2 - Device for measuring surface temperature and emissivity of objects - Google Patents

Device for measuring surface temperature and emissivity of objects

Info

Publication number
JPS6049849B2
JPS6049849B2 JP55106294A JP10629480A JPS6049849B2 JP S6049849 B2 JPS6049849 B2 JP S6049849B2 JP 55106294 A JP55106294 A JP 55106294A JP 10629480 A JP10629480 A JP 10629480A JP S6049849 B2 JPS6049849 B2 JP S6049849B2
Authority
JP
Japan
Prior art keywords
temperature
radiant energy
radiometer
emissivity
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55106294A
Other languages
Japanese (ja)
Other versions
JPS5730916A (en
Inventor
徹 井内
富三男 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP55106294A priority Critical patent/JPS6049849B2/en
Publication of JPS5730916A publication Critical patent/JPS5730916A/en
Publication of JPS6049849B2 publication Critical patent/JPS6049849B2/en
Expired legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/52Radiation pyrometry, e.g. infrared or optical thermometry using comparison with reference sources, e.g. disappearing-filament pyrometer

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Radiation Pyrometers (AREA)

Description

【発明の詳細な説明】 本発明は、加熱鋼板などの被測温物体の表面温度と放射
率を同時に放射測温する装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus for simultaneously measuring the surface temperature and emissivity of an object to be measured, such as a heated steel plate.

被測温物体に黒体炉と放射計を、該黒体炉からの放射エ
ネルギが該物体表面で鏡面反射して放射計に入力するよ
うに配置し、また黒体炉の前方に回転セクタを置いて放
射エネルギを断続させ、該放射エネルギを通した場合と
遮蔽した場合の放射計の各出力から該物体の放射率と温
度を測定する方式がある。しかしこの方式では黒体炉と
放射計を上記の位置関係に設置するのに手間がか)り、
高速で移動する鋼板の温度を測定するような場合には、
装置の交換や運転中の保守の面などから問題なしとしな
い。また移動に伴う測定面のうねりによつて光軸がずれ
、測定結果に誤差を生じるという問題もある。本発明は
このような問題点を克服して容易に正確な放射測温を可
能にする装置を提供しようとするものであり、その特徴
とする所は被測温物体に対向させて放射源を配置し、こ
れらの間に放射源からの放射エネルギを断続させる回転
セクタと、被測温物体からの放射エネルギを放射計へ導
くビームスプリッタを設け更に該回転セクタが放射エネ
ルギを遮断したとき及びこれを通過させたときの該放射
計の各出力から物体の温度および放射率を算出する演算
装置を配設してなる点にある。
A blackbody furnace and a radiometer are arranged on the temperature-measuring object so that the radiant energy from the blackbody furnace is specularly reflected on the surface of the object and input to the radiometer, and a rotating sector is placed in front of the blackbody furnace. There is a method in which the emissivity and temperature of the object are measured from the outputs of the radiometer when the radiant energy is passed through and when the radiant energy is blocked. However, with this method, it takes time and effort to install the blackbody reactor and radiometer in the above positional relationship.
When measuring the temperature of a steel plate moving at high speed,
We do not assume that there will be any problems in terms of equipment replacement or maintenance during operation. There is also the problem that the optical axis shifts due to the undulation of the measurement surface due to movement, causing errors in measurement results. The present invention aims to overcome these problems and provide a device that makes it possible to easily and accurately measure radiation temperature.The present invention is characterized by the fact that the radiation source is placed opposite the object to be measured. A rotating sector that intermittents the radiant energy from the radiation source and a beam splitter that guides the radiant energy from the object to be measured to the radiometer are provided between them. The point is that an arithmetic device is provided to calculate the temperature and emissivity of an object from each output of the radiometer when the object passes through the object.

