Nothing Special   »   [go: up one dir, main page]

JPS6038628A - Temperature sensor - Google Patents

Temperature sensor

Info

Publication number
JPS6038628A
JPS6038628A JP14609183A JP14609183A JPS6038628A JP S6038628 A JPS6038628 A JP S6038628A JP 14609183 A JP14609183 A JP 14609183A JP 14609183 A JP14609183 A JP 14609183A JP S6038628 A JPS6038628 A JP S6038628A
Authority
JP
Japan
Prior art keywords
voltage
temperature
current
temperature coefficient
preheating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14609183A
Other languages
Japanese (ja)
Inventor
Isami Okuda
奥田 功美
Hirohiko Yoshioka
廣彦 吉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOSHIN PROD KK
Original Assignee
TOSHIN PROD KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOSHIN PROD KK filed Critical TOSHIN PROD KK
Priority to JP14609183A priority Critical patent/JPS6038628A/en
Publication of JPS6038628A publication Critical patent/JPS6038628A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/42Circuits effecting compensation of thermal inertia; Circuits for predicting the stationary value of a temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/01Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using semiconducting elements having PN junctions

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

PURPOSE:To achieve a higher speed and a higher accuracy of the temperature measurement with the lowering of voltage by performing preheating while emplying non-linear characteristic with a P-N junction. CONSTITUTION:A sensor tip 11 directly contacting body heat comprises a circuit made up of transistors Tr1-Tr3 and resistances R1-R3 to obtain a reference voltage Vret stably and a diode D1 as non-linear preheating element. An A/D converting section 16 applies the output of an operational amplifier 14 to an arithmetic processing section 17 and based on the results of the processing, a display section 18 indicates the temperature of body heat. In this case, the preheating is done utilizing non-linear current voltage characteristic based on the P-N reverse characteristic of the D1.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明鉱電子式体温計などに用いられる温度センサに関
する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a temperature sensor used in an electronic thermometer or the like.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

一般に電子的に体温などをはかるものにあっては、セン
サにバイアス電流を流し、それによる電圧が温度にょシ
変化することを利用している。ところで側温時間の短縮
化が要求される場合の対応策として、センサ自身に大電
流を流すことによシ、センサの自己発熱効果でセンサを
体温付近まで急速に加熱して(以下この方式をブレヒー
ト方式という)測温時間を短縮するものがある(例えば
特開昭54−25882号。
Generally, devices that measure body temperature electronically utilize the fact that a bias current is passed through the sensor and the resulting voltage changes with temperature. By the way, as a countermeasure when shortening the side heating time is required, the sensor can be rapidly heated to near body temperature by passing a large current through the sensor itself, and the sensor's self-heating effect can be used to rapidly heat the sensor to near body temperature (hereinafter, this method will be used). There is a method called the Breheat method that shortens the temperature measurement time (for example, Japanese Patent Laid-Open No. 54-25882).

特開昭54−87281.号公報)。この方式pcおい
て測温時のセンサ・バイアス電流は、自己発熱を避ける
ため一般に極めて小さく、従ってセンサにおけるプレヒ
ート時と測温時の電圧降下比は、センサの電流電圧特性
が線形の場合には極めて太きく(1000倍程度)なり
、回路(1り成上実現1コ」難となる。例えば測温時バ
イアス電流が100 ttk 、発生電圧が0.5vと
すると。
Japanese Patent Publication No. 54-87281. Publication No.). In this type of PC, the sensor bias current during temperature measurement is generally extremely small to avoid self-heating, and therefore the voltage drop ratio in the sensor during preheating and temperature measurement is It becomes extremely thick (approximately 1000 times), making it difficult to realize one circuit.For example, if the bias current during temperature measurement is 100 ttk and the generated voltage is 0.5V.

抵抗は5にΩとなシ、プレヒート時バイアス電流が10
0 +nAに対しては 5にΩX 100mA−500V もの′IL圧となってしまい全く実用的でない。
The resistance is 5Ω, and the bias current during preheating is 10Ω.
For 0+nA, the IL pressure becomes 5Ω×100mA-500V, which is completely impractical.

