Nothing Special   »   [go: up one dir, main page]

JPS6035921A - Synchronization adopting method - Google Patents

Synchronization adopting method

Info

Publication number
JPS6035921A
JPS6035921A JP58142751A JP14275183A JPS6035921A JP S6035921 A JPS6035921 A JP S6035921A JP 58142751 A JP58142751 A JP 58142751A JP 14275183 A JP14275183 A JP 14275183A JP S6035921 A JPS6035921 A JP S6035921A
Authority
JP
Japan
Prior art keywords
power
converter
frequency
transmission line
station
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58142751A
Other languages
Japanese (ja)
Other versions
JPH0515137B2 (en
Inventor
関谷 恵輔
開一郎 平山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58142751A priority Critical patent/JPS6035921A/en
Publication of JPS6035921A publication Critical patent/JPS6035921A/en
Publication of JPH0515137B2 publication Critical patent/JPH0515137B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/60Arrangements for transfer of electric power between AC networks or generators via a high voltage DC link [HVCD]

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、複数の発電機からなる発電所あるいは発電所
を含む交流系統の相互間の交流電力を交直変換器により
直流電力に変換して直流送電線で直流単独送電している
状態から、上記交直変換器の交流側端の相互間に連系し
ゃ断器を介して交流送’FM線を連系し交直並列送電に
移行する際の同期併入方法に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention is directed to converting alternating current power between a power plant consisting of a plurality of generators or an alternating current system including power plants into direct current power using an AC/DC converter. Synchronous combination when switching from a state in which direct current is being transmitted solely on the power transmission line to AC/DC parallel power transmission by interconnecting the AC/FM line via a interconnection breaker between the AC side ends of the AC/DC converter. Regarding how to enter.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

電力需要の拡大に伴なって大容量の発電所の建設が進め
られているが、立地条件等の制約から負荷側より遠隔地
に建設しなければ々らないのが現状であり、長距離、大
電力送電を行なう必要がでてきている。しかし、このよ
うな長距離且つ大電力送電を従来の交流送電系統で行な
う場合には、系統の安定性が問題となることは周知の通
りである。
The construction of large-capacity power plants is progressing with the expansion of electricity demand, but due to constraints such as location conditions, it is currently necessary to construct them in areas far from the load side, and long-distance, There is a growing need for large-scale power transmission. However, it is well known that when such long-distance and high-power transmission is performed using a conventional AC power transmission system, the stability of the system becomes a problem.

そこで、かかる安定性の問題を解決した送電方式として
、近年者しい進歩を遂げている半導体技術による高信頼
度、高耐圧、大電流のサイリスタ素子を応用した大電力
直流送dが脚光を浴びてきている。この直流送電技術を
応用することにより、前述した長距離、大電力送電が可
能となるが、発電機を系統に並入した時の初負荷制御が
直流単独送電の場合は複雑になることと、発電機低負荷
時の周波数制御を不要にするため等による系統構成の種
々の条件により直流送電系統と交流送電系統とを併設し
て長距離、大電力送電を行なう必要性が生じてきている
Therefore, as a power transmission method that solves this stability problem, high-power DC transmission d, which utilizes high-reliability, high-voltage, and large-current thyristor elements based on semiconductor technology, which has made remarkable progress in recent years, has been attracting attention. ing. By applying this DC power transmission technology, it becomes possible to transmit large amounts of power over long distances as described above, but the initial load control when a generator is connected to the grid becomes complicated when transmitting DC power alone. BACKGROUND OF THE INVENTION Due to various system configuration conditions such as eliminating the need for frequency control when generators are under low load, it has become necessary to install both a DC power transmission system and an AC power transmission system to transmit large amounts of power over long distances.

