JPS6047373A - Redox battery - Google Patents
Redox batteryInfo
- Publication number
- JPS6047373A JPS6047373A JP58155393A JP15539383A JPS6047373A JP S6047373 A JPS6047373 A JP S6047373A JP 58155393 A JP58155393 A JP 58155393A JP 15539383 A JP15539383 A JP 15539383A JP S6047373 A JPS6047373 A JP S6047373A
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- reaction
- thermosetting resin
- plate
- carbon fiber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/18—Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
- H01M8/184—Regeneration by electrochemical means
- H01M8/188—Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/96—Carbon-based electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0271—Sealing or supporting means around electrodes, matrices or membranes
- H01M8/0273—Sealing or supporting means around electrodes, matrices or membranes with sealing or supporting means in the form of a frame
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Fuel Cell (AREA)
Abstract
Description
【発明の詳細な説明】 (7′) 技 術 分 野 このシ1)明はレドックス電池の構造に関する。[Detailed description of the invention] (7') Technique Branch This section 1) relates to the structure of a redox battery.
レドックス電池は、電解槽を隔膜で仕切り、正極と0極
とを電解槽に浸漬し、正極、負極液の酸化還元反応によ
り、充電、放電を繰返し行わせる二次電池である。正極
液、負極液ともに酸化還元反応のi[I後でイオン状態
である反応物を含んでいる。イオン価の変化によって、
充電放′亀反応を行わせ’S 、Iうになっている。A redox battery is a secondary battery in which an electrolytic tank is partitioned with a diaphragm, a positive electrode and a zero electrode are immersed in the electrolytic tank, and charging and discharging are repeatedly performed by an oxidation-reduction reaction of the positive electrode and negative electrode liquid. Both the positive and negative electrode fluids contain reactants that are in an ionic state after i[I of the redox reaction. Due to changes in ionic valence,
The charging and discharging reaction is made to take place.
正)所液2、負極液は2つ又は1つのタンクに貯溜され
、ホンブによって電解槽へ圧送される。容積効率が良い
ので、電力貯蔵用二次電池として有望である。Positive) local liquid 2 and negative electrode liquid are stored in two or one tank and are pumped to the electrolytic cell by a horn. Since it has good volumetric efficiency, it is promising as a secondary battery for power storage.
第6図はT)1力貯蔵用レドツクス電池の概念を説明す
るだめの図である。FIG. 6 is a diagram illustrating the concept of a redox battery for single force storage.
発iff所1て発電された電力は、変電設備2て変圧さ
れ、インバータ4で直流に変換され、レドックス電池5
を充電する。Electric power generated at the power generation station 1 is transformed by the substation equipment 2, converted to DC by the inverter 4, and then transferred to the redox battery 5.
to charge.
逆に、レドックス電池5の起電力がインバータ4に、に
り交流に変換され、変電設備2を経て負荷3を駆動する
。Conversely, the electromotive force of the redox battery 5 is converted into alternating current by the inverter 4, and drives the load 3 via the substation equipment 2.
レドックス電池5は、正極液タンク6a、6bと、負極
液タンク7a、、7bと、正極液14、負極液15を循
環させるためのポンプ8.9と、市隔股13によって仕
切られている。The redox battery 5 is partitioned by positive electrode liquid tanks 6a, 6b, negative electrode liquid tanks 7a, 7b, a pump 8.9 for circulating the positive electrode liquid 14, negative electrode liquid 15, and a partition 13.
正、負極液は、イオン価が2種類あるイ;4ンと、イオ
ンを水溶液の形で存在させることのできる溶液を組合わ
せたものである。溶液は、塩酸、リン酸、ビロリン酸溶
液が使われる。The positive and negative electrode liquids are a combination of ion having two types of ionic valences, and a solution that allows ions to exist in the form of an aqueous solution. The solutions used are hydrochloric acid, phosphoric acid, and birophosphoric acid solutions.
(a) 塩酸溶液を使うもの
Fe (3/2)、Cr (2/3)
Fe (3/2 ) 、Ti (3/4 )(b) リ
ソ酸溶液を使うもの
Mn (3/2 ) 、Cr (2/3 )Mn (3
/2 ) 、Cu (1/2 )Cr (6/3 )
、Cr (2,/3 )(C) ビロリン酸溶液を使う
もの
Mn (3/2 ) 、Cr (2/8 )Cr (6
/3)、Cr (2/3)
などが知られている。に)内は価数。(a) Those using hydrochloric acid solution Fe (3/2), Cr (2/3) Fe (3/2), Ti (3/4) (b) Those using lysoic acid solution Mn (3/2), Cr (2/3) Mn (3
/2), Cu (1/2) Cr (6/3)
, Cr (2,/3) (C) Using birophosphoric acid solution Mn (3/2), Cr (2/8) Cr (6
/3), Cr (2/3), etc. are known. ) is the valence.