また一般に、センサの端子電圧は感温成分と非感温成分
のillで表わされ、高感度の感温電圧を1(するため
には、非感温成分を安定な参照電圧(県等’El(Jf
)によって差し引く必要がある。更しこ最終的な感温電
圧を得るには、感温成分を増幅器により増幅する必要が
ある。この場合、参照電圧や増幅器のオフセット電圧の
ドリフト(周囲温度による変化)等が感温電圧の精度を
減少させる要因となる。
In general, the terminal voltage of a sensor is expressed by a temperature-sensitive component and a non-temperature-sensitive component. El(Jf
) must be subtracted by In order to obtain the final temperature-sensitive voltage, it is necessary to amplify the temperature-sensitive component with an amplifier. In this case, drifts (changes due to ambient temperature) of the reference voltage and the offset voltage of the amplifier become factors that reduce the accuracy of the temperature-sensitive voltage.

〔発明の目的〕[Purpose of the invention]

本発明は上記実情に鑑みてなされたもので、測温のと6
速、高精度化が可能となシ、また高倹な部品を用いるこ
となくコストの低減化が可能となる温度センサを提供し
ようとするものである。
The present invention was made in view of the above-mentioned circumstances.
The present invention aims to provide a temperature sensor that can be increased in speed and accuracy, and can be reduced in cost without using expensive parts.

〔発明の概要〕[Summary of the invention]

本発明においては、上記プレヒート方式を可能ならしめ
るために測温時バイアス電流に対しても充分な電圧を発
生し、かつプレヒート時の大きなバイアス電流に対して
も電圧が過大とならないよう、電流電圧特性に非線形性
をもたせるものである。この非線形性の一例としては、
回路に流入する全電流の100倍の変化に対して該回路
の全電圧の変化が20倍以下でよいが、この数値はなる
べく小さい方がよりよい。第1図はプレヒート時の電流
電圧特性の一例を示し、tが上記プレヒート時の大きな
電流に対して電圧が過大となる場合(線形゛□□□流゛
亀圧特性の場合)の特性線、mは望ましい上記非線形の
電流1E圧特性線を示す。
In the present invention, in order to make the above preheating method possible, a sufficient voltage is generated for the bias current during temperature measurement, and the current voltage is This gives nonlinearity to the characteristics. An example of this nonlinearity is
The change in the total voltage of the circuit may be 20 times or less for a 100 times change in the total current flowing into the circuit, but it is better if this value is as small as possible. Fig. 1 shows an example of the current-voltage characteristics during preheating, and the characteristic line when t is an excessive voltage with respect to the large current during preheating (in the case of linear flow pressure characteristics), m indicates the desired nonlinear current 1E voltage characteristic line.

また本発明においては、上記ドリフトによる感温電圧の
精度を減少させる要因を取り除いて高精度な感温電圧を
得る方法として、センザテッグの2つの端子における電
圧を同一増幅器で極めて短時間のうちに時分割的に増幅
出力し、それぞれの出力値を例えばデジタル変換してデ
ジタルデータとして保持し、差分電圧をとって温度情報
とする。即ち参照電圧やオフセット電圧等は、上記差分
出力では零となり、センサの2端子間電圧のみによる温
度情報を得ることができる。この方式を実現するために
は、センナは2つの電圧を出力し、その電圧差が温度変
化に対して(できれば直線的に)変化するものであれば
よい。
In addition, in the present invention, as a method of obtaining a highly accurate temperature-sensing voltage by removing the factors that reduce the accuracy of the temperature-sensing voltage due to the above-mentioned drift, the voltage at the two terminals of the SenzaTeg can be converted into a voltage in a very short time using the same amplifier. The output is amplified and outputted in a divided manner, each output value is, for example, digitally converted and held as digital data, and the differential voltage is taken and used as temperature information. That is, the reference voltage, offset voltage, etc. become zero in the differential output, and temperature information can be obtained only from the voltage between two terminals of the sensor. In order to implement this method, the senna only needs to output two voltages, and the voltage difference between the two voltages changes (preferably linearly) with temperature changes.

