Nothing Special   »   [go: up one dir, main page]

JPS6036551B2 - Calcining furnace for powder raw materials such as cement raw materials - Google Patents

Calcining furnace for powder raw materials such as cement raw materials

Info

Publication number
JPS6036551B2
JPS6036551B2 JP55124077A JP12407780A JPS6036551B2 JP S6036551 B2 JPS6036551 B2 JP S6036551B2 JP 55124077 A JP55124077 A JP 55124077A JP 12407780 A JP12407780 A JP 12407780A JP S6036551 B2 JPS6036551 B2 JP S6036551B2
Authority
JP
Japan
Prior art keywords
calciner
raw material
furnace
raw materials
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55124077A
Other languages
Japanese (ja)
Other versions
JPS5750539A (en
Inventor
悟 縄田
国男 武谷
恒 武市
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP55124077A priority Critical patent/JPS6036551B2/en
Publication of JPS5750539A publication Critical patent/JPS5750539A/en
Publication of JPS6036551B2 publication Critical patent/JPS6036551B2/en
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J6/00Heat treatments such as Calcining; Fusing ; Pyrolysis
    • B01J6/001Calcining
    • B01J6/004Calcining using hot gas streams in which the material is moved

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Crucibles And Fluidized-Bed Furnaces (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)

Description

【発明の詳細な説明】 この発明はセメント原料等粉体原料の仮暁炉に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a false dawn furnace for powder raw materials such as cement raw materials.

一般に、セメント原料粉末等の焼成において、サイクロ
ン型熱交換器または温室型熱交換器を適数段配設して原
料粉末を最上段より順次最下段に向って導くと同時に、
サイクロン等の焼成炉からの熱ガスを最下段より日頃次
最上段に向って導くことにより、その間に原料粉末を加
熱熱交換して焼成炉へ供給するようにした浮遊式子熱装
置(サスペンションプレヒータ)は従来より多く使用さ
れている。
Generally, when firing cement raw material powder, etc., an appropriate number of stages of cyclone-type heat exchangers or greenhouse-type heat exchangers are arranged to guide the raw material powder sequentially from the top stage to the bottom stage, and at the same time,
A floating child heating device (suspension preheater) is designed to heat gas exchanged with the raw material powder and supply it to the firing furnace by guiding hot gas from the firing furnace such as a cyclone from the bottom stage to the top stage. ) has been used more than ever before.

しかしながら、このような従来の装置においては下記に
述べるような欠点を有していた。
However, such conventional devices have the following drawbacks.

すなわち、このロータリキルンとサスペンションプレヒ
ータの組合せを考えてみた場合、熱量はすべてロータリ
キルンで与えられるので、それがサスペンションプレヒ
ータへ移行するまでにかなりの損失がある。
That is, when considering the combination of this rotary kiln and suspension preheater, all of the heat is provided by the rotary kiln, so there is a considerable loss before it is transferred to the suspension preheater.