たとえば、塩酸溶液中で、正極液としてFe3+/Fe
%負極液としてCr2+/Cr3+を含むものに2+
ついて説明する。正、負極での電池反応は、放
正 極 Fe”十−4−e −
Fe2+
充
放
負 極 Cr2+ ″ Cr3+十 e−充
と書ける。For example, in a hydrochloric acid solution, Fe3+/Fe is used as the catholyte.
% negative electrode liquid containing Cr2+/Cr3+ will be explained below. The battery reaction at the positive and negative electrodes can be written as discharge positive electrode Fe''10-4-e − Fe2+ charge and discharge negative electrode Cr2+'' Cr3+10 e-charge.
正極液Fe3+/ Fe”+41、タンク6a16bに
貯溜され、充電の時は、Fe2+液がポンプ8で電解槽
10の正極側10aへ送られ、ここで酸化されFe3−
’ンなって、他方のタンクへ貯溜される。放電の時は
Fe 31液かポンプにより、電解槽10へ送らね、l
黄元されてFe2+となり、元のタンクに戻る。A positive electrode solution Fe3+/Fe"+41 is stored in a tank 6a16b, and during charging, the Fe2+ solution is sent to the positive electrode side 10a of the electrolytic cell 10 by a pump 8, where it is oxidized and becomes Fe3-
' and is stored in the other tank. At the time of discharge
Fe 31 is sent to the electrolytic cell 10 by liquid or pump.
It turns yellow, becomes Fe2+, and returns to its original tank.
負極液については、酸化還元反応が逆に起る。For the negative electrode liquid, the redox reaction occurs in reverse.
(イ)従来技術とその問題点
レドックス電池の正、負電極は、集電電極と電1ず〆槽
を兼ねる反応電極と全組合わせたものであ′″)だ。(a) Conventional technology and its problems The positive and negative electrodes of a redox battery are a combination of a current collecting electrode and a reaction electrode that also serves as a current reservoir.
第7図にレドックス電池の1屯位を示ず。Figure 7 does not show one volume of a redox battery.
正極20、隔膜21、負極22が厚み方向に組合せられ
ている。A positive electrode 20, a diaphragm 21, and a negative electrode 22 are combined in the thickness direction.
正極20、負極22ともに、隔膜21に11する反応電
極23は多孔質カー・ボン?If極となっている。In both the positive electrode 20 and the negative electrode 22, the reaction electrode 23 attached to the diaphragm 21 is made of porous carbon. If pole.
反応電極23は、電池反応をこの内部て起こさ旧るため
、水溶液を含まな目ればならず、多孔質重なければなら
ない。又溶液にj;って腐蝕されて6:1ならない。そ
こで多孔質カーボ〉が反応電極とし2て使われる。The reaction electrode 23 must not contain an aqueous solution and must be porous so that the battery reaction occurs inside it. Also, it is not corroded by the solution at a ratio of 6:1. Therefore, porous carbon dioxide is used as the reaction electrode 2.
集電電極24は、グラフアイ1電極板が用い「〕ねる。The current collecting electrode 24 is a graph eye 1 electrode plate.
レドックス電池は反応電極と集電電極の間で?t’?も
わがあってはならないので、パラギン等を介し。What about redox batteries between the reaction electrode and the current collection electrode? t'? There should be no moisture, so use paragin, etc.
てLl−[着、或は接着されて用いられる。反応箱1極
と集’屯′Ia極は、電気的に結合されていなければな
(。It is used by attaching or bonding. The reaction box 1 pole and the collector Ia pole must be electrically connected (.
ないので、接触抵抗が大きいと、直列接続した時、電池
の内部抵抗が高くなってしまう。Therefore, if the contact resistance is large, the internal resistance of the battery will increase when connected in series.
バラギンを間に挾むと、抵抗が大きくなりやすい。又パ
ラギンを挾んだところで、液もれの可能性がある。If you put Balagin in between, the resistance tends to increase. Also, there is a possibility of liquid leaking when the paragin is sandwiched.
これは、正極、負極に於て、集電電極(グラファイト)
と反応電極(多孔質カーボン)に分かれている事に起因
する難点である。This is a current collector electrode (graphite) for the positive and negative electrodes.