〔発明の実施例〕[Embodiments of the invention]

以下図面を参照して本発明の詳細な説明する。第2図に
おいて11は直接体温が当たる七ンーリーチッ7′(集
積回路)で、この回路はトランジスタTr、 〜Tr、
 、抵抗RI−Rsで構成される参照電圧Vrefを安
定に得る回路と、非線形の予tシ素子としてのダイオー
ドD1からなる。121〜124は外部導出端子である
。増幅部13は第4アング14、電流踪15!〜153
、スイッチS1抵抗R4〜R7からなる。A/D (ア
ナログ/デジクル)変換部16はオペアンプ14の出力
V。utをA/D変換し、演算処理部(マイコン)17
は後述の演算、データの記憶等を行ない、表示部18は
体温等の温度表示を行なう。
The present invention will be described in detail below with reference to the drawings. In Fig. 2, 11 is a seven-chip chip 7' (integrated circuit) that is directly exposed to body temperature, and this circuit has transistors Tr, ~Tr,
, a circuit that stably obtains the reference voltage Vref, which is composed of resistors RI-Rs, and a diode D1 as a nonlinear predetermined element. 121 to 124 are external lead-out terminals. The amplifying section 13 has a fourth angle 14 and an electric current 15! ~153
, switch S1 and resistors R4 to R7. The A/D (analog/digital) converter 16 receives the output V of the operational amplifier 14. ut is A/D converted and arithmetic processing unit (microcomputer) 17
performs calculations, data storage, etc., which will be described later, and the display section 18 displays temperatures such as body temperature.

第2図の回路において、各部の1E圧、電流を図示のよ
うに定めれば次式が成シ立つ。
In the circuit shown in FIG. 2, if the 1E voltage and current of each part are determined as shown, the following equation holds true.

ここでqは電子電荷、kはボルツマン定数、Tt2 でおるから、 3 R3I2=−ΔvBE11.(3) 2 であり、 3 vref ”” ”nr:5 +甫ΔvEl ”’(4
)となる。この(4)式の右辺第1項は、周知のように
−2,2mV/℃なる負の温度係数をもつが、(4)式
の右辺第2項は、(12式から分かるように止の温度係
数をもち、その大きさはR3/R2の(ifjによって
調整できる。またvrfl、−1,205〔■〕となる
ようにR3/R2の値を選んだとき、”refの温度係
数が(4)式の右辺第1項と第2項の正負相殺効果によ
り、略零となることが知られている。
Here, q is the electronic charge, k is Boltzmann's constant, and Tt2, so 3 R3I2=-ΔvBE11. (3) 2, and 3 vref ”” ”nr:5 + 甫ΔvEl ”'(4
). As is well known, the first term on the right-hand side of equation (4) has a negative temperature coefficient of -2.2 mV/℃, but the second term on the right-hand side of equation (4) has a stop temperature coefficient (as seen from equation 12). It has a temperature coefficient of It is known that the value becomes approximately zero due to the positive and negative cancellation effects of the first and second terms on the right side of equation (4).

即ち(4)式より、第2図のセンサチッf1ノの回路か
ら、温度依存性のない参照電圧■ref が得られる。
That is, from equation (4), a reference voltage ref without temperature dependence can be obtained from the circuit of the sensor chip f1 in FIG.

