JPS6037310B2 - Engine exhaust gas reformer - Google Patents
Engine exhaust gas reformerInfo
- Publication number
- JPS6037310B2 JPS6037310B2 JP53025596A JP2559678A JPS6037310B2 JP S6037310 B2 JPS6037310 B2 JP S6037310B2 JP 53025596 A JP53025596 A JP 53025596A JP 2559678 A JP2559678 A JP 2559678A JP S6037310 B2 JPS6037310 B2 JP S6037310B2
- Authority
- JP
- Japan
- Prior art keywords
- exhaust gas
- reforming
- heat
- passage
- heat exchange
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Landscapes
- Exhaust-Gas Circulating Devices (AREA)
- Exhaust Gas After Treatment (AREA)
Description
【発明の詳細な説明】
本発明は、機関から排出される排気ガスの一部を取出し
て燃料と混合し、この混合気を、排気ガスの熱を利用し
て改費触媒下で発熱量の増した改質燃料に改質し、この
改質燃料を機関の吸気通路に供給して燃費の改善を図る
装置に関し、特に、機関の排気熱と、排気ガス中の未燃
焼成分の触媒酸化反応による発熱とを効率的に故買触媒
に伝達させて改質効率を向上させることができる装置に
関する。Detailed Description of the Invention The present invention extracts a part of exhaust gas emitted from an engine, mixes it with fuel, and uses the heat of the exhaust gas to reduce the calorific value under a modified catalyst. This device improves fuel efficiency by reforming the fuel into an increased amount of reformed fuel and supplying this reformed fuel to the intake passage of the engine.In particular, it is a device that improves fuel efficiency by converting engine exhaust heat and the catalytic oxidation reaction of unburned components in the exhaust gas. The present invention relates to a device that can improve reforming efficiency by efficiently transmitting heat generated by waste catalyst to waste catalyst.
排気ガス改質装置は、機関の排気通路途中に熱交換器を
設け、該熱交換器内に、前記排気通路内の排気ガスを通
過させる排気ガス通過路と、該排気ガス通過路から遮断
され熱交換壁を介して前記排気ガス通過略との熱交換が
行なわれる改質反応室とを設け、排気ガス通過路を通過
した排気ガスの一部に燃料を加えて改質反応室に導き、
該改質反応室内で改質反応則ち触媒吸熱反応させて一酸
化炭素及び水素を含む改質燃料を生成し、これを機関の
吸気通路に供給するものである。The exhaust gas reforming device is provided with a heat exchanger in the middle of the exhaust passage of an engine, and has an exhaust gas passage in the heat exchanger through which the exhaust gas in the exhaust passage passes, and an exhaust gas passage that is cut off from the exhaust gas passage. A reforming reaction chamber is provided in which heat exchange is performed with the exhaust gas passage through a heat exchange wall, and a part of the exhaust gas that has passed through the exhaust gas passage is added with fuel and guided to the reforming reaction chamber,
A reforming reaction, that is, a catalytic endothermic reaction is carried out in the reforming reaction chamber to produce reformed fuel containing carbon monoxide and hydrogen, which is then supplied to the intake passage of the engine.
ところで、こうした装置にあっては、上記改質反応を円
滑に行なわせるためには、改質触媒に反応に必要な熱を
供給する必要があるが、単に排気通路内の排気熱を改質
反応室内に伝えるだけでは十分な熱量を得にくく、また
、改質触媒を粒子状にして改質反応室内に充填する場合
には、大部分の熱が熱交換壁から敬質反応室内のガスを
介して改質触媒に伝わるため、熱損失が増大し、改質触
媒への熱供給量が不足して敦質反応が円滑に行なわれな
くなるという問題が生じてくる。By the way, in such a device, in order to carry out the above reforming reaction smoothly, it is necessary to supply the reforming catalyst with the heat necessary for the reaction. It is difficult to obtain a sufficient amount of heat just by transmitting it into the chamber, and when the reforming catalyst is packed in the reforming reaction chamber in the form of particles, most of the heat is transferred from the heat exchange wall through the gas in the pure reaction chamber. This causes a problem in that the heat loss increases and the amount of heat supplied to the reforming catalyst is insufficient, making it impossible for the reforming reaction to proceed smoothly.