This is a drawback due to the fact that it is separated into a reaction electrode (porous carbon) and a reaction electrode (porous carbon).
反rj1): ?tfl 4i★に於ては、小さい容積
で、酸化還元反応をできるたけ効率よく起るようにしな
番プればならない。このため実効的表面積が広い多孔質
′電極か用いらねる。このため、多孔質カーボン粉末成
形体、カーボン繊維不織布、カーボンfHII:織布な
とが使われる。Anti-rj1): ? In tfl 4i★, the redox reaction must occur as efficiently as possible in a small volume. For this reason, a porous electrode with a large effective surface area cannot be used. For this reason, porous carbon powder compacts, carbon fiber nonwoven fabrics, carbon fHII: woven fabrics, etc. are used.
集′[11,電極は、電解液によって腐蝕ぜず、反応電
極と充分導通している必要がある。このため、従来カー
・ボン、グラファイトの焼結体か使用されていた。[11] The electrode must not be corroded by the electrolyte and must have sufficient electrical conductivity with the reaction electrode. For this reason, carbon carbon or graphite sintered bodies have traditionally been used.
いずわの電極も導電性があってm蝕しないことが要求さ
れる。反応′開極には溶液か浸透しなりればならないし
、集電電極には溶液が浸透してはならない。また反応電
極と集電電極は電気的につなかつていなければならない
。The electrodes are also required to be conductive and not corrode. For the reaction to open, the solution must penetrate, and the solution must not penetrate into the current collecting electrode. Further, the reaction electrode and current collecting electrode must be electrically connected.
(つ) 本発明のレドックス電池の構造本発明のしドッ
クス電池は、反応電極と、集′11C′11L極を一体
化した電極構造を有する。(1) Structure of the redox battery of the present invention The redox battery of the present invention has an electrode structure in which a reaction electrode and a collection '11C'11L electrode are integrated.
(1) 一体化した電極はカーボン繊維の積層体よりな
り、
(2) カーボン繊維の積層体の一力の面、或は両(j
1]の中央部分を残して、熱硬化性樹脂を含浸し、含浸
した部分を集′亀電JiQiとする。(1) The integrated electrode is made of a carbon fiber laminate, and (2) one side of the carbon fiber laminate or both (j
1], leaving the center part, is impregnated with a thermosetting resin, and the impregnated part is used as a "Kameden JiQi".
(3) 含浸されていない一方のσf1、或は両面の中
+b部分を反応′正極とする。(3) One σf1 which is not impregnated or the middle +b portion of both surfaces is used as the reaction' positive electrode.
ここで、電極に含浸させるべき、熱硬化性樹IN!は、
エポキシ樹脂、不飽和ポリエステル樹脂、ウレタン樹脂
、シリコン樹脂、フェノール樹脂なとである。Here, the thermosetting resin IN! should be impregnated into the electrode! teeth,
These include epoxy resin, unsaturated polyester resin, urethane resin, silicone resin, and phenolic resin.
集電電極に熱硬化性樹脂を含浸させるど、溶液か集電電
極の中へ浸み込まないようになる。Impregnating the current collecting electrode with a thermosetting resin prevents the solution from seeping into the current collecting electrode.
熱硬化性樹脂の存在しt「い部分は、カーボン繊維の積
層体のままであるので、正負極液が浸透、流通すること
ができる。つまり、反応電極とじで作用する。Since the portion where the thermosetting resin is not present remains a carbon fiber laminate, the positive and negative electrode fluids can penetrate and flow therethrough.In other words, the reaction electrodes act together.
集電′「:L極はカーボン繊維によって、導電性を賦与
されているか、さらに抵抗を下げる必要があれば、・滓
?IL性微粒子を加える。Current collector: Is the L pole endowed with conductivity by carbon fibers? If it is necessary to further lower the resistance, add slag or IL fine particles.
例えノJ5カーボン粉、グラファイト粉、銀粉などを熱
硬化性樹脂中に混練し、この複合樹脂をカーボン線維積
層体へ含浸させる。For example, J5 carbon powder, graphite powder, silver powder, etc. are kneaded into a thermosetting resin, and this composite resin is impregnated into a carbon fiber laminate.
図面によって説明する。This will be explained using drawings.
第1図は−1〈発明のレドックス電池に用いられる電極
(j・くAの゛r而面である。第2図は第1図中の11
− If (iJi而図面ある。Figure 1 shows the surface of the electrode used in the redox battery of the invention.
- If (iJi there is a drawing.
電1i1ii仏・A f、;j、正極にも負極にも使用
できる。It can be used for both positive and negative electrodes.