このような直流送電系統と交流送電系統(以下、交直並
列送電系統)により長距離、大電力送電を行なう場合、
発電所からの交流電力を交直変換所にて直流電力に変換
して、直流送電線により′直流単独送電している状態か
ら、交直変換所の発′亀所側端に連系しゃ断器により交
流送電線を連系し、交直並列送電に移行する過程がある
When transmitting large amounts of power over long distances using such DC and AC transmission systems (hereinafter referred to as AC/DC parallel transmission systems),
AC power from the power plant is converted to DC power at an AC/DC converter station, and from a state where DC power is being transmitted solely through a DC transmission line, AC power is converted to AC power by a interconnection breaker at the source end of the AC/DC converter station. There is a process of interconnecting power lines and transitioning to AC/DC/parallel power transmission.

このような交直並列送電に移行する過程においては、発
電所の周波数、電圧位相を、上記交流送電線側の周波数
、電圧位相に同期させた後に連糸しゃ断器を投入しなけ
ればならない。この場合、複数の発電機からなる発電所
においては、1台の発′ば磯の周波数、電圧位相を変化
させても、発電所全体の周波数、電圧位相の変化はわず
かであるので、交流送電線側の周波数、電圧位相に同期
に要する時間は長くかかった。
In the process of shifting to AC/DC/parallel power transmission, a continuous line breaker must be turned on after the frequency and voltage phase of the power plant are synchronized with the frequency and voltage phase of the AC transmission line. In this case, in a power plant consisting of multiple generators, even if the frequency and voltage phase of one generator are changed, the change in the frequency and voltage phase of the entire power plant is small, so the alternating current transmission is It took a long time to synchronize the frequency and voltage phase on the wire side.

相に、発電所と交直変換所とが大きく離れて設置されて
いる場合は、上記同期に要する時間が一層長くかかった
When the power plant and the AC/DC converter station are installed far apart from each other, the time required for the synchronization is even longer.

〔発明の目的〕[Purpose of the invention]

本発明は」二重事情に基づいてなされたもので、その目
的とするところは、直流単独送電の状態にて、交直変換
器の交流側と交流送電線側の周波数および電圧位相の周
期を短時間のうちに行ない、交直並列送電への移行を容
易に行なうことが可能な回期併入方法を提供することに
ある。
The present invention was made based on the dual circumstances, and its purpose is to shorten the frequency and voltage phase period of the AC side of the AC/DC converter and the AC transmission line side in the state of DC single power transmission. It is an object of the present invention to provide a cyclical combination method that can be carried out on time and easily transition to AC/DC parallel power transmission.

〔発明の顧、要〕[Advantage of the invention]

本発明による同期併入方法は、交直変換器の交流側端の
周波数を、交流送電線側の周波数に一致するように交直
変換器を制御し、更に直流送電線側の所定の電気量、つ
まり電力または電圧または電流の微小変化により交直変
換器の交流側端の電圧位相が交流送電線側の電圧位相に
一致するように交直変換器を制御することによシ、上記
目的を達成するようにしている。
In the synchronous joining method according to the present invention, the AC/DC converter is controlled so that the frequency at the AC side end of the AC/DC converter matches the frequency on the AC power transmission line side, and furthermore, a predetermined amount of electricity on the DC power transmission line side, that is, The above objective is achieved by controlling the AC/DC converter so that the voltage phase at the AC side end of the AC/DC converter matches the voltage phase at the AC transmission line side due to minute changes in power, voltage, or current. ing.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の一実施例を図面を参照して説明する。第1
図は複数の発電機を有する発電所の発生交流電力を、交
流負荷系統に交直並列送電することのできる系統構成の
一例を示す図である。第1図において、PSは複数の発
電機G1゜G2.・・・、Gnを有した発電所である。
An embodiment of the present invention will be described below with reference to the drawings. 1st
The figure is a diagram showing an example of a system configuration in which AC power generated by a power plant having a plurality of generators can be transmitted in AC/DC parallel power to an AC load system. In FIG. 1, PS includes a plurality of generators G1, G2, . ..., a power plant with Gn.

この発電所psの各発電機G、 、 G2.・・・t 
Gnの出力は、変圧器T1. T2.・・・l Tnに
より昇圧され発電所交流母線AB、に一括されている。
Each generator G, , G2 of this power plant ps. ...t
The output of Gn is connected to transformer T1. T2. . . . The voltage is boosted by Tn and collectively connected to the power plant AC bus line AB.