本発明は上記問題を解消した装置を提供することを目的
とするもので、排気ガス中の未燃焼成分の触媒酸化反応
によって発成する反応熱を排気熱と共に改質触媒に熱伝
導によって効率的に伝えることができるようにし、改質
反応を十分な供給熱の下で円滑に行なわせることができ
るようにしたことを特徴とするものである。The purpose of the present invention is to provide an apparatus that solves the above problems, and efficiently transfers the reaction heat generated by the catalytic oxidation reaction of unburned components in the exhaust gas to the reforming catalyst together with the exhaust heat. The present invention is characterized in that the reforming reaction can be carried out smoothly under sufficient heat supply.
以下に図示の実施例について説明する。The illustrated embodiment will be described below.
第1図は本発明の第1実施例を示すもので、図において
1は内燃機関、2は吸気通路、3は排気通路、4は排気
通路3の途中に設けられた熱交換器である。FIG. 1 shows a first embodiment of the present invention, in which 1 is an internal combustion engine, 2 is an intake passage, 3 is an exhaust passage, and 4 is a heat exchanger provided in the middle of the exhaust passage 3. In FIG.
熱交換器4内には、第2図及び第3図に示すように、排
気通路3内の上流側の排気ガスを下流側に通過させる排
気ガス通過路5と、該排気ガス通過路5から遮断され、
熱交換壁6を介して排気ガス通過路5との熱交換が行な
われる改質反応室7とが設けられ、第1図に示すように
、排気ガス通過路5より下流側の排気通路3と故質反応
室7とは排気ガス導管8で連結され、改質反応室7と吸
気通路2とは改質燃料導管9で連結されている。Inside the heat exchanger 4, as shown in FIGS. 2 and 3, there is an exhaust gas passage 5 for passing the exhaust gas on the upstream side in the exhaust passage 3 to the downstream side, and a cut off,
A reforming reaction chamber 7 is provided in which heat exchange is performed with the exhaust gas passage 5 via a heat exchange wall 6, and as shown in FIG. The waste product reaction chamber 7 is connected to the exhaust gas conduit 8, and the reforming reaction chamber 7 and the intake passage 2 are connected to each other by a reformed fuel conduit 9.
排気ガス導管8の途中にはCmHn燃料を供給する燃料
供給手段10が設けられている。CmHn燃料としては
ガソリン、軽油、アルコール等が使用でき、燃料供給手
段10としては燃料噴射弁等が使用できる。改質燃料導
管9の途中には改質燃料の流量を調整する流量調整弁1
1が設けられ、該弁11の流入側にはフィル夕12が設
けられている。改質燃料導管9の途中には上記の他必要
に応じて改質燃料冷却器(図示せず)を設けてもよい。
熱交換壁6は、ここでは第6図に示すように横断面略櫛
歯状の素材よりなっており、各熱交換壁6を、その向き
を交互に直交させて多重に積み重ねることにより熱交換
器4が大略構成されている。A fuel supply means 10 for supplying CmHn fuel is provided in the middle of the exhaust gas conduit 8. Gasoline, diesel oil, alcohol, etc. can be used as the CmHn fuel, and a fuel injection valve or the like can be used as the fuel supply means 10. In the middle of the reformed fuel conduit 9, there is a flow rate adjustment valve 1 for adjusting the flow rate of the reformed fuel.
1 is provided, and a filter 12 is provided on the inflow side of the valve 11. In addition to the above, a reformed fuel cooler (not shown) may be provided in the middle of the reformed fuel conduit 9 as required.
The heat exchange walls 6 are made of a material having a substantially comb-shaped cross section as shown in FIG. The container 4 is roughly configured.
第3図ないし第5図において、改質反応室7側の熱交換
壁6の壁面は改質触媒13で構成され、排気ガス通過路
5側の熱交換壁6の壁面は排気ガス浄化触媒14で構成
されている。3 to 5, the wall surface of the heat exchange wall 6 on the side of the reforming reaction chamber 7 is composed of a reforming catalyst 13, and the wall surface of the heat exchange wall 6 on the side of the exhaust gas passage 5 is composed of an exhaust gas purification catalyst 14. It consists of
ここでは熱交換壁6をァルミナ等の多孔性物質で構成し
、その各々の壁面にそれぞれ改質触媒13及び排気ガス
浄化触媒14を溶射等の手段によって付着させることに
より、各々の壁面を触媒13,14で構成したものとな
っている。改質触媒13としては少なくともコバルト、
ニッケル、ロジウムのいずれか1つを含むものを用いる
ことができ、排気ガス浄化触媒14としては少なくとも
白金、白金.ロジウム、ニッケルのいずれか1つを含む
酸化触媒又は三元触媒を用いることができる。Here, the heat exchange wall 6 is made of a porous material such as alumina, and a reforming catalyst 13 and an exhaust gas purification catalyst 14 are attached to each wall surface by means such as thermal spraying, so that each wall surface is covered with a catalyst 13. , 14. As the reforming catalyst 13, at least cobalt,
A catalyst containing either nickel or rhodium can be used, and the exhaust gas purification catalyst 14 may contain at least platinum, platinum. An oxidation catalyst or three-way catalyst containing either rhodium or nickel can be used.