また、大量の熱を吸収する仮焼反応はロータリキルンの
ようなあまり熱効率のよくない熱交換器に投入される以
前に浮遊状態において終了せておくのが理想的である。
この移行部分における機械構造的な問題あるいは取り扱
われる原料の特性(例えば粘着性)のため、ガス温度を
ある程度以下に抑えなければならない等の理由により未
だ十分なものであるとは言えない。これを完全なものに
近づけるためには、結局多くの熱量を消費するこのよう
な反応のための熱源をそれが必要とされる部分で与えて
やればよい。例えばサスペンションプレヒータを構成す
るサイクロン間に、バーナを取り付け、ここで燃料を供
給し、燃焼熱を補給するという、いわゆる仮焼炉を設け
ることが考えられた。しかし、これとても仮懐炉の中の
激しい浮遊混合乱流層中で、原料粉末が数秒間という比
較的短時間の間に火焔から、その燃焼熱を吸収して全粒
子100%に近い脱炭酸を瞬時に完了してしまうことは
期待できず、仮擬率は約85%程度にとどまることにな
る。したがって、十分な仮暁反応を起させるためには必
要以上の燃料を供給することにすれば、そのためサイク
ロンから排出され誘引通風機である排風機に導入される
熱ガスはかなり高温となり、また、熱量負荷の増大によ
り、仮擬炉内筒およびサイクロン内筒ならびに各ダクト
内の耐火物損傷の危険が増すばかりでなく、各ガスの径
路において原料の溶着固化などのコーチングトラブルを
発生する。
Furthermore, it is ideal that the calcining reaction, which absorbs a large amount of heat, be completed in a floating state before being input into a heat exchanger, such as a rotary kiln, which has poor thermal efficiency.
Due to mechanical structural problems in this transition part, characteristics of the raw material being handled (for example, stickiness), and gas temperature must be kept below a certain level, it is still not sufficient. In order to bring this closer to perfection, it is only necessary to provide a heat source for such a reaction, which ultimately consumes a large amount of heat, where it is needed. For example, it has been considered to provide a so-called calciner, in which a burner is attached between the cyclones constituting the suspension preheater, and fuel is supplied there to replenish combustion heat. However, in the intense suspended mixing turbulence layer inside the temporary hearth, the raw material powder absorbs the combustion heat from the flame in a relatively short period of several seconds, resulting in decarboxylation of nearly 100% of all particles. It cannot be expected that the process will be completed instantly, and the hypothetical rate will remain at about 85%. Therefore, if it is decided to supply more fuel than necessary to cause a sufficient pseudo-dawn reaction, the hot gas discharged from the cyclone and introduced into the exhaust fan, which is an induced draft fan, will be at a considerably high temperature. The increase in heat load not only increases the risk of damage to the refractories in the temporary furnace inner cylinder, cyclone inner cylinder, and each duct, but also causes coating troubles such as welding and solidification of raw materials in each gas path.

こうして機械的、熱的トラブルに加えて熱量原単位をも
増大させ、装置の安定連続運転を阻害することになる。
ここで、コーチングトラブルとは、セメント原料が必要
以上に高温に熱せられ、1500〜160ぴ0の融点に
達した場合に、ガスの通路をガスとともに運ばれるセメ
ント原料が、溶けて、ガスの通路の内壁面にはつてある
耐火レンガの表面にくっつくことである。
In this way, in addition to mechanical and thermal troubles, the unit heat consumption also increases, impeding stable continuous operation of the device.
Here, the coaching trouble is when the cement raw material is heated to a higher temperature than necessary and reaches a melting point of 1500 to 160 psi, the cement raw material that is carried along with the gas through the gas passage melts. It sticks to the surface of the firebrick installed on the inner wall of the building.

コーチングトラブルが発生すれば、ガスの通路が狭くな
ったり、場合によっては、閉塞したりする。そして、ガ
スとセメント原料の円滑な移動が行われなくなり、装置
全体が充分に作動しなくなる。本発明においては、上述
の弊害を避けるため燃料の消費を多くしてガス温度を高
めることはしないで、仮競炉の熱伝達効率を向上させる
ことにより、誘引通風機である排風機より排出されるガ
スの温度を低めて排ガス顕熱損失を抑え、結果的に仮焼
炉の燃料消費を低減し熱量原単位を下げるとともに、耐
火物損傷やコーチングトラブルを減少するなど装置の安
定連続運転を得ることを企図するものである。
If a coaching problem occurs, the gas passage becomes narrow or, in some cases, becomes blocked. As a result, the gas and cement raw materials cannot move smoothly, and the entire device cannot function properly. In the present invention, in order to avoid the above-mentioned disadvantages, the heat transfer efficiency of the temporary furnace is improved without increasing the fuel consumption and increasing the gas temperature, thereby reducing the amount of gas discharged from the exhaust fan, which is an induced draft fan. This reduces the temperature of the gas being used to reduce the sensible heat loss of the exhaust gas, which in turn reduces fuel consumption in the calciner, lowers the unit heat consumption, and achieves stable continuous operation of the equipment by reducing damage to refractories and coaching troubles. It is intended that