一方、第1図においてオ被アンプ14の入力端子条件か
ら、 8 几1116 =V8 、’、Is = −−(5)6 であるから、 0 である。よってVs(感温成分十非感温成分)、R,I
、出力V。utの関係は、 == GV8−rt、t、 ”’α0 ここに、 7 G−1十−・・・(1]) 6 となる。なお電圧VBについては、スイッチSを固定接
点A側に倒した時、 vs ”” vIIE5 ”・0−2 スイツチSを固定接点B側に倒した時、となっている。
On the other hand, from the input terminal conditions of the amplifier 14 in FIG. Therefore, Vs (temperature-sensitive component + non-temperature-sensitive component), R, I
, output V. The relationship between ut is == GV8-rt, t, ``'α0 where 7 G-10-...(1]) 6.For voltage VB, switch S is set to the fixed contact A side. When it is turned down, vs. ``”vIIE5''・0-2 When the switch S is turned to the fixed contact B side.

次に01式に、オペアンプ14の入力オフセット電圧V
。、fの影響を導入すると、VOu、 = G (V8
+Vof、 )−R,I、 ・Q4となる。オペアンプ
14の利得Gはαυ式が示すように、抵抗比で定まるの
で安定であるが、vOffやR7I、のドリフトが出力
V。utの誤差要因になると考えられる。
Next, in equation 01, input offset voltage V of operational amplifier 14
. , f is introduced, VOu, = G (V8
+Vof, )-R,I, ・Q4. As shown in the αυ equation, the gain G of the operational amplifier 14 is stable because it is determined by the resistance ratio, but the drift of vOff and R7I causes the output V. This is considered to be a cause of error in ut.

第2図における温度電圧を得る手順は以下のようである
。いま成る温度において、スイッチS′!!i:A側に
倒したときの出力電圧V。u t(A)は次式%式% 3 次にスイッチSをB側に倒したときの出力vout(B
ンは となるから、vout(^” vout(B)をそれぞ
れA/Ill変It、+!HH16で変換して演算処理
部12で保持し、゛屯1」ミ差分ΔVoutをめると、 Δvout ”” out(A) −vout(B)と
なり、R,I 及びV。ffの影響が除去でき、更に感
温成分と非感温成分の和でなるvBI13の非感温成分
(約0,6V)をαη式のかっこ内の第2項で差し引く
ことにより、感温成分(−2,2mV/C)を効率的に
検出することができる。即ち温度に対して高感度でかつ
安定な温度情報をデジタル情報Δvoutという形で得
ることができるわけである。
The procedure for obtaining the temperature voltage in FIG. 2 is as follows. At the current temperature, switch S'! ! i: Output voltage V when turned to the A side. u t (A) is the following formula % formula % 3 Next, the output vout (B
Therefore, vout(^" vout(B) is converted by A/Ill conversion It, +!HH16 respectively and held in the arithmetic processing unit 12, and the difference ΔVout by ゛tun1" is calculated, Δvout "" out(A) -vout(B), and the effects of R, I and V.ff can be removed, and the non-temperature-sensitive component of vBI13 (approximately 0.6V ) by the second term in the parentheses of the αη equation, the temperature-sensitive component (-2.2mV/C) can be efficiently detected.In other words, temperature information that is highly sensitive and stable with respect to temperature can be obtained. can be obtained in the form of digital information Δvout.

更に(1ン〕式において、■□、は温度に対して直線的
に変化し”refは温度に対してほぼ不変とすることが
できるので、Δvoutは温度に対する一次関数とみな
すことができ、その勾配と定数項をc、lt、、R,等
によシ、任意に調整することができる。ここで演算処理
部17はΔvout対温度の一次1)′A数から請求め
る温度を得てこれを表示部18で表示するものである。
Furthermore, in equation (1), ■□ changes linearly with temperature, and ref can be made almost constant with temperature, so Δvout can be regarded as a linear function of temperature, and its The gradient and constant terms can be arbitrarily adjusted by c, lt, , R, etc. Here, the arithmetic processing unit 17 obtains the temperature that can be claimed from the linear 1)'A number of Δvout vs. is displayed on the display section 18.