上記構成の排気ガス改質装置において、内燃機関1の燃
焼室から排出された排気ガスは排気通路3の途中にある
熱交換器4の排気ガス通過路5を通り、排気通路3の下
流側に排出される。In the exhaust gas reforming device configured as described above, the exhaust gas discharged from the combustion chamber of the internal combustion engine 1 passes through the exhaust gas passage 5 of the heat exchanger 4 located in the middle of the exhaust passage 3, and reaches the downstream side of the exhaust passage 3. be discharged.
排気ガスが通過路5内を通るとき、排気ガス中の未燃焼
成分例えば一酸化炭素、ハイドロカーボン等が排気ガス
浄化触媒14の表面で酸化発熱反応をし、この反応熱と
排気ガスの有する排気燃とが排気ガス浄化触媒14の表
面から熱交換壁6の内部に熱伝導によって伝達され、更
に、熱交換壁6の改質反応室7側壁面を構成する改質嬢
13に熱伝導によって伝達される。こうして改質触媒1
3は活性化温度に加算されるが、改質触媒13には上記
反応熱と排気熱とが供給されるから、熱量の絶対量が増
え、また、これら反応熱及び排気熱の熱伝達経路途中に
ガス等を介さないから、熱損失はほとんどなく、効率的
に熱の供給が行なわれる。熱交換器4から出た排気ガス
の一部は、吸気通路2内の負圧作用によって排気ガス導
管8内に吸引導入され、燃料供給手段10から噴出した
CmHn燃料と混合して混合気とな、改質反応質7内に
入る。改質反応室7内に入った混合気は活性化した改質
触媒13の表面で改質吸熱反応をし、一酸化炭素及び水
素を多量に含む改質燃料となる。When the exhaust gas passes through the passage 5, unburned components in the exhaust gas, such as carbon monoxide and hydrocarbon, undergo an oxidative exothermic reaction on the surface of the exhaust gas purification catalyst 14, and this reaction heat and the exhaust gas contained in the exhaust gas are The combustion is transferred from the surface of the exhaust gas purification catalyst 14 to the inside of the heat exchange wall 6 by heat conduction, and is further transferred by heat conduction to the reformer 13 that constitutes the side wall surface of the reforming reaction chamber 7 of the heat exchange wall 6. be done. In this way, the reforming catalyst 1
3 is added to the activation temperature, but since the reforming catalyst 13 is supplied with the above-mentioned reaction heat and exhaust heat, the absolute amount of heat increases. Since there is no gas or the like involved, there is almost no heat loss and heat is efficiently supplied. A part of the exhaust gas coming out of the heat exchanger 4 is sucked into the exhaust gas conduit 8 by the negative pressure in the intake passage 2, and is mixed with the CmHn fuel spouted from the fuel supply means 10 to form an air-fuel mixture. , enters the reforming reactant 7. The air-fuel mixture that has entered the reforming reaction chamber 7 undergoes a reforming endothermic reaction on the surface of the activated reforming catalyst 13, and becomes reformed fuel containing a large amount of carbon monoxide and hydrogen.
今、CmHn燃料としてC7.6H,3.6を用いた場
合の改質反応は次式に示す通り行なわれ。i.5K7.
的02十6.細20十44N2)十*7.6日.3.6
十38がcal′mol(排気ガス)
(燃料)31日2十34‐7C〇十68‐母N2
G次質燃料)
上式から判るように、この反応には38松Cal/mo
lの熱量の供給が必用であるが、上述したように、改質
触媒13には排気ガスの反応熱と排気熱とが効率よく多
量に供給されるため、上式の反応は円滑に行なわれる。Now, when C7.6H, 3.6 is used as CmHn fuel, the reforming reaction is carried out as shown in the following equation. i. 5K7.