電極板A!」薄い長方形状のカーボン繊維積層体である
。両面の中央部を残し、周縁と中間層部は熱硬f]S′
1づ荀J脂を含浸しだ集電電極Bとなっている。Electrode plate A! "It is a thin rectangular carbon fiber laminate. Leave the center part on both sides, and heat harden the periphery and middle layer f]S'
Collecting electrode B is impregnated with 100% fat.
第2]ツ[に於て集電電極Bは、H形断面をVする。In the second case, the current collecting electrode B has an H-shaped cross section.
熱硬化性樹脂を含浸しない、面の中央部は、カー4仁繊
維そのままであり、こねが反応電極Cとなる。反1)包
、電極Cは繊維であるがら、溶液を含むことかでき、カ
ーボンであるから導電性がある。The central part of the surface, which is not impregnated with the thermosetting resin, remains the Kerr fiber as it is, and the kneaded part becomes the reaction electrode C. 1) Although the electrode C is made of fiber, it can contain a solution, and since it is made of carbon, it is conductive.
;:a 1図、第2図に示したのは、集合セルを構成す
る中間部の電極で1両端の電4ijljは、一方の面に
たけ反応8%を作製する1;うにする。;:a What is shown in Figures 1 and 2 is an electrode in the middle that constitutes an aggregate cell, and the electric currents at both ends of the electrode are designed to produce an 8% reaction on one side.
第3図によって、集合セルの構造を説明する。The structure of the aggregate cell will be explained with reference to FIG.
集合セルGけ、n個の?li極板A1、A2、・・・・
・・、Anを、間に隔膜”’1 ’ E2 、”””、
En−1を挾んで厚みカ。Set cell G, n pieces? Li electrode plates A1, A2,...
..., An, with a diaphragm "'1 ' E2, """,
Sandwich En-1 to make it thicker.
向に重ね合せたものである。They are superimposed on each other.
中j用のA2、・・・・、An−1の電極板は、両側に
反1心電極Cを持っているが、両端のA1、Anの電1
illi板は、一方に反応電極Cを有するのみである。The electrode plate of A2, ..., An-1 for middle j has anti-one-core electrodes C on both sides, but the electrode plates of A1 and An at both ends
The illi plate only has a reaction electrode C on one side.
反応′1ヒ極C1Cを、隔膜によって仕切っており、+
W ++t、>はHイオン又はCβ−・rオンのみを通
す。集’t1゜正極B、Bは絶縁されていなければなら
ない。Reaction '1 Hypole C1C is separated by a diaphragm, +
W ++t,> allows only H ions or Cβ−·r ions to pass through. Collection't1゜Positive electrodes B and B must be insulated.
反応電極C,C,イオン交換膜の存在する部分へは、j
I:、極液、負極液が導かれる電解槽として機能する。To the reaction electrodes C, C, and the part where the ion exchange membrane is present, j
I: Functions as an electrolytic cell into which the electrode liquid and negative electrode liquid are introduced.
AI 、Anは正極、負極のいずれが一方に対応する。AI and An correspond to either a positive electrode or a negative electrode.
中間のA2 、山”、An lは正極と負極とを兼ねて
いる。この集合セルは(n−1)個の単セルを集めた′
電池として機能する。The middle A2, the mountain, and An l serve as the positive and negative electrodes. This aggregate cell is a collection of (n-1) single cells.
Functions as a battery.
淋) 実 施 例
本発明の電池構造は前節で説明した通りであるが、実際
には正極液、負極液を、反応電極内・\循環さぜるため
の流路を必要とする。Embodiment The battery structure of the present invention is as explained in the previous section, but actually requires a flow path for circulating the positive and negative electrode fluids within the reaction electrode.
溶液の流路は、各電極それぞれから、・り)側へ通路を
設置4’−、外側へ連通した通路へ溶液ボースをつなぐ
、に凸にする肩1もてきる。こうすると、′電極板1枚
ことに、短い4本又は2本のホースと継手を必要′七す
る。The solution flow path includes a convex shoulder 1 which connects the solution bow to the passage connected to the outside from each electrode by installing a passage 4'- to the side communicating with the outside. In this case, each electrode plate requires four or two short hoses and joints.
溶1夜の?lft路を電極板の厚み方向に穿孔しておく
事も可能で反)る。第4図はそのような溶液流路を穿設
置7ノe ?ij 1LIJi板の斜透視図である。One night of melting? It is also possible to drill lft paths in the thickness direction of the electrode plate. Figure 4 shows how to drill and install such a solution flow path. FIG. 1 is a perspective perspective view of the ij 1LIJi board.