本発明においては、上記の目的を達成するために、仮焼
炉を横暦円筒型となし、一端の中央より藤線方向に向け
て、バーナより液体または固体粉末の燃料を燃焼し、火
焔をほぼ仮焼炉の全長に近し・ロングフレームに形成さ
せサイクロンで緋熱ガスと分離させて原料供給管よりロ
ータリキルン排ガス供聯合管内へ運ばれてくる原料を、
予め、ロータリキルン排ガス中に浮遊混合させて、仮競
炉内に、バーナ端近傍の円筒側壁より接線方向に導入し
、仮焼炉の内部を旋回させながら、仮晩炉の他端に向わ
せる途中、仮暁炉の複数の適当な個所より、同じ旋回方
向に気流の旋回力を助長するよに、燃焼用2次空気とし
て、ロー夕リキルンの焼成した原料の排出側に設けたク
リンカクーラでセメント原料を冷却するときに昇温され
て排出された空気であるクーラ柚気等の高温空気を導き
、仮暁炉内での未燃燃、料を完全燃焼しながら、バーナ
側と反対の池端から接線方向に円筒側壁より排出しうる
ようにした。
In the present invention, in order to achieve the above object, the calciner is made into a Yokoreki cylindrical shape, and a burner burns liquid or solid powder fuel from the center of one end in the direction of the wisteria line to generate a flame. The raw material is formed into a long frame that is almost the entire length of the calciner, is separated from the scarlet gas in a cyclone, and is transported from the raw material supply pipe to the rotary kiln exhaust gas supply joint pipe.
The mixture is suspended in the rotary kiln exhaust gas in advance, introduced into the temporary furnace in a tangential direction from the cylindrical side wall near the burner end, and directed to the other end of the temporary furnace while swirling inside the temporary furnace. During the process, a clinker cooler installed on the discharge side of the fired raw material of the rotary kiln is used as secondary air for combustion, so as to promote the swirling force of the airflow in the same swirling direction from multiple appropriate locations in the kiln. The high-temperature air such as cooler air, which is the air that is heated and discharged when cooling the cement raw material, is guided, and while the unburned fuel and materials are completely burnt in the false dawn furnace, it is The water can be discharged from the cylindrical side wall in a tangential direction from the pond edge.

そのために、本発明においては、横暦円筒型の仮焼炉の
一端中央部に、仮暁炉の軸線方向に向けて配したバーナ
を設け、ロータリキルンの排ガス排出部から導いて設け
、かつ、途中に原料供孫合管を接続したロータリキルン
排ガス供給管の端部を、仮暁炉の円筒側壁の端付近に接
線状に接続して設け、ロータリキルンの焼成した原料の
排出側に設けたセメントクーラから導いて設けた燃焼用
空気導入管の端部を、仮暁炉の中間の円筒側壁の複数個
所に接続して設け、仮競炉のバーナ取付側とは反対の池
端部円筒側壁に、仮暁炉からの排ガスおよび仮暁ずみ原
料を分離サイクロンに向けて排出する導管を接線状に接
続して設け、仮競炉の内壁に、気流の旋回方向に沿って
次第に内面に向って高くなっている隆起を、炉の全長あ
るいは適当長さに亘つて複数組形成して設け、かつ、仮
暁炉へのキルン排ガス供給管の接線状接続方向と、燃焼
用空気導入管の接線状接続方向と、仮暁炉内壁の隆起の
もり上り方向と、排ガスおよび仮競ずみ源料排出用の導
管の接線状取出方向を同方向にした構成とした。
To this end, in the present invention, a burner is provided in the center of one end of the cylindrical calciner, and is arranged in the axial direction of the calciner, leading from the exhaust gas discharge part of the rotary kiln, and The end of the rotary kiln exhaust gas supply pipe, which is connected to the raw material supply joint pipe in the middle, is connected tangentially near the end of the cylindrical side wall of the falsification furnace, and is installed on the discharge side of the fired raw material of the rotary kiln. The ends of the combustion air introduction pipe led from the cement cooler are connected to multiple points on the cylindrical side wall in the middle of the temporary furnace, and the ends are connected to the cylindrical side wall at the pond end opposite to the burner installation side of the temporary furnace. , the pipes for discharging the exhaust gas from the coke furnace and the precooked raw material toward the separation cyclone are connected tangentially, and the conduits are installed on the inner wall of the coke furnace so that they gradually increase in height toward the inner surface along the swirling direction of the air flow. A plurality of sets of protuberances are provided over the entire length of the furnace or an appropriate length, and the tangential connection direction of the kiln exhaust gas supply pipe to the falsification furnace and the tangential connection direction of the combustion air introduction pipe are provided. The structure is such that the rising direction of the bulge on the inner wall of the pseudomorphic furnace, and the tangential extraction direction of the conduit for discharging exhaust gas and pseudocoagulant raw material are in the same direction.

