Nothing Special   »   [go: up one dir, main page]

JPS603844Y2 - reinforced concrete structure - Google Patents

reinforced concrete structure

Info

Publication number
JPS603844Y2
JPS603844Y2 JP1393780U JP1393780U JPS603844Y2 JP S603844 Y2 JPS603844 Y2 JP S603844Y2 JP 1393780 U JP1393780 U JP 1393780U JP 1393780 U JP1393780 U JP 1393780U JP S603844 Y2 JPS603844 Y2 JP S603844Y2
Authority
JP
Japan
Prior art keywords
reinforced concrete
beams
walls
steel
concrete structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1393780U
Other languages
Japanese (ja)
Other versions
JPS56116502U (en
Inventor
庄之助 力武
Original Assignee
鹿島建設株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 鹿島建設株式会社 filed Critical 鹿島建設株式会社
Priority to JP1393780U priority Critical patent/JPS603844Y2/en
Publication of JPS56116502U publication Critical patent/JPS56116502U/ja
Application granted granted Critical
Publication of JPS603844Y2 publication Critical patent/JPS603844Y2/en
Expired legal-status Critical Current

Links

Landscapes

  • Load-Bearing And Curtain Walls (AREA)
  • Reinforcement Elements For Buildings (AREA)

Description

【考案の詳細な説明】 この考案は、耐震的に極めて優れている補強コンクリー
ト構造に関する。
[Detailed description of the invention] This invention relates to a reinforced concrete structure that is extremely earthquake resistant.

耐震壁が重要な耐震要素であることは過去の多くの地震
によって証明されている。
Many past earthquakes have proven that shear walls are an important earthquake-resistant element.

しかし、耐震壁は平面的かつ立体的に桁行方向並びに梁
間方向につり合いよく配置すると共に、耐震壁周辺を十
分に拘束することによってはじめて強度とねばりをもっ
た耐震要素といえる。
However, a seismic wall can only be considered an earthquake-resistant element with strength and resilience if it is arranged planarly and three-dimensionally in a well-balanced manner in the row and beam directions, and the area around the shear wall is sufficiently restrained.

したがって、耐震壁が平面的かつ立体的に片側に集中し
て配置されたり、耐震壁周辺を拘束する架構の構成部材
に耐震壁を拘束し得る十分な余力とねばりがなかったり
すると建物は地震時に大きな水平力を受けたとき、耐震
壁が集中して配置された位置を支点にねじり変位や回転
変位をおこしたり、耐震壁が急激に剛性を失なったりし
て建物の破壊を招く。
Therefore, if earthquake-resistant walls are placed two-dimensionally and three-dimensionally concentrated on one side, or if the constituent members of the frame that restrain the area around the earthquake-resistant wall do not have sufficient surplus strength and tenacity to restrain the earthquake-resistant wall, the building will be damaged during an earthquake. When subjected to a large horizontal force, earthquake-resistant walls may undergo torsional or rotational displacement using the concentrated locations as fulcrums, or the earthquake-resistant walls may suddenly lose their rigidity, leading to the destruction of the building.

ところで、従来の鉄筋コンクリート構造耐震壁(以下、
耐震壁という。
By the way, conventional reinforced concrete structural shear walls (hereinafter referred to as
It's called a seismic wall.

)を有する鉄骨鉄筋コンクリート構造や鉄筋コンクリー
ト構造の建物には種々の問題点がある。
) Steel-frame reinforced concrete structures and buildings with reinforced concrete structures have various problems.

前者においては、耐震壁を上下階に連続して配置する際
に、上下耐震壁間にある梁の鉄骨が邪魔になって耐震壁
の壁主筋を上下階に連続して配筋することが不可能であ
るため上下耐震壁の一体化ができず構造的に不利である
In the former case, when placing seismic walls consecutively on the upper and lower floors, the steel frames of the beams between the upper and lower seismic walls get in the way, making it difficult to arrange the main wall reinforcement of the shear walls continuously on the upper and lower floors. However, since the upper and lower seismic walls cannot be integrated, it is structurally disadvantageous.

あえて、上下耐震壁の縦主筋を上下階に連続して配筋す
るとすれば、上下耐震壁間にある梁の鉄骨を避けるよう
に縦主筋の一部を折り曲げて配筋することも考えられる
が施工が極めて面倒である。
If we dare to arrange the vertical main reinforcement of the upper and lower shear walls continuously on the upper and lower floors, it may be possible to bend a part of the longitudinal main reinforcement to avoid the steel frame of the beam between the upper and lower shear walls. Construction is extremely troublesome.