電(・ji 41又Aの集電′fL極Bの同材4箇所に
、j7み方向の1ドf液通し穴30.31.32.33
が穿孔されている。4つの穴は全ての電極板について同
一位置G穿たれる。径って、通し穴30、・・、33の
連名、か、溶液の通路となる。Electricity (・ji 41 or A's current collector 'fL In the same material of pole B, there are 1 do f liquid passage holes 30, 31, 32, 33 in the j7 direction.
is perforated. Four holes are drilled at the same location G for all electrode plates. The diameter is the joint name of the through holes 30, . . . , 33, or a passage for the solution.
4−1の穴のいずれか2つか正極液用の通し穴で、残り
の2つか負極液用の通し穴である。との2つを正、負1
1折液用の通し穴としても良いか、ここでは対角線方向
の一対を、同じ極に対する通し穴として選んでいる。Two of the holes 4-1 are through holes for the positive electrode liquid, and the remaining two are through holes for the negative electrode liquid. and 2 positive, negative 1
It may be possible to use the through holes for the one-fold liquid, but in this case, a pair of diagonal holes are selected as the through holes for the same pole.
溶液を通し穴から反応電極へ導がなければならないので
、反応電極の一部は、対応する通し六−5と延びている
。Since the solution must be conducted through the hole to the reaction electrode, a portion of the reaction electrode extends with a corresponding passage 6-5.
第5図は、このような?1L極板を重ねて集合セルとし
た場合の、溶液の流れを示す断面図で、ひとつの電極板
についていえば、第4図でV−Vの線に沿って切断した
断面図である。Does Figure 5 look like this? This is a cross-sectional view showing the flow of a solution when 1L electrode plates are stacked to form a collective cell, and for one electrode plate, it is a cross-sectional view taken along the line V-V in FIG. 4.
正極液(又は負極液)はポンプにより賦勢され、溶液通
し穴30から、反応電極Cに入り、酸化J′ζ(元反応
を受けた後、溶液通し穴32から排出さAする0
実施例を述べる。The positive electrode liquid (or negative electrode liquid) is energized by a pump, enters the reaction electrode C through the solution through hole 30, undergoes oxidation J'ζ (original reaction), and then is discharged through the solution through hole 32. state.
厚さ0.4關のカーボン繊維織布を重ね合せて′、IL
極板にする。エポキシ樹脂及び硬化剤I QQ il(
Nj’ilsと導電性カーボン粉60重量部を7111
練して、導電t/1゜熱硬化性樹脂を作製した。By overlapping carbon fiber woven fabrics with a thickness of 0.4 mm, IL
Make it into a pole plate. Epoxy resin and hardener I QQ il (
7111 Nj'ils and 60 parts by weight of conductive carbon powder
By kneading, a conductive t/1° thermosetting resin was prepared.
カーボン繊維(0,4問)7枚でひとつの電極41vを
作ることとし、3枚は全面に前記樹脂を含浸ン)せた。One electrode 41v was made from seven pieces of carbon fiber (0,4 questions), and three pieces were entirely impregnated with the resin.
7枚を重ね合せ、加圧ブしスにより150°C1電極板
0ゾさ3.Ofi ”)を得た。Layer the 7 electrodes and heat them at 150°C with a pressure bath.3. Ofi”) was obtained.
これは、第3図に於て示されるA】、Anのような、一
方(二だけ反応電極をもつ電極板である。A2〜Ant
のよ)な両方に反応電極のあるものも同様に作りうるが
、積層する枚数と順序が少し異なる。This is an electrode plate having only two reaction electrodes, such as A and An shown in FIG.
It is also possible to make one with reaction electrodes on both sides, but the number and order of stacking is slightly different.
こヨ)シて作った電極板2枚を隔膜を挾んで一体化しノ
(tセル電池を作製した。この単セル電池により、ブ1
′、放1u実験を繰り返した。液もれはなく、十分な′
4極反応が行われた。A T-cell battery was fabricated by integrating two electrode plates with a diaphragm sandwiched between them.
', the 1u release experiment was repeated. There are no leaks and there is enough water.
A 4-pole reaction was performed.