つぎに、図面に示した実施例によって、本発明をさらに
詳細に説明する。
Next, the present invention will be explained in more detail with reference to embodiments shown in the drawings.

第1図は本発明の一実施例を説明するもので、図におい
て符号1は鱗風機を示し、原料子熱器2に接続されてい
る。
FIG. 1 explains one embodiment of the present invention, and in the figure, reference numeral 1 indicates a scale blower, which is connected to a raw material heater 2. In FIG.

符号3で示すものは本発明の要部をなす仮焼炉、CIは
分離サイクロンを示す。前記原料予熱器2は、複数のサ
イクロンを組み合わせたもので、従来より広く採用され
てる子熱器で、前記分離サイクロンCIを含めて、下段
か机頂‘こC,〜C4の4段のサイクロンから成る。
Reference numeral 3 indicates a calciner, which is an important part of the present invention, and CI indicates a separation cyclone. The raw material preheater 2 is a combination of multiple cyclones, and is a subheater that has been widely used in the past.Including the separation cyclone CI, the raw material preheater 2 is a combination of multiple cyclones. Become.

前記仮暁炉3は、第2図〜第4図に示すような構成とさ
れている。すなわち、仮焼炉3は、水平に配置された円
筒として形成され、内部には耐火レンガの内張がなされ
ている。仮暁炉3の一端、第2図においては左端の中央
部には、バーナ5が設けられ、このバーナの火焔は、仮
暁炉3の額線方向に沿って噴出される。この火焔を第4
図において符号Fで示す。
The quasi-dawn furnace 3 has a structure as shown in FIGS. 2 to 4. That is, the calcining furnace 3 is formed as a horizontally arranged cylinder, and the inside is lined with refractory bricks. A burner 5 is provided at one end of the false dawn furnace 3, at the center of the left end in FIG. This flame is the fourth
It is indicated by the symbol F in the figure.

仮焼炉3のバーナ5が設けられている側の端部は、ロー
タリキルン6の前端側から導かれる排ガス供給管7が仮
競炉3の円筒側壁に接線状に接続されており、仮暁炉3
の他端は分離サイクロンCIに接続される導管8が接続
されている。
At the end of the calcining furnace 3 on the side where the burner 5 is provided, an exhaust gas supply pipe 7 led from the front end side of the rotary kiln 6 is connected tangentially to the cylindrical side wall of the calcining furnace 3. Furnace 3
The other end is connected to a conduit 8 which is connected to a separation cyclone CI.

そして、原料子熱器2のサイクロンC2の原料排出口と
ロータリキルン排ガス供給管7とを原料供給管9で連結
している。
The raw material outlet of the cyclone C2 of the raw material subheater 2 and the rotary kiln exhaust gas supply pipe 7 are connected by a raw material supply pipe 9.

ところで、仮暁炉3の内部には、第3図の断面図からも
明らかなように、排ガス供給管7から導かれる排ガス流
によって生じる旋回流の旋回方向に沿ってしだいに肉厚
となる隆起10が対称な状態で形成されている。
By the way, as is clear from the cross-sectional view of FIG. 3, inside the pseudo-dark furnace 3, there is a bulge that gradually becomes thicker along the swirling direction of the swirling flow generated by the exhaust gas flow led from the exhaust gas supply pipe 7. 10 are formed symmetrically.