Target 026. Thin 20144N2) 10*7.6 days. 3.6
138 is cal'mol (exhaust gas)
(Fuel) 31st 234-7C〇168-mother N2G secondary fuel) As can be seen from the above equation, this reaction requires 38 pine Cal/mo
1 of heat is required, but as mentioned above, the reaction heat of the exhaust gas and the exhaust heat are efficiently supplied in large quantities to the reforming catalyst 13, so the reaction in the above equation is carried out smoothly. .
生成された改質燃料は改質燃料導管9内を通り、フィル
ター2で浄化された後、流量調整弁11で流量調整され
て吸気通路2内に吸引導入される。こうして、内燃機関
1の吸気通路2には排気ガスの有するエネルギーを回収
して発熱量の増した政質燃料が供給されるため、燃費が
向上する。第7図及び第8図は本発明の第2実施例を示
すもので、本例は熱交換壁6を、金属製の横断面略櫛歯
状の素材15と、該素材15の表面に溶射等により付着
させたアルミナ等の多孔性物質層16とから構成し、該
多孔性物質層16の改質反応室7側の表面に改質触媒1
3を付着させることにより、故質反応室7側の熱交換壁
6の壁面を改質触媒13で構成し、多孔性物質層16の
排気ガス通過路5側の表面に排気ガス浄化触媒14を付
着させることにより、排気ガス通過路5側の熱交換壁6
の壁面を排気ガス浄化触媒14で構成したことを特徴と
するものであり、他の構成は第1実施例と同機であるた
め、その説明は省略する。本例装置においても第1実施
例と同様の作用効果が得られる。第8図は本発明の第3
実施例を示すもので、本例は熱交換壁6を、改質触媒1
3及び排気ガス浄化触媒14として両方の働きをするニ
ッケルを多く含有した金属材料で構成することにより、
改質反応室7側の熱交換壁6の壁面を改質触媒13で構
成し、排気ガス通過路5側の熱交換壁6の壁面を排気ガ
ス浄化触媒14で構成したことを特徴とするもので、多
の構成は第1実施例と同様とあるため、その説明は省略
する。The generated reformed fuel passes through the reformed fuel conduit 9, is purified by the filter 2, and then is sucked into the intake passage 2 after its flow rate is adjusted by the flow rate regulating valve 11. In this way, the intake passage 2 of the internal combustion engine 1 is supplied with political fuel whose calorific value is increased by recovering the energy contained in the exhaust gas, thereby improving fuel efficiency. 7 and 8 show a second embodiment of the present invention, in which a heat exchange wall 6 is sprayed onto a metal material 15 having a substantially comb-shaped cross section and a surface of the material 15. A porous material layer 16 made of alumina or the like is deposited on the surface of the porous material layer 16 on the reforming reaction chamber 7 side.
3, the wall surface of the heat exchange wall 6 on the waste material reaction chamber 7 side is configured with the reforming catalyst 13, and the exhaust gas purification catalyst 14 is formed on the surface of the porous material layer 16 on the exhaust gas passage 5 side. By attaching it, the heat exchange wall 6 on the exhaust gas passage 5 side
This embodiment is characterized in that the wall surface of the embodiment is composed of an exhaust gas purification catalyst 14, and since the other components are the same as those of the first embodiment, a description thereof will be omitted. The device of this example also provides the same effects as those of the first example. FIG. 8 shows the third embodiment of the present invention.
This example shows a heat exchange wall 6 and a reforming catalyst 1.
3 and the exhaust gas purification catalyst 14 by using a metal material containing a large amount of nickel.
The wall surface of the heat exchange wall 6 on the side of the reforming reaction chamber 7 is composed of a reforming catalyst 13, and the wall surface of the heat exchange wall 6 on the side of the exhaust gas passage 5 is composed of an exhaust gas purification catalyst 14. Since the configuration of the second embodiment is the same as that of the first embodiment, the explanation thereof will be omitted.