さらに、鉄筋の加工作業、配筋作業等、鉄筋工事が極め
て複雑困難であり、多くの熟練職人を必要とする。
Furthermore, reinforcing bar work, such as reinforcing bar processing work and reinforcing bar arrangement work, is extremely complex and difficult, and requires many skilled craftsmen.

一方後者においては鉄筋はその断面形状上、形鋼に較べ
て剛性が小さく、組立て直後の柱、粱用鉄筋は自立力が
ほとんどないため、型枠の他に多くの仮設補強材や仮設
資材によって支持する必要があり仮設工事の工費が嵩む
On the other hand, in the latter case, reinforcing bars have lower rigidity than section steel due to their cross-sectional shape, and the reinforcing bars for columns and griddles have almost no self-supporting strength immediately after being assembled, so they are required to use many temporary reinforcing materials and materials in addition to formwork. It needs to be supported, which increases the cost of temporary construction.

この考案は、今まで耐震構造といわれてきた鉄骨鉄筋コ
ンクリート構造や鉄筋コンクリート構造の施工上並びに
耐震上の種々の問題点を解決するために考案されたもの
で、その目的は施工が極めて容易でかつ鉄骨鉄筋コンク
リート構造や鉄筋コンクリート構造より耐震的に遥かに
優れた補強コンクリート構造を提供することである。
This idea was devised to solve various problems in the construction and earthquake resistance of steel-framed reinforced concrete structures and reinforced concrete structures, which have been called earthquake-resistant structures until now. The purpose of the present invention is to provide a reinforced concrete structure that is far superior in earthquake resistance to reinforced concrete structures.

以下、この考案を図示する一実施例によって説明する。This invention will be explained below with reference to an illustrated embodiment.

図面上、第1図、第2図、第3図において符号1は柱、
符号2は桁行方向の粱、符号3は梁間方向の粱、符号4
は耐震壁、符号5はスラブである。
In the drawings, reference numeral 1 in Figures 1, 2, and 3 indicates a column;
Code 2 is the line in the column direction, code 3 is the line in the beam direction, code 4
is a shear wall and code 5 is a slab.

柱1は従来の鉄骨鉄筋コンクリート構造計算に従って応
力計算と断面計算がされ、コンクリート6内の所定位置
にH形鋼7、柱主筋8およびフープ筋9(または帯筋と
いう。
The stress and cross section of the column 1 are calculated according to conventional steel reinforced concrete structural calculations, and H-beams 7, column main reinforcements 8, and hoop reinforcements 9 (also referred to as tie reinforcements) are placed at predetermined positions in the concrete 6.

)をそれぞれ配置してなる鉄骨鉄筋コンクリート構造で
構成されている(第1図参照)。
) is constructed from a steel-framed reinforced concrete structure (see Figure 1).

桁行方向の粱2は柱1の構成とほぼ同じで、従来の鉄骨
鉄筋コンクリート構造計算に従って、応力計算と断面計
算がされ、コンクリート6内の所定位置にH形鋼7、梁
主筋10およびスターラップ筋11 (またはスターラ
ップ筋という。
The structure of the column 2 in the girder row direction is almost the same as that of the column 1, and stress and cross-section calculations are performed according to conventional steel reinforced concrete structural calculations, and H-beams 7, beam main reinforcements 10, and stirrup reinforcements are placed at predetermined positions in the concrete 6. 11 (Also called stirrup muscles.

)をそれぞれ配置してなる鉄骨鉄筋コンクリート構造で
構成されている(第2図参照)。
) is constructed from a steel-framed reinforced concrete structure (see Figure 2).

梁間方向の粱3、すなわち上下耐震壁4,4間に耐震壁
4,4と一体に配置される粱はコンクリート6内の従来
の鉄筋コンクリート構造計算に従って配筋される主筋と
せん断補強筋(あばら筋またはスターラップ)の配筋位
置に、従来の鉄筋コンクリート構造計算に従って応力計
算と断面計算がされ、設計荷重に耐え得る複数本のアン
グル材12.12とラチス構成部材13,13がそれぞ
れ配置されて構成されている(第1図、第2図参照)。
The beams 3 in the direction between the beams, that is, the beams placed between the upper and lower shear walls 4, 4 integrally with the shear walls 4, 4, are the main bars and shear reinforcing bars (stirrups) arranged in the concrete 6 according to conventional reinforced concrete structural calculations. Stress calculations and cross-sectional calculations are performed in accordance with conventional reinforced concrete structural calculations, and a plurality of angle members 12, 12 and lattice components 13, 13 that can withstand the design load are placed at the reinforcing positions of (or stirrups), respectively. (See Figures 1 and 2).