これらの隆起1川ま、耐火レンガを組み立ててなるもの
で、第3図に示す断面構造の状態で、仮焼炉3の一端か
ら池端へと連続もしくは断続的に形成されている。従っ
て、キルン排ガスとともに炉内に導入される原料は、仮
競炉内の旋回流に乗って接線方向に運動すると同時に、
旋回方向に沿ってしだいに増大する隆起10の存在によ
り、仮競炉3の中心方向への力を受け、仮糠炉中心方向
へ投げ出され、気流との間に半径方向の相互運動を生じ
る。また、仮競炉3には、第3図に示すように2次空気
導入管11が接続方向に沿っていくつか取り付けられ、
これらの2次空気導入管11では、キルン6の一端に設
けられたクリンカクーラ12からの燃焼用空気導入管1
3に接続されている。
These bulges are formed by assembling refractory bricks, and are formed continuously or intermittently from one end of the calciner 3 to the pond end, with the cross-sectional structure shown in FIG. Therefore, the raw materials introduced into the furnace together with the kiln exhaust gas move in the tangential direction on the swirling flow inside the temporary furnace, and at the same time,
Due to the presence of the bulge 10 that gradually increases along the turning direction, the rice bran receives a force toward the center of the bran bran 3, is thrown toward the center of the bran bran oven, and generates mutual movement in the radial direction with the airflow. In addition, as shown in FIG. 3, several secondary air introduction pipes 11 are attached to the temporary furnace 3 along the connection direction.
In these secondary air introduction pipes 11, combustion air introduction pipe 1 from a clinker cooler 12 provided at one end of the kiln 6 is used.
Connected to 3.

また、符号14で示すものは、キルン6用のバーナであ
る。次に、以上のように構成された本実施例の動作につ
き説明する。
Moreover, what is indicated by the reference numeral 14 is a burner for the kiln 6. Next, the operation of this embodiment configured as above will be explained.

粉末セメント原料は、原料子熱器2の最上段のサイクロ
ンC4と上から第2段のサイクロンC3との間を接続す
る導管2aに導入され、C4,C3,C2としだし、に
下方のサイクロンを経由して予熱される。
The powdered cement raw material is introduced into a conduit 2a that connects the uppermost cyclone C4 of the raw material heater 2 and the second cyclone C3 from above, and is then transferred to C4, C3, C2, and then the lower cyclone. It is preheated via

この原料の流れは、従来のサイクロン式原料子熱器と同
様である。原料子熱器2のサイクロンC2より排出され
た原料は、仮擬炉3に原料擬給管9を介して排ガス供給
管7から供V給される気流にのって炉内へ旋回流として
流入し、仮焼炉3の内壁に沿って旋回しつつ運ばれ、こ
のとき、バーナ5による火焔Fによって韓射6葦熱を受
けると同時に、気流からの対流伝熱も受け、効率よく仮
暁される。この旋回気流に乗った仮凝中に、原料は隆起
101こよって炉の中心方向への力を受け、中心方向に
投げ出されると同時に、気流との間に半径方向の相互運
動を生じる。
The flow of this raw material is similar to that of a conventional cyclone type raw material heater. The raw material discharged from the cyclone C2 of the raw material heater 2 flows into the simulated furnace 3 as a swirling flow into the furnace along with the airflow supplied from the exhaust gas supply pipe 7 via the raw material supply pipe 9. The calciner 3 is conveyed while rotating along the inner wall of the calciner 3, and at this time, it receives heat from the flame F from the burner 5, and at the same time receives convective heat transfer from the air current, and is efficiently calcined. Ru. During temporary coagulation riding on this swirling airflow, the raw material receives a force toward the center of the furnace due to the bulge 101, and is thrown toward the center, while at the same time creating mutual movement in the radial direction with the airflow.

(第3図記載の炉内の黒点は原料粉末の代表的な流動軌
跡を示す)この結果、原料は蝿梓作用を受け、熱効率よ
く仮暁される。そしてさらに、原料は炉の内壁に沿って
濃密に分布するため、炉壁を保護する効果も生じ、さら
に、炉の中央部は原料粉末の分散が比較的希薄なため、
火焔Fの形成が容易で安定した燃焼を持続することがで
きる。このようにして、仮焼炉3内でほぼ完全に仮燐さ
れた原料は、排熱ガスと共に導管8を経由して分離サイ
クロンCIに送られる。
(The black dots in the furnace shown in FIG. 3 indicate typical flow trajectories of the raw material powder.) As a result, the raw material is subjected to the fly's action and is thermally efficiently cooled. Furthermore, since the raw material is densely distributed along the inner wall of the furnace, it also has the effect of protecting the furnace wall, and furthermore, since the raw material powder is relatively sparsely dispersed in the central part of the furnace,
The flame F can be easily formed and stable combustion can be maintained. The raw material that has been almost completely prephosphorized in the calciner 3 in this way is sent to the separation cyclone CI via the conduit 8 together with the waste heat gas.