本例装置においては、第1実施例と同機の作用効果が得
られるのみならず、熱交換壁構造を簡略化して製造を容
易ならしめることができる。第9図は第3実施例に更に
変形を加えた第4実施例を示すもので、ニッケルを多く
含有した金属材料製の熱交換壁6の壁面に、腐食等の手
段によって無数のグルーブプを形成したことを特徴とす
るもので、本例の場合、第3実施例に比べて政質触媒1
3及び排気ガス浄化触媒14の触媒表面を増加させるこ
とができ、改質効率を一層高めることができる。The device of this example not only provides the same effects as those of the first example, but also simplifies the heat exchange wall structure and facilitates manufacturing. FIG. 9 shows a fourth embodiment which is a further modification of the third embodiment, in which numerous grooves are formed on the wall surface of the heat exchange wall 6 made of a metal material containing a large amount of nickel by means such as corrosion. In this example, compared to the third example, the political catalyst 1 is
3 and the catalyst surface of the exhaust gas purification catalyst 14 can be increased, and the reforming efficiency can be further improved.
第10図及び第11図は本発明の第5実施例で、熱交換
器4の変形列を示すものである。10 and 11 show a fifth embodiment of the present invention, which shows a modified array of heat exchangers 4. FIG.
ここで、各平板17,17……の間に波状板18,19
が互いに直交する向きに交互に介装され、波状板18を
挟む改質反応室7と波状板19を挟む排気ガス通過路5
とが交互に多層に形成され、以上平板17,波状板18
,19により熱交換壁6が構成されている。そし、ここ
では波状板18の表面に改質触媒13を付着させること
により、改質反応室7側の熱交換壁6の壁面を改質触媒
13で構成し、波状板19の表面に排気ガス浄化触媒1
4を付着させることにより、排気ガス通過路5側の熱交
換壁6の壁を排気ガス浄化触媒14で構成したものであ
る。他の構成部分は第1実施例と同様であるため、その
説明は省略する。本例の場合第1実施例と同様の作用効
果が得られる。第12図及び第13図は本発明の第6実
施例を示すもので、熱交換器4を多管式熱交換器機造と
したものである。Here, between each flat plate 17, 17..., wavy plates 18, 19
are interposed alternately in directions orthogonal to each other, the reforming reaction chamber 7 sandwiching the corrugated plate 18 and the exhaust gas passage 5 sandwiching the corrugated plate 19.
are alternately formed in multiple layers, with the flat plate 17 and the corrugated plate 18
, 19 constitute a heat exchange wall 6. Here, by attaching the reforming catalyst 13 to the surface of the corrugated plate 18, the wall surface of the heat exchange wall 6 on the reforming reaction chamber 7 side is made up of the reforming catalyst 13, and the exhaust gas is applied to the surface of the corrugated plate 19. Purification catalyst 1
4, the wall of the heat exchange wall 6 on the side of the exhaust gas passage 5 is made up of the exhaust gas purification catalyst 14. Since the other components are the same as those in the first embodiment, their explanation will be omitted. In this example, the same effects as in the first example can be obtained. 12 and 13 show a sixth embodiment of the present invention, in which the heat exchanger 4 is a shell-and-tube heat exchanger device.
ここでは熱交換壁6は伝熱管であり、各伝熱賛6の故買
反応室7側の壁面則ち外周面を改質触媒13で構成し、
排気ガス通過路5側の壁面則ち内周面を排気ガス浄化触
媒14で構成している。他の構成部分は第1実施例と同
様のため、その説明を省略する。本例の場合第1実施例
と同様の作用効果が得られる。第14図及び第15図は
本発明の第7実施例を示すもので、第6実施例に更に変
更を加えたものである。Here, the heat exchange wall 6 is a heat transfer tube, and the wall surface, that is, the outer peripheral surface on the waste reaction chamber 7 side of each heat transfer support 6 is constituted by a reforming catalyst 13,
The wall surface, ie, the inner peripheral surface, on the side of the exhaust gas passageway 5 is constituted by an exhaust gas purification catalyst 14. The other components are the same as those in the first embodiment, so their explanation will be omitted. In this example, the same effects as in the first example can be obtained. 14 and 15 show a seventh embodiment of the present invention, which is a further modification of the sixth embodiment.