一方、ブレヒートによる高速化を実現するために、前述
のように電流電圧特性に非線形性をもたせる必要がある
が、ダイオードD1により非線形特性が得られる。即ち
測温時のバイアス電流IBに比してプレヒート電流IP
は100〜1000倍の値であり、ダイオードD1がな
い場合にはvrefは著しく上昇し、実用的な電圧値を
はるかに越えてしまうが、DXの存在によりvrefは
Dlの逆耐圧以上には上昇しない。このダイメートDX
としては、アイソレーション用のp pJ Jp 合、
またはエミッタ・ペース接合など逆耐圧の低いPN接合
を用いる。これによってプレヒート電流IPの流入によ
り”refが上昇し、D、の逆耐圧に達するとブレーク
ダウン現象で電流IPはほとんどがり、部分を流れ、セ
ンサテッゾ全体を加熱する。この加熱効果を効率よくす
るため、ダイオードD、はチッゾ全体に広く分布するよ
うな41り造とするのが望ましい。
On the other hand, in order to achieve higher speeds due to breathing, it is necessary to provide nonlinearity to the current-voltage characteristics as described above, and the diode D1 provides nonlinear characteristics. In other words, the preheating current IP is lower than the bias current IB during temperature measurement.
is 100 to 1000 times the value, and if there is no diode D1, vref will rise significantly, far exceeding the practical voltage value, but with the presence of DX, vref will rise above the reverse breakdown voltage of Dl. do not. This Daimate DX
As for p pJ JP for isolation,
Alternatively, a PN junction with low reverse breakdown voltage, such as an emitter paste junction, is used. As a result, ref rises due to the inflow of preheating current IP, and when it reaches the reverse withstand voltage of D, most of the current IP rises due to the breakdown phenomenon, flows through the part, and heats the entire sensor Tezzo.In order to make this heating effect efficient, , diodes D, are desirably constructed in a 41 structure so as to be widely distributed over the entire chip.

第2図に対応する第3図に示す回路によシ、センザ部の
電流−電圧特性、温度−差分電圧特性を測定した結果を
それぞれ第4図、第5図に示す。ブレヒートのだめの非
線形性が得られていることが第4図から分かり、温度測
定のだめの直線性のよい感温特性が得られていることが
第5図から分かる。この第5図の縦軸の電圧は、0ン)
式のかっこ内つまりV□3の感温成分に対応している。
The current-voltage characteristics and temperature-differential voltage characteristics of the sensor section were measured using the circuit shown in FIG. 3 corresponding to FIG. 2, and the results are shown in FIGS. 4 and 5, respectively. It can be seen from FIG. 4 that the nonlinearity of the bleed heat reservoir has been obtained, and from FIG. 5 it can be seen that the temperature sensing characteristic with good linearity of the temperature measurement reservoir has been obtained. The voltage on the vertical axis of this Figure 5 is 0n)
It corresponds to the temperature-sensitive component in the parentheses of the equation, that is, V□3.

1だ第5図の特性線のvref / 21d、 R4=
R,=33にΩから得られたものである。
1 Vref of the characteristic line in Figure 5 / 21d, R4 =
R,=33 was obtained from Ω.

第6図は本発明の一実施例である。即ち前記温度係数が
比較的大きい電圧V、を得るのに、第2図ではトランジ
スタTr5ty)ベース、エミッタ間電圧から得たが、
第6図では温度センサ回路の温度検出電圧回路部■から
、前記電圧v1に相当する電圧vtem を得る方法を
採用した。
FIG. 6 shows an embodiment of the present invention. In other words, in order to obtain the voltage V having a relatively large temperature coefficient, it is obtained from the base-emitter voltage of the transistor Tr5ty in FIG.
In FIG. 6, a method is adopted in which a voltage vtem corresponding to the voltage v1 is obtained from the temperature detection voltage circuit section (2) of the temperature sensor circuit.