第1図は本発明に使用される電極板の平面図。
第2図は第1図中のn−l断面図。
第3図は集合セルの構造を示す断面図。
第4図は溶液流路を穿設した電極板の斜S視図。
第5図は集合セル中の溶液の流れを示す断面図。
(第4図の電極板に於て、V−V線に沿う断面を重ねた
ものに対応する。)
第6図は電力貯蔵用レドックス電池の概念説明図。
第7図は従来のレドックス電池の一単位(単一1にル)
を示す断面図。
A ・・・・・・・・・ 電 極 板
B・・・・・・・・・集′亀電極
C・・・・・・・・・反応TIE極
E ・・・・・・・・・ 隔 膜
1 ・・・・・・・・ 発 電 所
2・・・・・・・・・変電設備
3 ・・・・・・ ・・ 負 荷
4 ・・・ ・・・ ・・・ イ ン バ − タ5
・・・・・・・・・ し1゛ツクス電池5a、5b・・
・・・・ 正極液タンク7a、7b・・・・・ 負極液
タンク
8.9 ・・・・・・・・・ ポ ン プ10・・・・
・・・・電解槽
11 ・・・・・・・・・ 正 極 板12 ・・・・
・・・・・ 負 極 板13 ・・・・・・・・・ 隔
)1ダ(14・・・ ・・・・ 正 極 液
15 ・・・・・・・・・ 負 極 液20 ・・・・
・・・・・ 正 極
21 ・・・・・・・・ 隔 膜
22 ・・・・・・・・・ 負 極
23 ・・・・・・・・・ 多孔質カーボン電極24
・・・・・・・・・ グラファイト寛極板3ト32・・
・・・・溶液通し穴
発 明 者 重 松 敏 来
日 比 野 豊
特、:′I出願人 住友電気工業株式会社第4図
V
319−
第7図FIG. 1 is a plan view of an electrode plate used in the present invention. FIG. 2 is a sectional view taken along the line n-l in FIG. 1. FIG. 3 is a sectional view showing the structure of an aggregate cell. FIG. 4 is a perspective S view of an electrode plate with a solution flow path formed therein. FIG. 5 is a cross-sectional view showing the flow of solution in the collective cell. (This corresponds to the cross-sections taken along the line V-V of the electrode plates in FIG. 4 that are overlapped.) FIG. 6 is a conceptual diagram of a redox battery for power storage. Figure 7 shows one unit of a conventional redox battery (single unit)
FIG. A ・・・・・・・・・ Electrode Plate B ・・・・・・・・・ Collection'tortoise electrode C ・・・・・・Reaction TIE electrode E ・・・・・・・・・Diaphragm 1... Power plant 2... Substation equipment 3... Load 4... Inverter - Ta 5
...... 1x batteries 5a, 5b...
...... Positive electrode liquid tank 7a, 7b... Negative electrode liquid tank 8.9 ...... Pump 10...
... Electrolytic cell 11 ...... Positive electrode plate 12 ...
・・・・・・ Negative electrode plate 13 ・・・・・・・・・ Spacing ) 1 da (14... ・・・ Positive electrode liquid 15 ・・・・・・・・・ Negative electrode liquid 20 ・・・・・・
...... Positive electrode 21 ...... Diaphragm 22 ...... Negative electrode 23 ...... Porous carbon electrode 24
・・・・・・・・・ Graphite wide electrode plate 3 to 32...
... Solution through hole Inventor Satoshi Shigematsu Visited Japan Yutaka Hino: 'I Applicant Sumitomo Electric Industries, Ltd. Figure 4 V 319- Figure 7
Claims (2)
還元反応を起こさせることにより充放電をおこ′1.f
うレドックス電池に於て、反16電1iφCと集電電極
Bを一体化し、一体化した電極板Aはカーボン繊維の積
層1ドにりなり、力、−ボン繊維の積層体の一方の而、
或は両IC11の中央部分を残して熱硬化性樹脂を含浸
し、含IJした部分を集電電極Bとし、含浸されてい/
1゛い一方の面或は両面の中央部分を反応電極Cとし、
電極板Aを積層して集合セルを構成したことを特徴とす
る1ノドツクス電池。(1) Charging and discharging is performed by separating the positive and negative electrode liquids with a diaphragm and causing an oxidation-reduction reaction at each electrode.'1. f
In a uredox battery, an anti-16 current 1iφC and a current collector electrode B are integrated, and the integrated electrode plate A becomes a laminated layer of carbon fibers, and the force is - one side of the laminated body of carbon fibers.
Alternatively, leave the center portions of both ICs 11 and impregnate them with a thermosetting resin, and use the IJ-impregnated portions as current collecting electrodes B.
The central part of one side or both sides of 1゛ is used as a reaction electrode C,
A 1-node cell characterized in that electrode plates A are stacked to form a collective cell.