ラチス構成部材13には建物の規模に応じて帯鋼または
鉄筋が使用され、両端部を隣接するアングル材12.1
2にボルト締めまたは溶着して取付けられている。
Steel strips or reinforcing bars are used for the lattice component 13 depending on the scale of the building, and both ends are connected to adjacent angle members 12.1.
It is attached by bolting or welding to 2.

なお、実施例において、ラチス構成部材13はアングル
材12,12とでトラスを構成するようにやや傾斜して
取付けられているが、アングル材12に対して直角に取
り付けられてもよい。
In the embodiment, the lattice component 13 is attached at a slight angle so as to form a truss with the angle members 12, but it may be attached at right angles to the angle members 12.

耐震壁4は従来の鉄筋コンクリート構造計算に従って応
力計算と断面計算がされ、コンクリート6内に縦主筋1
4、横主筋15がそれぞれ縦横に複数本配筋されて構成
されている。
For the shear wall 4, stress and cross-section calculations were performed according to conventional reinforced concrete structural calculations, and longitudinal main reinforcement 1 was installed in the concrete 6.
4. A plurality of horizontal main reinforcements 15 are arranged vertically and horizontally.

複数本の縦主筋14は梁間方向の粱3内に配置された複
数本のアングル材12とラチス構成部材13との隙間を
介して上下耐震壁4,4間に跨って配置されている。
The plurality of longitudinal main reinforcements 14 are arranged across the upper and lower seismic walls 4, 4 through gaps between the plurality of angle members 12 arranged in the girder 3 in the inter-beam direction and the lattice component 13.

スラブ5は従来の鉄筋コンクリート構造計算に従って応
力計算と断面計算がされ、コンクリート6内の所定位置
に主筋16が縦横にそれぞれ複数本配筋されて構成され
ている。
Slab 5 is subjected to stress calculation and cross-sectional calculation according to conventional reinforced concrete structure calculations, and is configured with a plurality of main reinforcements 16 arranged vertically and horizontally at predetermined positions within concrete 6.

梁間方向の粱3内に配置されたアングル材12.12間
の継手は、アングル材12.12端部を所定長さ重ね合
せ、このアングル材12.12の重ね合せ部分を複数本
のボルト17で接合する高力ボルト接合とする。
The joint between the angle pieces 12.12 arranged in the girder 3 in the direction between the beams is made by overlapping the ends of the angle pieces 12.12 by a predetermined length, and connecting the overlapped parts of the angle pieces 12.12 with a plurality of bolts 17. A high-strength bolted joint is used.

また、梁間方向の粱3内に配置されたアングル材12.
12と柱1内に配置されたH形鋼7との仕口はH形鋼7
側に上下アングル材12.12に対向して突設されたブ
ラケット18.18に上下アングル材12.12端部を
所定長さ重ね合せ、ブラケット18.18とアングル材
12.12との重ね合せ部分を複数本のボルト17で接
合する高力ボルト接合とする。
In addition, the angle members 12 placed within the cage 3 in the direction between the beams.
12 and the H-shaped steel 7 placed inside the column 1 are connected to the H-shaped steel 7.
The ends of the upper and lower angle members 12.12 are overlapped for a predetermined length on a bracket 18.18 that is protruded from the side opposite to the upper and lower angle members 12.12, and the bracket 18.18 and the angle members 12.12 are overlapped. A high-strength bolt joint is used in which the parts are joined with a plurality of bolts 17.

このような構成において、次にこの考案の施工順序につ
いて説明する。
In such a configuration, the construction order of this invention will be explained next.

先ず、工場または建築現場において、梁間方向の梁3内
に配置される複数本のアングル材12、ラチス構成部材
13を設計図に従って所定の断面形状に組み立てる。
First, at a factory or construction site, a plurality of angle members 12 and lattice constituent members 13 arranged within the beams 3 in the beam-to-beam direction are assembled into a predetermined cross-sectional shape according to a design drawing.

このとき、接合されるアングル材12端部にはボルト1
7が貫通するためのボルト孔を必要数形成しておく。
At this time, a bolt 1 is attached to the end of the angle material 12 to be joined.
The necessary number of bolt holes for the bolts 7 to pass through are formed in advance.