以下図面を参照しながらこれを詳細に説明する。第1図
で10は炉壁てあり、12は被測温物体本例ては加熱ス
トリップてある。炉は本例ては焼鈍炉であり、そして背
光雑音を可及的に小にするため測温部分は図示の如く周
囲の炉壁を接近させ、かつ透光窓14の周囲の炉壁には
水冷盤16−を設けてある。この透光窓14上にビーム
スプリッタ(またはハーフミラー)22、回転セクタ2
0、および黒体炉18を順次設置し、また放射計24を
ビームスプリッタ22に対面させて設置する。この配置
によれは図示の如く黒体炉18からフ出た放射エネルギ
琢は回転セクタ20およびビームスプリッタ22を通つ
て物体12の表面に投射され、該表面で正反射して上記
光路を戻り、ビームスプリッタで一部が反射計24に入
力する。また物体12から放出された放射エネルギB2
5も、ビームスプリッタ22で一部が反射して放射計2
4に入射する。なおビームスプリッタ22を透過した放
射エネルギは回転セクタ20を通つて黒体炉18へ入り
、吸収される。上記は放射エネルギB1が回転セクタ2
0で遮断されずにこれを通過した場合であるが、回転セ
クタで遮断されると放射計24に入力するのは放射エネ
ルギ八のうちビームスプリッタ22で反射した分のみと
なる。このような状況から、下式が成立する。こ)でE
1は回転セクタが放射エネルギB1を遮断している場合
、E2は通過させている場合の放射計の各検出工ネルギ
、T1およびEは物体12の温度および放射率、T2は
黒体炉の温度、rおよび(1−r)はビームスプリッタ
の放射率および透過率である。また(1−ε)は物体1
2の表面が鏡面である場合の理想的反射率であり、実際
には物体表面は粗面であるのでこれより少なくなりs係
数をf(0〈fく1)としてf(1−ε)とすべきもの
である。なお放射率Eは入射角に応じて変り、本例では
入射は法線方向でなされるので入射角0における値をい
う。(1)(2)式から次式が−得られ、この(3),
(4)式より物体12の放射率Eおよび温度T1が求ま
る。
This will be explained in detail below with reference to the drawings. In FIG. 1, 10 is a furnace wall, and 12 is an object whose temperature is to be measured, in this example a heating strip. The furnace in this example is an annealing furnace, and in order to minimize backlight noise, the temperature measuring part is placed close to the surrounding furnace walls as shown in the figure, and the furnace walls around the transparent window 14 are A water cooling plate 16- is provided. A beam splitter (or half mirror) 22 and a rotating sector 2 are placed on this transparent window 14.
0 and the blackbody furnace 18 are installed one after another, and the radiometer 24 is installed facing the beam splitter 22. With this arrangement, as shown in the figure, the radiant energy emitted from the blackbody furnace 18 is projected onto the surface of the object 12 through the rotating sector 20 and the beam splitter 22, specularly reflected from the surface, and returned along the optical path. A portion of the light is input to the reflectometer 24 by the beam splitter. Also, the radiant energy B2 emitted from the object 12
5 is also partially reflected by the beam splitter 22 and is reflected by the radiometer 2.
4. Note that the radiant energy transmitted through the beam splitter 22 enters the blackbody furnace 18 through the rotating sector 20 and is absorbed. In the above example, radiant energy B1 is transmitted to rotating sector 2.
If the beam passes through this without being blocked by the rotating sector, only the portion of the radiant energy reflected by the beam splitter 22 will be input to the radiometer 24 if the beam is blocked by the rotating sector. From this situation, the following formula holds true. E in this)
1 is the detection energy of the radiometer when the rotating sector blocks the radiant energy B1, E2 is the detection energy of the radiometer when the rotating sector is passing the radiant energy B1, T1 and E are the temperature and emissivity of the object 12, and T2 is the temperature of the blackbody furnace. , r and (1-r) are the emissivity and transmittance of the beam splitter. Also, (1-ε) is the object 1
This is the ideal reflectance when the surface of 2 is a mirror surface.In reality, the surface of the object is a rough surface, so it is less than this, and the s coefficient is f(0<f × 1) and f(1-ε). It is something that should be done. Note that the emissivity E changes depending on the angle of incidence, and in this example, since the incidence is in the normal direction, it refers to the value at an angle of incidence of 0. The following equation is obtained from equations (1) and (2), and this (3),
The emissivity E and temperature T1 of the object 12 are determined from equation (4).

26はその演算を行なう装置である。26 is a device that performs the calculation.