、銀粉などを混練した導電性熱硬化性樹脂である特許請
求の範囲第(1)項記載のし・ド・ソクス電池。(2) The S. de Sox battery according to claim (1), wherein the thermosetting resin is a conductive thermosetting resin kneaded with carbon powder, Granato powder, silver powder, etc.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58155393A JPS6047373A (en) | 1983-08-26 | 1983-08-26 | Redox battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58155393A JPS6047373A (en) | 1983-08-26 | 1983-08-26 | Redox battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6047373A true JPS6047373A (en) | 1985-03-14 |
Family
ID=15604970
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58155393A Pending JPS6047373A (en) | 1983-08-26 | 1983-08-26 | Redox battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6047373A (en) |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6340268A (en) * | 1986-08-02 | 1988-02-20 | Toho Rayon Co Ltd | Bipolar palte for cell |
JPH01239771A (en) * | 1988-03-17 | 1989-09-25 | Toray Ind Inc | Cell structure |
US6519408B2 (en) | 1996-07-25 | 2003-02-11 | Matsushita Electric Industrial Co., Ltd. | Playback control apparatus for controlling a playback unit and a receiver unit |
US7855005B2 (en) | 2007-02-12 | 2010-12-21 | Deeya Energy, Inc. | Apparatus and methods of determination of state of charge in a redox flow battery |
US7919204B2 (en) | 2008-10-10 | 2011-04-05 | Deeya Energy, Inc. | Thermal control of a flow cell battery |
US7927731B2 (en) | 2008-07-01 | 2011-04-19 | Deeya Energy, Inc. | Redox flow cell |
US8231993B2 (en) | 2008-10-10 | 2012-07-31 | Deeya Energy, Inc. | Flexible multi-walled tubing assembly |
US8230736B2 (en) | 2008-10-10 | 2012-07-31 | Deeya Energy, Inc. | Level sensor for conductive liquids |
US8236463B2 (en) | 2008-10-10 | 2012-08-07 | Deeya Energy, Inc. | Magnetic current collector |
US8264202B2 (en) | 2008-10-10 | 2012-09-11 | Deeya Energy, Inc. | Method and apparatus for determining state of charge of a battery using an open-circuit voltage |
US8338008B2 (en) | 2009-05-28 | 2012-12-25 | Deeya Energy, Inc. | Electrolyte compositions |
US8349477B2 (en) | 2009-05-28 | 2013-01-08 | Deeya Energy, Inc. | Optical leak detection sensor |
US8394529B2 (en) | 2009-05-28 | 2013-03-12 | Deeya Energy, Inc. | Preparation of flow cell battery electrolytes from raw materials |
US8551299B2 (en) | 2009-05-29 | 2013-10-08 | Deeya Energy, Inc. | Methods of producing hydrochloric acid from hydrogen gas and chlorine gas |
US8587255B2 (en) | 2009-05-28 | 2013-11-19 | Deeya Energy, Inc. | Control system for a flow cell battery |
US8587150B2 (en) | 2008-02-28 | 2013-11-19 | Deeya Energy, Inc. | Method and modular system for charging a battery |
US8723489B2 (en) | 2009-05-28 | 2014-05-13 | Deeya Energy, Inc. | Bi-directional buck-boost circuit |
US8883297B2 (en) | 2008-10-10 | 2014-11-11 | Imergy Power Systems, Inc. | Methods for bonding porous flexible membranes using solvent |
US8951665B2 (en) | 2010-03-10 | 2015-02-10 | Imergy Power Systems, Inc. | Methods for the preparation of electrolytes for chromium-iron redox flow batteries |
JP2016522977A (en) * | 2013-06-13 | 2016-08-04 | ユナイテッド テクノロジーズ コーポレイションUnited Technologies Corporation | Flow battery with manifold channel with change in cross section |
-
1983
- 1983-08-26 JP JP58155393A patent/JPS6047373A/en active Pending
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6340268A (en) * | 1986-08-02 | 1988-02-20 | Toho Rayon Co Ltd | Bipolar palte for cell |
JPH01239771A (en) * | 1988-03-17 | 1989-09-25 | Toray Ind Inc | Cell structure |
US6519408B2 (en) | 1996-07-25 | 2003-02-11 | Matsushita Electric Industrial Co., Ltd. | Playback control apparatus for controlling a playback unit and a receiver unit |
US7855005B2 (en) | 2007-02-12 | 2010-12-21 | Deeya Energy, Inc. | Apparatus and methods of determination of state of charge in a redox flow battery |