即ち、ここで熱交換壁6は外周に多数のフィンを備えた
伝熱管であり、各伝熱管6の排気ガス通過路5側の壁面
則ち内周面を排気ガス浄化触媒14で構成し、改質反応
室7側の壁面則ち、伝熱管6の外周面とフィンの表面と
を改質触媒13で構成したものである。他の構成部分は
第1実施例と同様であるため、その説明は省略する。本
例の場合第6実施例に比べて伝熱面積及び改質触媒表面
を増加させることができ、改質効率を向上させることが
できる。なお、第5〜第7実施例において熱交換壁の各
壁面を改質触媒13又は排気ガス浄化触媒14で構成す
る態様としては、第1〜第4実施例で説明した態様のい
ずれか1つを適用できるのはいうまでもない。That is, here, the heat exchange wall 6 is a heat exchanger tube having a large number of fins on the outer periphery, and the wall surface of each heat exchanger tube 6 on the exhaust gas passage 5 side, that is, the inner peripheral surface is constituted by the exhaust gas purification catalyst 14, The wall surface on the reforming reaction chamber 7 side, that is, the outer circumferential surface of the heat exchanger tube 6 and the surface of the fins are made of a reforming catalyst 13. Since the other components are the same as those in the first embodiment, their explanation will be omitted. In this example, the heat transfer area and the reforming catalyst surface can be increased compared to the sixth example, and the reforming efficiency can be improved. In addition, in the fifth to seventh embodiments, each wall surface of the heat exchange wall is configured with the reforming catalyst 13 or the exhaust gas purification catalyst 14 in any one of the modes explained in the first to fourth embodiments. Needless to say, it can be applied.
以上本発明を内燃機関に適用した例につき説明したが、
本発明は外燃機関でも上記と同様にして適用できるもの
である。The example in which the present invention is applied to an internal combustion engine has been described above.
The present invention can also be applied to external combustion engines in the same manner as described above.
本発明は以上説明したように、敦質反応室側の前記熱交
換壁の壁面を改質触媒で構成し、前記排気ガス通過路側
の前記熱交換壁の壁面を排気ガス浄化触媒で構成したか
ら、排気ガス中の未燃焼成分の触媒酸化反応によって発
生する反応熱を排気ガスが有する排気熱と共に改質触媒
に伝達させることができ、熱量の絶対量を増大させるこ
とができると共に、これら熱の伝達を熱伝導によって効
率的に改質触媒に伝達させることができるようになる。As explained above, the present invention is characterized in that the wall surface of the heat exchange wall on the polymer reaction chamber side is composed of a reforming catalyst, and the wall surface of the heat exchange wall on the exhaust gas passage side is composed of an exhaust gas purification catalyst. , the reaction heat generated by the catalytic oxidation reaction of unburned components in the exhaust gas can be transferred to the reforming catalyst together with the exhaust heat of the exhaust gas, and the absolute amount of heat can be increased, and this heat can be It becomes possible to efficiently transmit the transmission to the reforming catalyst by heat conduction.
この結果、改質触媒への熱の供給量が増大し、吸熱改質
反応は円滑に行なわれ、改質燃料の生成率が高まる。ま
た、排気ガス通過路内の排気ガス中の未燃焼成分を酸化
反応させるから、排気ガスの浄化も同時に行ない得るこ
ととなり、製品価値が高まる。As a result, the amount of heat supplied to the reforming catalyst increases, the endothermic reforming reaction is carried out smoothly, and the production rate of reformed fuel increases. Furthermore, since the unburned components in the exhaust gas in the exhaust gas passage are subjected to an oxidation reaction, the exhaust gas can be purified at the same time, increasing the product value.
更に、熱交換壁の両壁面で発熱反応と吸熱反応とを同時
に行なわせるから、発熱側の触媒則ち排気ガス浄化触媒
の過熱を防止できることとなり、その寿命を廷ばすこと
ができることとなる。図面の簡単な説明第1図は本発明
の第1実施例を示す内燃機関の一部及び排気ガス改質装
置全体の部分破断正面図。Furthermore, since exothermic and endothermic reactions are simultaneously carried out on both wall surfaces of the heat exchange wall, it is possible to prevent the catalyst on the heat generating side, that is, the exhaust gas purification catalyst, from overheating, thereby extending its life. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a partially cutaway front view of a part of an internal combustion engine and the entire exhaust gas reforming device showing a first embodiment of the present invention.