このε,T1の演算で用いるEb(T2)は黒体炉18
の温度T2を測定してT上b(T)変換してもよく、あ
るいは放射計24て直接測定してもよい(これは例えば
放射計24をビームスプリッタ22に対し図面とは反対
の位置へ移動させれは可能てある)。この方式によれば
、黒体炉および放射計の光軸一が測定面法線にとつてあ
るため、測定面のうねりによる光軸のずれの影響が小さ
く、従つて正確な測温が可能である。
Eb (T2) used in the calculation of ε, T1 is the blackbody furnace 18
The temperature T2 may be measured and converted to b(T) over T, or it may be measured directly using the radiometer 24 (this may be done, for example, by moving the radiometer 24 to the opposite position relative to the beam splitter 22 as shown in the drawing). (It is possible to move it.) According to this method, the optical axes of the blackbody furnace and radiometer are aligned with the normal line of the measurement surface, so there is little effect of deviation of the optical axis due to waviness of the measurement surface, and therefore accurate temperature measurement is possible. be.

また光軸合せに時間を取らずに済むため、装置の交換や
保守の面からも使用し易いという利点がある。この測温
装置は黒体炉18を反射鏡に変えてもよい。
Furthermore, since it does not take much time to align the optical axes, there is an advantage that the device is easy to use in terms of replacement and maintenance. In this temperature measuring device, the black body furnace 18 may be replaced with a reflecting mirror.

第2図を参照して説明するにこの場合の放射エネルギB
1の経路は、被測温物体12から始つてビームスプリッ
タ22、回転セクタ20、反射鏡18″と続き、この反
射鏡で正反射して今来た経路を戻り、被測温物体12の
表面て正反射し”てビームスプリッタ22へ至り、こ)
で一部が反射して放射計24へ入力する。つまり反射鏡
は受動的ながら黒体炉18と同様な放射源となる。この
場今の前記(1)〜(4)式は次の如くなる。但しRm
は反射鏡の反射率以上説明したように本発明によれば、
取付け、保守が極めて容易な放射測温装置が得られる。
The radiant energy B in this case will be explained with reference to FIG.
Path 1 starts from the object to be measured 12, continues through the beam splitter 22, the rotating sector 20, and the reflecting mirror 18'', and is regularly reflected by this reflecting mirror to return along the path that was just taken, and then return to the surface of the object to be measured 12. It is specularly reflected and reaches the beam splitter 22.)
A part of the light is reflected and input into the radiometer 24. In other words, the reflector serves as a radiation source similar to the blackbody furnace 18, although it is passive. The current equations (1) to (4) are as follows. However, Rm
is the reflectance of the reflecting mirror.As explained above, according to the present invention,
A radiation temperature measurement device that is extremely easy to install and maintain can be obtained.

また透光窓の周囲を水冷盤つまり放出する放射エネルギ
が測温無視できる低温部材で覆い被測温物体を充分これ
に近付ければ該物体が炉内物体であつても背光雑音の影
響なく高精度の測温が可能である。なお図示の如き配置
は炉と炉の間のスロート部を利用したりすると簡単に実
現できる。
In addition, if the area around the light-transmitting window is covered with a water-cooled plate, that is, a low-temperature material whose radiant energy emitted can be ignored by the temperature measurement, and the object to be temperature measured is placed sufficiently close to the water-cooled plate, even if the object is inside the furnace, the temperature will be high without being affected by backlight noise. Accurate temperature measurement is possible. Note that the arrangement as shown in the figure can be easily realized by using the throat section between the furnaces.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は本発明の実施例を示す説明図てあ
る。 図て12は被測温物体、18及ひ1『は放射源、20は
回転セクタ、22はビームスプリッタ、24は放射計、
26は演算装置てある。
FIGS. 1 and 2 are explanatory diagrams showing an embodiment of the present invention. In the figure, 12 is the temperature object to be measured, 18 and 1' are the radiation sources, 20 is the rotating sector, 22 is the beam splitter, 24 is the radiometer,
26 is an arithmetic unit.

Claims (1)

【特許請求の範囲】[Claims] 1 被測温物体に対向させて放射源を配置し、これらの
間に放射源からの放射エネルギを断続させる回転セクタ
と、被測温物体からの放射エネルギを放射計へ導くビー
ムスプリッタを設け更に該回転セクタが放射エネルギを
遮断したとき及びこれを通過させたときの該放射計の各
出力から物体の温度および放射率を算出する演算装置を
配設してなることを特徴とする物体の表面温度と放射率
の測定装置。
1. A radiation source is placed facing the object to be measured, and a rotating sector that intermittents the radiant energy from the radiation source and a beam splitter that guides the radiant energy from the object to be measured to the radiometer are provided between them. A surface of an object, characterized in that a calculation device is provided for calculating the temperature and emissivity of the object from each output of the radiometer when the rotating sector blocks radiant energy and when the radiant energy passes through it. Temperature and emissivity measuring device.
JP55106294A 1980-08-01 1980-08-01 Device for measuring surface temperature and emissivity of objects Expired JPS6049849B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55106294A JPS6049849B2 (en) 1980-08-01 1980-08-01 Device for measuring surface temperature and emissivity of objects