この回路は、トランジスタTrjzとTr13の2つの
トランジスタのベース、エミ、り間電圧を利用すること
により、第2図の方法に対し2倍の温度係数を有する電
圧が得られるようにしている。また第7図に示すように
、トランジスタTri4と抵抗R15により、バイアス
電流工t。mに対し、とのItemがある値(この場合
約200μ八以上)になると電圧Vtemが安定VCな
るようにしたものである。即ちバイアス電流Item 
が増加すると、抵抗R15の両端電圧が上列してトラン
ジスタTr14のエミッタ電流を増加させ、Itemの
増加分をトランジスタQ7が吸収してし1うので、電圧
Vtem の増大が抑制されるわけである。
This circuit makes it possible to obtain a voltage having twice the temperature coefficient as compared to the method shown in FIG. 2 by utilizing the base-to-emitter voltage of two transistors, transistors Trjz and Tr13. Further, as shown in FIG. 7, the bias current t is generated by the transistor Tri4 and the resistor R15. The voltage Vtem is made to become stable VC when the Item of and reaches a certain value (approximately 200μ8 or more in this case) with respect to m. That is, the bias current Item
When Vtem increases, the voltage across the resistor R15 rises, increasing the emitter current of the transistor Tr14, and the transistor Q7 absorbs the increase in Item, suppressing the increase in the voltage Vtem. .

また温度係数が比較的小さい出力電圧■refを得るの
に、第6図の基準電圧回路部工に示すように抵抗R11
とトランジスタTrHを追加する。
In addition, in order to obtain the output voltage ref with a relatively small temperature coefficient, the resistor R11 is
and transistor TrH are added.

その効果は上記vtemについて述べたと同様、上記電
圧Vrefを得るためのバイアス曲流■ref依存性を
抑制するためである。つtbこのIrefが増加すると
、抵抗R11の両端電圧が上昇してトランジスタTr1
1のエミッタ電流を増加させ、Irefの増加分をトラ
ンジスタTr11が吸収してしまうものである。
The effect is similar to that described above regarding vtem, and is to suppress the dependence of the bias curve (2) on ref for obtaining the voltage Vref. When this Iref increases, the voltage across the resistor R11 increases and the transistor Tr1
This increases the emitter current of Iref, and the transistor Tr11 absorbs the increase in Iref.

なお本発明は上記実施例のみに眠られることなく、本発
明の要旨を逸脱し斤い範凹で種々の応用が可能である。
Note that the present invention is not limited to the above-mentioned embodiments, and can be applied in various ways without departing from the gist of the present invention.

例えばダイオードI)I は抵抗R,,R3等に並列接
続してもよい。また実施例ではvref の温度係数を
非常に小さく選んだが、vB捷たはvBm、の温度係数
とは逆符号5 となるようvc選んでもよい。また実施例では、ダイ4
−−ドDIのPN逆方向特性に基づく非佇形な「Il、
流電用特性を利用してブレヒートしたが、lit −−
iたは複数(例えば直列)のPN接合の順方向i、i1
.Ijtf、軍圧特性に」?ける非圧特性を用いても回
(、・kの効果をイ゛Iることかできる。
For example, the diode I) may be connected in parallel to the resistors R, , R3, etc. Further, in the embodiment, the temperature coefficient of vref is selected to be very small, but vc may be selected so that the temperature coefficient of vB or vBm has the opposite sign of 5. In addition, in the embodiment, die 4
--An unconventional "Il," based on the PN reverse characteristic of the DI
I used the current characteristics to heat up, but lit ---
i or multiple (e.g., in series) PN junctions in the forward direction i, i1
.. Ijtf, military pressure characteristics”? It is also possible to simulate the effect of rotation (, ・k) using the non-pressure characteristics of