US8587150B2 (en) | 2008-02-28 | 2013-11-19 | Deeya Energy, Inc. | Method and modular system for charging a battery |
US7927731B2 (en) | 2008-07-01 | 2011-04-19 | Deeya Energy, Inc. | Redox flow cell |
US8231993B2 (en) | 2008-10-10 | 2012-07-31 | Deeya Energy, Inc. | Flexible multi-walled tubing assembly |
US8230736B2 (en) | 2008-10-10 | 2012-07-31 | Deeya Energy, Inc. | Level sensor for conductive liquids |
US8236463B2 (en) | 2008-10-10 | 2012-08-07 | Deeya Energy, Inc. | Magnetic current collector |
US8264202B2 (en) | 2008-10-10 | 2012-09-11 | Deeya Energy, Inc. | Method and apparatus for determining state of charge of a battery using an open-circuit voltage |
US8883297B2 (en) | 2008-10-10 | 2014-11-11 | Imergy Power Systems, Inc. | Methods for bonding porous flexible membranes using solvent |
US7919204B2 (en) | 2008-10-10 | 2011-04-05 | Deeya Energy, Inc. | Thermal control of a flow cell battery |
US8587255B2 (en) | 2009-05-28 | 2013-11-19 | Deeya Energy, Inc. | Control system for a flow cell battery |
US8394529B2 (en) | 2009-05-28 | 2013-03-12 | Deeya Energy, Inc. | Preparation of flow cell battery electrolytes from raw materials |
US8349477B2 (en) | 2009-05-28 | 2013-01-08 | Deeya Energy, Inc. | Optical leak detection sensor |
US8723489B2 (en) | 2009-05-28 | 2014-05-13 | Deeya Energy, Inc. | Bi-directional buck-boost circuit |
US8338008B2 (en) | 2009-05-28 | 2012-12-25 | Deeya Energy, Inc. | Electrolyte compositions |
US9035617B2 (en) | 2009-05-28 | 2015-05-19 | Imergy Power Systems, Inc. | Control system for a flow cell battery |
US9479056B2 (en) | 2009-05-28 | 2016-10-25 | Imergy Power Systems, Inc. | Buck-boost circuit with protection feature |
US8551299B2 (en) | 2009-05-29 | 2013-10-08 | Deeya Energy, Inc. | Methods of producing hydrochloric acid from hydrogen gas and chlorine gas |
US8951665B2 (en) | 2010-03-10 | 2015-02-10 | Imergy Power Systems, Inc. | Methods for the preparation of electrolytes for chromium-iron redox flow batteries |
JP2016522977A (en) * | 2013-06-13 | 2016-08-04 | ユナイテッド テクノロジーズ コーポレイションUnited Technologies Corporation | Flow battery with manifold channel with change in cross section |
US10115983B2 (en) | 2013-06-13 | 2018-10-30 | United Technologies Corporation | Flow battery with manifold passage that varies in cross-section |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6047373A (en) | Redox battery | |
EP0147465B1 (en) | Flat battery | |
FI108685B (en) | Electrochemical apparatus for emitting electrical current using air electrode | |
JPH10513600A (en) | Single cell assembly forming diaphragm electrode unit and method of using same | |
CN101651220B (en) | High-tightness flow battery | |
TWI505529B (en) | Air battery | |
JP5824522B2 (en) | Electrolyte membrane / electrode structure with resin frame for fuel cells | |
CN104064785A (en) | Fuel Cell Resin Frame Equipped Membrane Electrode Assembly | |
CN110301061B (en) | Nickel-hydrogen battery | |
JP2006210060A (en) | Fuel cell | |
JPH11233133A (en) | Battery in which laminated sheet is used for sheath case | |
AU2016342919B2 (en) | Redox flow battery electrode, and redox flow battery | |
KR20180057677A (en) | Bipolar plate with polymer coating | |
JP3387152B2 (en) | Electrode for alkaline storage battery and alkaline storage battery using the same | |
JP2000058100A (en) | Electrode layered structure | |
JP4776886B2 (en) | Fuel cell stack structure | |
JPS6025163A (en) | Electrode for redox flow battery | |
CN110391438A (en) | The method of fuel cell unit and manufacture fuel cell unit | |
CN110534787A (en) | Fuel cell terminal plate | |
JP2524775B2 (en) | Method for manufacturing sealed lead battery | |
JPS58194262A (en) | Fuel cell | |
JPH0336917B2 (en) | ||
JP2524781B2 (en) | Monoblock type sealed lead battery | |
JP2822457B2 (en) | Fuel cell separator and method of manufacturing the same | |
KR20240107627A (en) | Battery |