この分離サイクロンCIで緋熱ガスと分離された仮燐す
みの原料は、原料送出管15を介して、ロー夕リキルン
6に供給され、バーナ14による燃料焼成によって、最
後のクリンカ焼成が行われる。ロータリキルン6で焼成
されたクリンカは取り出され、クリンカクーラ12によ
って冷却され、次の工程へと送られる。また、分離サイ
クロンCIにおいて、原料を分離した貴E熱ガスは、導
管16を介して原料予熱器2のサイクロンC2に供給さ
れる。
The temporary phosphorized raw material separated from the scarlet gas by the separation cyclone CI is supplied to the rotary kiln 6 via the raw material delivery pipe 15, and the final clinker firing is performed by burning the fuel with the burner 14. The clinker fired in the rotary kiln 6 is taken out, cooled by a clinker cooler 12, and sent to the next process. Further, in the separation cyclone CI, the noble E hot gas from which the raw material has been separated is supplied to the cyclone C2 of the raw material preheater 2 via the conduit 16.

その後、8E熱ガスは、原料と熱交換しつつ、しだいに
上段のサイクロンに移り、最後に最上段のサイクロンC
4から、排風機1によって系外に排出される。なお、原
料予熱器2内における排熱ガスの流れは、公知の従来装
置とまったく同様である。なお、第5図は、本発明の他
の実施例を説明するもので、本実施例にあっては、バー
ナ5の取り付け側が、排ガスと共に原料を排出する導管
8側に設けられている点が前述した実施例と異なってい
る点である。
After that, the 8E hot gas gradually moves to the upper cyclone while exchanging heat with the raw material, and finally reaches the uppermost cyclone C.
4, it is discharged to the outside of the system by the exhaust fan 1. Note that the flow of exhaust gas in the raw material preheater 2 is exactly the same as in the known conventional device. FIG. 5 is for explaining another embodiment of the present invention. In this embodiment, the installation side of the burner 5 is provided on the conduit 8 side that discharges the raw material together with the exhaust gas. This is different from the embodiments described above.

本発明は上記のような構成となっているので、次のよう
なすぐれた効果をあげることができる。
Since the present invention has the above-described configuration, the following excellent effects can be achieved.

‘1ー 熱効率がよく熱量原単位が低い。■ 原料が気
流との対流伝熱をうけるのみならず、炉内に流入してか
ら排出するまでバーナによる火焔の形成方向を中心とし
て旋回しつつ螺旋状に進行して行くので、絶えず火焔か
ら鏡射熱をうけることができる。
'1- High thermal efficiency and low unit heat consumption. ■ The raw material not only undergoes convection heat transfer with the airflow, but also moves in a spiral pattern from the time it enters the furnace to the time it is discharged, rotating around the direction in which the flame is formed by the burner. It can receive radiant heat.

■ 炉内内壁に設けた隆起の作用により旋回中も気流と
の半径方向の相互運動があり、伝熱効果が高い。
■ Due to the effect of the ridges on the inner wall of the furnace, there is mutual movement in the radial direction with the airflow even during swirling, resulting in a high heat transfer effect.

■ 旋回力を途中二次空気で助長しているので、流入し
てから排出するまでいつも強力な旋回気流が保持され、
伝熱に好結果を与えるとともに、炉内滞留時間が長くす
ることができる。
■ Since the swirling force is aided by secondary air, a strong swirling airflow is always maintained from the time it flows in until it is discharged.
It provides good results for heat transfer and allows longer residence time in the furnace.

■ 炉内に入った原料が旋回流のため炉壁近傍に濃密に
分布するため、炉壁の局部加熱を防止し耐火煉瓦を保護
するとともに、原料の融着によるコーチングトラブルが
少なく連続安定操業ができる。
■ Because the raw materials entering the furnace are densely distributed near the furnace wall due to the swirling flow, local heating of the furnace wall is prevented and the refractory bricks are protected, and there is less coaching trouble due to fusion of raw materials and continuous stable operation is possible. can.