第2図は第1図における熱交換器の拡大斜視図。第3図
は第2図における切断面Aを矢印方向に見た断面図。第
4図は第2図における切断面Bを矢印方向に見た断面図
。第5図は第4図の一部を拡大した断面図。第6図は第
1実施例の熱交換壁の1つを示す部分斜視図。第7図は
本発明の第2実施例を示す第5図に対応する位置の断面
図。第8図は本発明の第3実施例を示す第5図に対応す
る位置の断面図。第9図は本発明の第4実施例を示す第
5図に対応する位置の断面図。第10図は本発明の第5
実施例を示す熱交換器の斜視図。第li図は第10図に
おける一部分の拡大斜視図。第12図は本発明の第6実
施例を示す熱交換器の縦断面図。第13図は第12図に
おける切断線Dの部分を矢印方向に見た拡大断面図。第
14図は本発明の第7実施例を示す熱交換器の縦断面図
。第15図は第14図の一部を拡大した断面図。1・・
・…内燃機関、2・・・・・・吸気通路、3・・・・・
・排気通路、4・・・・・・熱交換器、5……排気ガス
通過路、6・・・…熱交換壁、7…・・・改質反応室、
8・…・・排気ガス導管、9・・・・・・改質燃料導管
、10・・・・・・燃料供給手段、13・・・・・・故
買触媒、14・・・・・・排気ガス浄化触媒。FIG. 2 is an enlarged perspective view of the heat exchanger in FIG. 1. FIG. 3 is a cross-sectional view of section A in FIG. 2 viewed in the direction of the arrow. FIG. 4 is a cross-sectional view of section B in FIG. 2 viewed in the direction of the arrow. FIG. 5 is an enlarged cross-sectional view of a part of FIG. 4. FIG. 6 is a partial perspective view showing one of the heat exchange walls of the first embodiment. FIG. 7 is a sectional view corresponding to FIG. 5, showing a second embodiment of the present invention. FIG. 8 is a sectional view corresponding to FIG. 5, showing a third embodiment of the present invention. FIG. 9 is a cross-sectional view at a position corresponding to FIG. 5, showing a fourth embodiment of the present invention. FIG. 10 shows the fifth embodiment of the present invention.
FIG. 1 is a perspective view of a heat exchanger showing an example. FIG. li is an enlarged perspective view of a portion of FIG. 10. FIG. 12 is a longitudinal sectional view of a heat exchanger showing a sixth embodiment of the present invention. FIG. 13 is an enlarged sectional view of the section line D in FIG. 12, viewed in the direction of the arrow. FIG. 14 is a longitudinal sectional view of a heat exchanger showing a seventh embodiment of the present invention. FIG. 15 is an enlarged cross-sectional view of a part of FIG. 14. 1...
・...Internal combustion engine, 2...Intake passage, 3...
・Exhaust passage, 4... Heat exchanger, 5... Exhaust gas passage, 6... Heat exchange wall, 7... Reforming reaction chamber,
8...Exhaust gas pipe, 9...Reformed fuel pipe, 10...Fuel supply means, 13...Waste catalyst, 14... Exhaust gas purification catalyst.
第1図 第2図 第3図 第4図 第6図 第5図 第7図 第8図 第9図 第10図 第11図 第12図 第13図 第14図 第15図Figure 1 Figure 2 Figure 3 Figure 4 Figure 6 Figure 5 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 Figure 12 Figure 13 Figure 14 Figure 15
Claims (1)
内に前記排気通路内の排気ガスを通過させる排気ガス通
過路と、該排気ガス通過路から遮断され熱交換壁を介し
て前記排気ガス通過路との熱交換が行なわれる改質反応
室とを設け、前記排気通路と前記改質反応室とを途中に
燃料供給手段を備えた排気ガス導管で連絡し、前記改質
反応室と前記機関の吸気通路とを改質燃料導管で連絡し
、前記改質反応室側の前記熱交換壁の壁面を改質触媒で
構成し、前記排気ガス通過路側の前記熱交換壁の壁面を
排気ガス浄化触媒で構成したことを特徴とする機関の排
気ガス改質装置。1. A heat exchanger is provided in the middle of the exhaust passage of the engine, and there is an exhaust gas passage through which the exhaust gas in the exhaust passage passes through the heat exchanger, and an exhaust gas passage which is cut off from the exhaust gas passage and passes through the exhaust gas through a heat exchange wall. A reforming reaction chamber is provided in which heat exchange is performed with the exhaust gas passage, and the exhaust passage and the reforming reaction chamber are connected by an exhaust gas conduit having a fuel supply means in the middle, and the reforming reaction chamber is connected to the reforming reaction chamber. and the intake passage of the engine are connected through a reformed fuel conduit, the wall surface of the heat exchange wall on the side of the reforming reaction chamber is constituted by a reforming catalyst, and the wall surface of the heat exchange wall on the side of the exhaust gas passageway is configured An exhaust gas reforming device for an engine characterized by comprising an exhaust gas purification catalyst.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP53025596A JPS6037310B2 (en) | 1978-03-07 | 1978-03-07 | Engine exhaust gas reformer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP53025596A JPS6037310B2 (en) | 1978-03-07 | 1978-03-07 | Engine exhaust gas reformer |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS54118914A JPS54118914A (en) | 1979-09-14 |