〔発明の効果〕〔Effect of the invention〕

以上説明した如く本発明によれば、PN接合による非線
形特性を用いてブレヒートするようVこり、だので、電
圧が低くできて充分な実用性が得られると共に測温の高
速化がi」能となる。また参照電圧や増幅器のオフセッ
L%圧のドリフトを除去できるため、測温の高精度化が
可能となり、また高価な部品を用いる必要がないため、
コストの低減化が可能となり、またバイアス依存性抑制
効果があるなどの利点を有しjc温度センサが提供でき
るものである。
As explained above, according to the present invention, the non-linear characteristics of the PN junction are used to prevent V from being heated, so the voltage can be lowered, sufficient practicality can be obtained, and temperature measurement can be made faster. Become. In addition, since it is possible to eliminate drift in the reference voltage and amplifier offset L% pressure, it is possible to improve the accuracy of temperature measurement, and there is no need to use expensive parts.
The jc temperature sensor has advantages such as cost reduction and bias dependence suppressing effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はセンサ電流1桟圧特性図、第2図は温度センサ
回路図、第3図は同回路の特性図を得るために用いた実
験回路図、第4図は同回路で得られた電圧′rM、流特
件図、第5図は同回路で得られた温度特性図、第6図は
本発明の一実か11例の回路図、第7図は同回路による
■1of、■te□1のバイアス電流依存性を示す特性
図でちる。 11・・・センサチップ、121〜124 ・端子、1
3・・・増幅部、14・・・オペアンプ、151〜15
3・・・電流源、16・・・A/D変換器、17・・1
″Pj’!A−処理部、18・・・表示部、D、 、、
、ダイオード、S・・・スイッチ、TrN + ’rr
j4・、、 トランジスタ、RN 、R15”’抵抗。 出願人代理人 弁理士 鈴 江 武 彦第3図 第4図 電=LI (mQ 11、.11 イ、巨s、、q、14 11’er許庁長1若杉和夫殿 111件の表示 特願昭58−146091号 2 発明の名相・ 温 度 セ ン サ 3、 1市市なする′古 事件との関係 特許出願人 東伯グロダクツ株式会社 /1代理人 (i、袖if−の幻憤 明 細 書 (1)明細書第12頁第7行目に1 トランジスタQ7
 Jとあるを「トランジスタ”’r14Jと言」正する
。 (21同第13頁第6行目ないし第1111目に「また
実施例では・・・・・・得ることができる。」とあるを
削除する。
Figure 1 is the sensor current 1-piece pressure characteristic diagram, Figure 2 is the temperature sensor circuit diagram, Figure 3 is the experimental circuit diagram used to obtain the characteristic diagram of the same circuit, and Figure 4 is the diagram obtained with the same circuit. Voltage 'rM, current characteristic diagram, Figure 5 is a temperature characteristic diagram obtained with the same circuit, Figure 6 is a circuit diagram of 11 examples of the present invention, Figure 7 is ■1of, ■ by the same circuit. This is a characteristic diagram showing the bias current dependence of te□1. 11...Sensor chip, 121-124 ・Terminal, 1
3... Amplification section, 14... Operational amplifier, 151-15
3... Current source, 16... A/D converter, 17...1
``Pj'!A-processing section, 18...display section, D, .
, diode, S... switch, TrN + 'rr
j4・、、Transistor, RN, R15"'Resistance. Applicant's agent Patent attorney Takehiko Suzue Director-General of the Agency 1 Mr. Kazuo Wakasugi 111 indications Patent Application No. 146091/1983 2 Name of the invention/Temperature sensor 3, 1 Relationship with the old incident Patent applicant Tohaku Grodacts Co., Ltd./ 1 agent (i, sleeve if-) Specification (1) Page 12, line 7 of the specification 1 Transistor Q7
Correct the word "J" by saying "transistor"'r14J. (Delete the statement ``Also, in the embodiments...'' from line 6 to line 1111 of page 13 of 21.

Claims (1)