‘3} 燃料が徴粉炭等の固体燃焼の場合、等に火焔を
形成すべき炉軸芯の中央部では原料粉末が希薄であるた
め、安定な燃焼空間を保持できるので燃焼性が優れてい
る。
3) When the fuel is solid combustion such as pulverized coal, the raw material powder is thin in the center of the furnace axis where the flame is to be formed, so a stable combustion space can be maintained, resulting in excellent combustibility. .

(4} 機型配置である為、従来高層をなしていた仮暁
炉構造物をいくらかでも低く出来、建設費用が安くなる
(4) Because of the machine-shaped arrangement, the structure of the pseudo-dark reactor, which was conventionally a high-rise structure, can be made as low as possible, reducing construction costs.

{5) 縦型仮焼炉のように気流により原料特上げ動力
が少ないので、比較的圧力損失が小さくなり、排風機の
設備費と動力費を低減できる。
{5) Unlike a vertical calciner, the airflow requires less power to raise the raw material, so the pressure loss is relatively small, and the equipment cost and power cost for the exhaust fan can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明による仮暁炉が適用された仮擁装置全
体の干鰯略横成図、第2図〜第4図は、それぞれ本発明
の一実施例を説明する斜視図、縦断正面図および縦断側
面図、第5図は、本発明の他の実施例を説明する縦断側
面図である。 1は排風機、2は原料子熟器、3は仮糠炉、CIは分離
サイクロン、6はロータリキルン、7は排ガス供給管、
8は導管、9は原料供給管、10は隆起、11は2次空
気供給管、12はクリンカクーラ。 潔/図 漆2図 濠3凶 潔4図 潔よ図
FIG. 1 is a schematic horizontal view of the entire temporary holding device to which the temporary storage furnace according to the present invention is applied, and FIG. FIG. 5 is a longitudinal side view illustrating another embodiment of the present invention. 1 is an exhaust fan, 2 is a raw material fermenter, 3 is a temporary bran furnace, CI is a separation cyclone, 6 is a rotary kiln, 7 is an exhaust gas supply pipe,
8 is a conduit, 9 is a raw material supply pipe, 10 is a bump, 11 is a secondary air supply pipe, and 12 is a clinker cooler. Kiyoshi/Zuushi 2 zu moat 3 heinous 4 zu kiyoshi yo

Claims (1)

【特許請求の範囲】[Claims] 1 横置円筒型の仮焼炉の一端中央部に、仮焼炉の軸線
方向に向けて配したバーナを設け、ロータリキルンの排
ガス排出部から導いて設け、かつ、途中に原料供給管を
接続したロータリキルン排ガス供給管の端部を、仮焼炉
の円筒側壁の端付近に接線状に接続して設け、ロータリ
キルンの焼成した原料の排出側に設けたセメントクーラ
から導いて設けた燃焼用空気導入管の端部を、仮焼炉の
中間の円筒側壁の複数個所に接続して設け、仮焼炉のバ
ーナ取付側とは反対の他端部円筒側壁に、仮焼炉から排
ガスおよび仮焼ずみ原料を分離サイクロンに向けて排出
する導管を接線状に接続して設け、仮焼炉の内壁に、気
流の旋回方向に沿つて次第に内面に向つて高くなつてい
る隆起を、炉の全長あるいは適当長さに亘つて複数組形
成して設け、かつ、仮焼炉へのキルン排ガス供給管の接
線状接続方向と、燃焼用空気導入管の接線状接続方向と
、仮焼炉内壁の隆起のもり上り方向と、排ガスおよび仮
焼ずみ原料排出用の導管の接線状取出方向を同方向にし
たことを特徴とするセメント原料等粉体原料の仮焼炉。
1. A burner is installed in the center of one end of a horizontal cylindrical calciner and is arranged in the axial direction of the calciner, leading from the exhaust gas discharge part of the rotary kiln, and a raw material supply pipe is connected in the middle. The end of the rotary kiln exhaust gas supply pipe is tangentially connected near the end of the cylindrical side wall of the calciner, and the combustion gas is guided from the cement cooler installed on the discharge side of the fired raw material of the rotary kiln. The ends of the air introduction pipe are connected to multiple points on the middle cylindrical side wall of the calciner, and the other end of the cylindrical side wall opposite to the burner installation side of the calciner is connected to Conduits for discharging the calcined raw material towards the separation cyclone are connected tangentially, and the inner wall of the calciner is provided with a protuberance that gradually increases in height toward the inner surface along the swirling direction of the air flow, and is installed along the entire length of the furnace. Alternatively, a plurality of sets may be formed over an appropriate length, and the tangential connection direction of the kiln exhaust gas supply pipe to the calciner, the tangential connection direction of the combustion air introduction pipe, and the protrusion of the inner wall of the calciner. A calcining furnace for powder raw materials such as cement raw materials, characterized in that the rising direction and the tangential take-out direction of a conduit for discharging exhaust gas and calcined raw materials are in the same direction.
JP55124077A 1980-09-09 1980-09-09 Calcining furnace for powder raw materials such as cement raw materials Expired JPS6036551B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55124077A JPS6036551B2 (en) 1980-09-09 1980-09-09 Calcining furnace for powder raw materials such as cement raw materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55124077A JPS6036551B2 (en) 1980-09-09 1980-09-09 Calcining furnace for powder raw materials such as cement raw materials