JPS6037310B2 true JPS6037310B2 (en) | 1985-08-26 |
Family
ID=12170280
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP53025596A Expired JPS6037310B2 (en) | 1978-03-07 | 1978-03-07 | Engine exhaust gas reformer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6037310B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102004051121B4 (en) * | 2003-10-21 | 2006-04-06 | Toyota Jidosha K.K., Toyota | Exhaust system of an internal combustion engine |
JP2007138781A (en) * | 2005-11-16 | 2007-06-07 | Toyota Motor Corp | Internal combustion engine |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6810658B2 (en) * | 2002-03-08 | 2004-11-02 | Daimlerchrysler Ag | Exhaust-gas purification installation and exhaust-gas purification method for purifying an exhaust gas from an internal combustion engine |
AT503458B1 (en) * | 2006-04-03 | 2008-09-15 | Man Nutzfahrzeuge Oesterreich | EXHAUST SYSTEM OF A DRIVE UNIT FOR A MOTOR VEHICLE WITH EXHAUST GAS RECYCLING |
KR20180102335A (en) * | 2017-03-07 | 2018-09-17 | 주식회사 아모그린텍 | Hydrogen reformer using exhaust gas |
-
1978
- 1978-03-07 JP JP53025596A patent/JPS6037310B2/en not_active Expired
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102004051121B4 (en) * | 2003-10-21 | 2006-04-06 | Toyota Jidosha K.K., Toyota | Exhaust system of an internal combustion engine |
JP2007138781A (en) * | 2005-11-16 | 2007-06-07 | Toyota Motor Corp | Internal combustion engine |
JP4525564B2 (en) * | 2005-11-16 | 2010-08-18 | トヨタ自動車株式会社 | Internal combustion engine |
Also Published As
Publication number | Publication date |
---|---|
JPS54118914A (en) | 1979-09-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7051518B2 (en) | Internal combustion engine fuel supply system | |
US7520907B2 (en) | Highly integrated fuel processor for distributed hydrogen production | |
US6098396A (en) | Internal combustion engine having a catalytic reactor | |
US20020071797A1 (en) | Catalytic separator plate reactor and method of catalytic reforming of fuel to hydrogen | |
RU2213232C2 (en) | Internal combustion engine exhaust gas catalyst converter | |
RU2003116515A (en) | MULTIFUNCTIONAL ENERGY SYSTEM (OPTIONS) | |
WO2000076651A1 (en) | Compact, light weight methanol fuel gas autothermal reformer assembly | |
EP1006274B1 (en) | Method for preparing an air-fuel mixture for an internal combustion engine, device for realising the same and heat-exchanger | |
AU2005237112A1 (en) | Catalytic reactor/heat exchanger | |
US20090258259A1 (en) | Catalytic heat exchangers and methods of operation | |
WO2000056440A1 (en) | Compact selective oxidizer assemblage for a fuel cell power plant | |
JPS6037310B2 (en) | Engine exhaust gas reformer | |
EP1462159A2 (en) | Integrated fuel reformer and heat exchanger | |
JPH08287936A (en) | Hydrogen manufacturing device | |
EP3594486B1 (en) | Hydrogen reformer using exhaust gas | |
US8034135B2 (en) | Fuel modification apparatus having an evaporator arranged around a superheater | |
US3702236A (en) | Catalytic converter | |
RU2573729C2 (en) | Fuel reformer | |
US20040038094A1 (en) | Fuel cell system | |
JPH01264903A (en) | Apparatus for reforming hydrocarbon | |
CN101132985B (en) | Fuel reforming apparatus | |
JPH0230601A (en) | Apparatus for reforming methanol | |
JPS5847240Y2 (en) | Reformed gas generator for internal combustion engines | |
US20120014864A1 (en) | Hybrid foam/low-pressure autothermal reformer | |
JP2002121004A (en) | Hydrogen supply device |