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55106294A JPS6049849B2 (en) 1980-08-01 1980-08-01 Device for measuring surface temperature and emissivity of objects

Publications (2)

Publication Number Publication Date
JPS5730916A JPS5730916A (en) 1982-02-19
JPS6049849B2 true JPS6049849B2 (en) 1985-11-05

Family

ID=14430019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55106294A Expired JPS6049849B2 (en) 1980-08-01 1980-08-01 Device for measuring surface temperature and emissivity of objects

Country Status (1)

Country Link
JP (1) JPS6049849B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02503062A (en) * 1987-03-25 1990-09-27 テニス ツーター インコーポレーテッド Portable power-driven pitching device

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4881823A (en) * 1988-03-29 1989-11-21 Purdue Research Foundation Radiation thermometry
US5310260A (en) * 1990-04-10 1994-05-10 Luxtron Corporation Non-contact optical techniques for measuring surface conditions
US5154512A (en) * 1990-04-10 1992-10-13 Luxtron Corporation Non-contact techniques for measuring temperature or radiation-heated objects
US5769540A (en) * 1990-04-10 1998-06-23 Luxtron Corporation Non-contact optical techniques for measuring surface conditions
US5443315A (en) * 1993-12-16 1995-08-22 Texas Instruments Incorporated Multi-zone real-time emissivity correction system
US5505543A (en) * 1994-01-21 1996-04-09 The Boeing Company Emissivity measurement apparatus and method
DE19513749B4 (en) * 1995-04-11 2004-07-01 Infineon Technologies Ag Method and device for determining the emission factor of semiconductor materials by irradiation with electromagnetic waves
CN103674888B (en) * 2013-12-24 2015-11-11 哈尔滨工业大学 High temperature semitransparent material spectrum direction apparent emissivity backstepping measurement mechanism and method
JP6620827B2 (en) * 2017-04-14 2019-12-18 Jfeスチール株式会社 Radiation temperature measuring device and radiation temperature measuring method
CN115265825B (en) * 2022-07-06 2024-04-16 东北大学 Method and device for measuring temperature of inner surface, storage medium and terminal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02503062A (en) * 1987-03-25 1990-09-27 テニス ツーター インコーポレーテッド Portable power-driven pitching device

Also Published As

Publication number Publication date
JPS5730916A (en) 1982-02-19

Similar Documents

Publication Publication Date Title
US4435092A (en) Surface temperature measuring apparatus for object within furnace
CA1166037A (en) Method of and an apparatus for measuring surface temperature and emmissivity of a heated material
US5993059A (en) Combined emissivity and radiance measurement for determination of temperature of radiant object
JPS6049849B2 (en) Device for measuring surface temperature and emissivity of objects
US2611541A (en) Radiation pyrometer with illuminator
JPS636428A (en) Measuring method for surface temperature of body
JPS6186621A (en) Method and apparatus for simultaneously measuring emissivity and temperature
JPS5485078A (en) Surface temperature measuring method of in-furnace objects
JPS6047538B2 (en) How to measure the temperature and emissivity of an object
JPS5987329A (en) Method for measuring temperature of steel
JP3259815B2 (en) Method and apparatus for measuring emissivity and temperature of an object, and rod-shaped radiation source
JPH04132944A (en) Device for measuring thermal coefficient of expansion
JPH0521412B2 (en)
JPS6014192Y2 (en) Surface temperature measuring device for objects inside the furnace
JPH0232207A (en) Roughness measuring method for metal surface
JPS6014193Y2 (en) Simultaneous measurement device for metal surface temperature and emissivity
JPS6221953Y2 (en)
JPH01245125A (en) Method and device for measuring simultaneously emissivity and temperature
JPS6225973B2 (en)
JPH0458568B2 (en)
JPH03175326A (en) Method and apparatus for measuring emissivity and surface temperature
JPS6184528A (en) Temperature measuring instrument
JPS6129647B2 (en)
JPH0427496B2 (en)
JPH06147995A (en) Infrared detecting device