次に、柱1および桁行方向の粱2内に配置されるH形鋼
7の建込み作業に並行して先に組み立てられたアングル
材12とラチス構成部材13とからなる骨組みをクレー
ン等で吊り下げて所定位置に設置し、上下アングル材1
2.12両端部をH形鋼7側に突設されたブラケット1
8.18にそれぞれボルト17゜17によって固定する
Next, in parallel with the erection work of the H-shaped steel 7 placed in the column 1 and the girder 2 in the girder direction, the frame consisting of the angle members 12 and lattice component members 13 assembled earlier is lifted by a crane or the like. Lower it and install it in the specified position, then attach the upper and lower angle members 1.
2.12 Bracket 1 with both ends protruding toward H-shaped steel 7 side
8. Fix to 18 with bolts 17°17.

次に型枠工事の行程を考慮しながら、設計図に従って柱
1の柱主筋8、フープ筋9、桁行方向の粱2の梁主筋1
0、スターラップ筋11、耐震壁4の縦主筋14、横主
筋15およびスラブ5の主筋16の配筋作業をおこなう
Next, while considering the process of formwork work, according to the design drawings, the main column reinforcement 8 of column 1, the hoop reinforcement 9, and the main beam reinforcement 1 of column 2 in the girder direction.
0, conduct reinforcement work for the stirrup reinforcement 11, the vertical main reinforcement 14 of the shear wall 4, the horizontal main reinforcement 15, and the main reinforcement 16 of the slab 5.

そして、鉄骨の建込み作業、型枠の組立て作業並びに配
筋作業が終了したらコンクリート6を打設する。
Then, after the steel frame erection work, formwork assembly work, and reinforcement work are completed, concrete 6 is poured.

この考案は以上の構成からなり、桁行方向に配置される
柱、粱は鉄骨鉄筋コンクリート構造で構成され、梁間方
向の上下耐震壁間に耐震壁と一体に配置される梁は、コ
ンクリート内の従来の鉄筋コンクリート構造計算に従っ
て配筋される主筋とせん断補強筋の配筋位置に、従来の
鉄筋コンクリート構造計算に従って設計荷重に耐え得る
アングル材とラチス構成部材をそれぞれ配置して構成さ
れ、かつ梁間方向の耐震壁内の縦主筋はアングル材とラ
チス構成部材との隙間を介して上下耐震壁間に跨って配
筋されることになるから、上下耐震壁は一体になり、か
つ耐震壁の上下両側部はほぼ均−な剛性を有する架構に
よって拘束されるから極めて耐震的である。
This idea consists of the above-mentioned structure. The columns and columns placed in the girder direction are constructed of steel-framed reinforced concrete, and the beams placed integrally with the shear walls between the upper and lower shear walls in the direction between the beams are constructed using conventional concrete structures. A shear wall constructed by placing angle members and lattice components that can withstand the design load according to conventional reinforced concrete structural calculations at the reinforcement positions of main reinforcement and shear reinforcing bars arranged according to reinforced concrete structural calculations, and in the inter-beam direction. The vertical main reinforcement inside will be arranged across the upper and lower shear walls through the gap between the angle material and the lattice component, so the upper and lower shear walls will be integrated, and the upper and lower sides of the shear wall will be almost flat. Because it is restrained by a frame with uniform rigidity, it is extremely earthquake resistant.

また、アングル材、ラチス構成部材は断面形状上鉄筋よ
り剛性が大きいから、アングル材、ラチス構成部材によ
って構成された骨組みは大きな自立力を有しているため
これら骨組みを支持するための仮設補強材や仮設資材の
低減が可能であると共に、仮設物としても使用すること
ができ仮設工事費の低減が可能である。
In addition, because angle members and lattice constituent members have greater rigidity than reinforcing bars due to their cross-sectional shapes, frames constructed from angle members and lattice constituent members have a large self-supporting force, so temporary reinforcing materials are used to support these frames. It is possible to reduce the amount of materials used for temporary construction, and it can also be used as a temporary construction, thereby reducing the cost of temporary construction.