Publications (2)

Publication Number Publication Date
JPS5750539A JPS5750539A (en) 1982-03-25
JPS6036551B2 true JPS6036551B2 (en) 1985-08-21

Family

ID=14876355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55124077A Expired JPS6036551B2 (en) 1980-09-09 1980-09-09 Calcining furnace for powder raw materials such as cement raw materials

Country Status (1)

Country Link
JP (1) JPS6036551B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10634090B2 (en) * 2015-07-03 2020-04-28 Ge Jenbacher Gmbh & Co Og Piston for an internal combustion engine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5222352A (en) * 1975-08-13 1977-02-19 Kurita Water Ind Ltd Aerobic rotary type of waste water purifying equipment
JPS5238053A (en) * 1975-09-16 1977-03-24 Tomita Pharma Method of maintaining freshness of unripe fruit during storing

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5222352A (en) * 1975-08-13 1977-02-19 Kurita Water Ind Ltd Aerobic rotary type of waste water purifying equipment
JPS5238053A (en) * 1975-09-16 1977-03-24 Tomita Pharma Method of maintaining freshness of unripe fruit during storing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10634090B2 (en) * 2015-07-03 2020-04-28 Ge Jenbacher Gmbh & Co Og Piston for an internal combustion engine

Also Published As

Publication number Publication date
JPS5750539A (en) 1982-03-25

Similar Documents

Publication Publication Date Title
US3869248A (en) Apparatus for burning materials of cement and the like
US4039277A (en) Apparatus for calcining powder materials
CA1265390A (en) Fluidized-bed firing system with immersion heating surfaces
DK162112B (en) PRESSED, CARBON HEATED STEAM GENERATOR
US4668184A (en) Annular shaft kiln
CN102012097B (en) Fluidized bed oil and water dual-medium circulation boiler
JPS6036551B2 (en) Calcining furnace for powder raw materials such as cement raw materials
CN206831479U (en) CFBB borrows material igniter
JPS5915709A (en) Steam generator with fluidized-bed combustion chamber
US1858450A (en) Pulverized fuel combustion
JPH054565B2 (en)
JPS593423B2 (en) Cement raw material calcination method
JP2944706B2 (en) Lump firing furnace
CN217504331U (en) Full-fiber vertical double-chamber indirect roasting furnace
CN104880091B (en) Energy saving and environment friendly new-type annular kiln
JPS6360133A (en) Granulation by jet stream bed
CN105466008B (en) Multi fuel heat pipe indirect-heating hot air stove
CN205425807U (en) Novel dust removal tube heating furnace
CN115784649B (en) Method for regulating temperature of output medium of heat energy center and supplying heat to gypsum powder production line
SU924478A1 (en) Cyclone shaft furnace
CN200986180Y (en) Industry boiler using emulsifying coke slurry combustion apparatus
JPS59112180A (en) Device for rapidly burning corpuscular material thermally treated preparatorily
CN101021326A (en) Industrial boiler using emulsifying coke mortar burning device
JPH0387506A (en) Method for incinerating alkali-containing matter
JPS62196513A (en) Fluidized bed boiler equipment