【特許請求の範囲】[Claims] 温度のセンサチップの回路内に設けられたPN接合の電
流電圧特性を用いて電流による発熱効果により前記セン
サチップを予熱する第1の手段と、前記センサチップか
ら温度係数が比較的大きい電圧と、温度係数が比較的小
さいかまたは逆符号の温度係数をもつ出力電圧との2電
圧を、同一増幅器の同一入力端子から周囲温度時定数に
比し極めて短時間の間にそれぞれ入力して増幅保持し両
電圧の差分をめることにより温度情報を得る第2の手段
とを具備し、前記温度係数が比較的大きい電圧を得る第
3の手段、及び前記温度係数が比較的小さいかまたは逆
杓号の温度係数をもつ出力電圧を得る第4の手段は、こ
れら第3及び第4の手段へのバイアス電流の依存性を抑
止する効果を具備するものであることを特徴とする温度
センサ。
a first means for preheating the sensor chip by the heating effect of the current using the current-voltage characteristics of a PN junction provided in the circuit of the temperature sensor chip; and a voltage from the sensor chip with a relatively large temperature coefficient; Two voltages, the output voltage and the output voltage having a relatively small temperature coefficient or a temperature coefficient of opposite sign, are input from the same input terminal of the same amplifier in a very short time compared to the ambient temperature time constant and are amplified and held. a second means for obtaining temperature information by calculating the difference between the two voltages; a third means for obtaining a voltage having a relatively large temperature coefficient; and a third means for obtaining a voltage having a relatively large temperature coefficient; A temperature sensor characterized in that the fourth means for obtaining an output voltage having a temperature coefficient of has the effect of suppressing the dependence of the bias current on the third and fourth means.
JP14609183A 1983-08-10 1983-08-10 Temperature sensor Pending JPS6038628A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14609183A JPS6038628A (en) 1983-08-10 1983-08-10 Temperature sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14609183A JPS6038628A (en) 1983-08-10 1983-08-10 Temperature sensor

Publications (1)

Publication Number Publication Date
JPS6038628A true JPS6038628A (en) 1985-02-28

Family

ID=15399926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14609183A Pending JPS6038628A (en) 1983-08-10 1983-08-10 Temperature sensor

Country Status (1)

Country Link
JP (1) JPS6038628A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011237410A (en) * 2010-05-03 2011-11-24 Sharp Corp Array element for temperature sensor array circuit, temperature sensor array circuit using array element, and am-ewod device including temperature sensor array circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011237410A (en) * 2010-05-03 2011-11-24 Sharp Corp Array element for temperature sensor array circuit, temperature sensor array circuit using array element, and am-ewod device including temperature sensor array circuit

Similar Documents

Publication Publication Date Title
US3754442A (en) Temperature measuring system producing linear output signal from non-linear sensing resistance
JPS6038619A (en) Sensing circuit for quantity of air
GB1590136A (en) Two terminal temperature transducer
WO1995012115A1 (en) Two terminal temperature transducer having circuitry which controls the entire operating current to be linearly proportional with temperature
US7170334B2 (en) Switched current temperature sensing circuit and method to correct errors due to beta and series resistance
US3913403A (en) Temperature measurement with three-lead resistance thermometers by dual constant current method
US3420104A (en) Temperature measuring apparatus using semiconductor junction
US3430077A (en) Semiconductor temperature transducer
US4123938A (en) Device for measuring thermal parameters
US3805616A (en) Temperature measuring apparatus
JP3222367B2 (en) Temperature measurement circuit
JPS6038628A (en) Temperature sensor
EP2984465B1 (en) Circuit for canceling errors caused by parasitic and device-intrinsic resistances in temperature dependent integrated circuits
US3267376A (en) Electric measurement apparatus using a pair of oppositely poled thermoelectric junctions in parallel and diode stabilizing means
US5096303A (en) Electronic circuit arrangement for temperature measurement based on a platinum resistor as a temperature sensing resistor
US4441071A (en) Temperature compensation circuit for thermocouples
CN111089609A (en) Sensor circuit with offset compensation
US3478588A (en) Cardiac output meter
US11940402B2 (en) Circuit arrangement and sensor arrangements including the same
SU503145A1 (en) Temperature measuring device
JPH06109677A (en) Humidity detection circuit
JPS58135430A (en) Sensor of temperature
JPS5826363Y2 (en) Thermocouple room temperature compensation circuit
Maiti A new hardware approach for the linearization of remote thermistor temperature-voltage characteristic
JPS5858428A (en) Three-wire temperature sensor