また、桁行方向の架構は鉄骨鉄筋コンクリート構造で構
成されているから鉄筋コンクリート構造の架構よりスパ
ン並びに開口部を大きくすることができる。
Furthermore, since the frame in the girder direction is constructed of a steel-framed reinforced concrete structure, the span and opening can be made larger than in a frame with a reinforced concrete structure.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第3図はこの考案の実施例を示すものであり、
第1図は柱、桁行方向の粱および梁間方向の梁の構造を
示す建物の一部横断面図、第2図は第1図におけるA−
A線断面図、第3図は第1図におけるB−B線断面図で
ある。 1・・・・・・柱、2・・・・・・桁行方向の梁、3・
・・・・・梁間方向の梁、4・・・・・・耐震壁、5・
・・・・・スラブ、6・・・・・・コンクリート、7・
・・・・・H形鋼、8・・・・・・柱主筋、9・・・・
・・フープ筋、10・・・・・・梁主筋、11・・・・
・・スターラップ筋、12・・・・・・アングル材、1
3・・・・・・ラチス構成部材、14・・・・・・縦主
筋、15・・・・・・横主筋、16・・・・・・主筋、
17・・・・・・ボルト、18・・・・・・ブラケット
Figures 1 to 3 show examples of this invention.
Figure 1 is a partial cross-sectional view of the building showing the structure of columns, columns in the row direction, and beams in the direction between the beams, and Figure 2 is the A--
3 is a sectional view taken along line A and FIG. 3 is a sectional view taken along line B-B in FIG. 1. 1...Column, 2...Beam in column direction, 3.
...Beams in the beam-to-beam direction, 4...Shear walls, 5.
...Slab, 6...Concrete, 7.
...H-shaped steel, 8...Column main reinforcement, 9...
... Hoop reinforcement, 10 ... Beam main reinforcement, 11 ...
... Stirrup strip, 12 ... Angle material, 1
3... Lattice component, 14... Vertical main reinforcement, 15... Horizontal main reinforcement, 16... Main reinforcement,
17... Bolt, 18... Bracket.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 少なくとも柱および梁を鉄骨鉄筋コンクリートより構成
するとともに梁の上側と下側に耐震壁を配置してなる補
強コンクリート構造において、前記粱のうち梁間方向の
粱の主筋とせん断補強筋が配筋される位置に設計荷重に
耐え得るアングル材とラチス構成部材を配置し、かつこ
の梁の上下耐震壁間に跨って複数本の鉄筋を配筋してな
ることを特徴とする補強コンクリート構造。
In a reinforced concrete structure in which at least the columns and beams are made of steel-framed reinforced concrete and shear walls are placed above and below the beams, the positions where the main reinforcement and shear reinforcing bars in the direction between the beams are arranged among the beams. A reinforced concrete structure characterized by arranging angle members and lattice components capable of withstanding design loads, and arranging multiple reinforcing bars across the upper and lower seismic walls of these beams.
JP1393780U 1980-02-06 1980-02-06 reinforced concrete structure Expired JPS603844Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1393780U JPS603844Y2 (en) 1980-02-06 1980-02-06 reinforced concrete structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1393780U JPS603844Y2 (en) 1980-02-06 1980-02-06 reinforced concrete structure

Publications (2)

Publication Number Publication Date
JPS56116502U JPS56116502U (en) 1981-09-07
JPS603844Y2 true JPS603844Y2 (en) 1985-02-02

Family

ID=29610441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1393780U Expired JPS603844Y2 (en) 1980-02-06 1980-02-06 reinforced concrete structure

Country Status (1)

Country Link
JP (1) JPS603844Y2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59188208U (en) * 1983-06-01 1984-12-13 鹿島建設株式会社 reinforced concrete structure
JP2536795B2 (en) * 1991-02-15 1996-09-18 三井建設株式会社 Seismic wall and beam structure

Also Published As

Publication number Publication date
JPS56116502U (en) 1981-09-07

Similar Documents

Publication Publication Date Title
KR102585526B1 (en) Composite frame with end-buried girder joint
JPS603844Y2 (en) reinforced concrete structure
JPS6349776B2 (en)
JPH1096294A (en) Steel frame and reinforced concrete beam
JPH08135018A (en) Mixed structure of reinforced concrete column and steel skeleton beam
JP3814265B2 (en) How to build tower buildings
JP3043938B2 (en) Joint structure between reinforced concrete columns and steel beams
JPS6134404Y2 (en)
JP2518568Y2 (en) Connection structure of steel beams to concrete columns
JPH044091Y2 (en)
JPH0350847B2 (en)
JP3002681B2 (en) Building structure
JPH0443526Y2 (en)
JPH03151429A (en) Reinforcement preassembled beam with formwork and working method thereof
JP2022163290A (en) Structure
JP2654597B2 (en) Reinforcement method of wall type rigid frame structure
JPS628246Y2 (en)
JPH0732642Y2 (en) Beam-column joint structure
JPS61225448A (en) Reinforcing bar composite pillar
JPH0414218B2 (en)
JPH0412348B2 (en)
JPS63268833A (en) Method for constructing body of multi-storied building
JPS645134B2 (en)
JPH06287998A (en) Constructing method for preliminary assembling of reinforced concrete composite beam
JPH0565662B2 (en)