発電所psの交流電力は発電所交流母線AB、から、交
流送電線AL1を介して、交直変換所CSの変換所交流
母線AB2に送電される。交直変換所C8では、発電所
psからの交流電力の一部を、変換所交流母線AB2か
ら連系しゃ断器CB、交流交流送電線− 5−2を介して変電所SSに送電している。上記交流電
力の残りは、変換所交流母線AB2から変換器用変圧器
T0゜nv’交直交直変換器型1直流リアクトルDCR
成される交直変換装置C0NV により直流電力に変換
され、直流送′成fwDLを介して逆変換運転されてい
る直交変換所CRに送電されている。この直交変換所C
Rでは、上記直流′成力を直交変換装置INVにて交流
電力に変換し、前述した交流送電線AL2からの交流電
力とともに交流負荷Aに供給している。
The AC power of the power station ps is transmitted from the power station AC bus line AB to the conversion station AC bus line AB2 of the AC/DC conversion station CS via the AC power transmission line AL1. In the AC/DC converter station C8, a part of the AC power from the power station PS is transmitted from the converter AC bus AB2 to the substation SS via the interconnection breaker CB and the AC/AC transmission line -5-2. The remainder of the above AC power is transferred from the converter station AC bus AB2 to the converter transformer T0゜nv' AC/DC/DC converter type 1 DC reactor DCR.
It is converted into DC power by the AC/DC converter C0NV, which is constructed by the AC/DC converter C0NV, and is transmitted to the DC/DC converter station CR, which is in reverse conversion operation, via the DC transmission fwDL. This orthogonal transform station C
At R, the DC power is converted into AC power by the orthogonal converter INV, and is supplied to the AC load A together with the AC power from the AC power transmission line AL2 mentioned above.

第1図において、PT、 、 PT2は、交流送電線A
L 変換所交流母線AB2に設けた変成器であ1 す、夫々検出信号a、bを出力する。またCT1゜CT
2は、交直変換装置C0NVの交流側、直流側に夫々設
けた変流器であり、夫々検出信号c、dを出力する。
In Figure 1, PT, PT2 are AC power transmission lines A
A transformer installed on the L converter station AC bus line AB2 outputs detection signals a and b, respectively. Also CT1゜CT
Reference numeral 2 indicates current transformers provided on the AC side and DC side of the AC/DC converter C0NV, respectively, and outputs detection signals c and d, respectively.

次に第2図を参照して直流単独送電から交直並列送<V
移行する際の手順について説明する。
Next, referring to Figure 2, from DC single power transmission to AC/DC parallel transmission <V
We will explain the steps to take when migrating.

第2図は交直変換器Vの制御装置をブロック図にて示し
たものである。第2図においてFrefは=6一 交直変換器Vの基準周波数を設定するだめの基準周波数
設定信号frefを出力する基準周波数設定回路である
。FClは第1図において交流送F4iAL2に設けら
れた変成器PT、からの検出信号aに基づいて、交流送
電線AL2側の周波数検出信号fa1を出力する周波数
変換器である。
FIG. 2 shows a control device for the AC/DC converter V in a block diagram. In FIG. 2, Fref is a reference frequency setting circuit that outputs a reference frequency setting signal fref for setting the reference frequency of the AC/DC converter V. FCl is a frequency converter that outputs a frequency detection signal fa1 on the AC power transmission line AL2 side based on a detection signal a from the transformer PT provided in the AC transmission line F4iAL2 in FIG.

FCは第1図において変換所交流母線AB2に設けられ
た変成器PT2からの検出信号すに基づいて変換所交流
母線AB2I111Iの周波数検出信号fC2を出力す
る周波数変換器である。
FC is a frequency converter that outputs a frequency detection signal fC2 of the converter station AC bus line AB2I111I based on a detection signal from the transformer PT2 provided on the converter station AC bus line AB2 in FIG.

上記基準周波数設定器、Frefからの基準周波数設定
信号frefと、周波数変換器FC1からの周波数検出
信号fC4とは、切換機構Sにて切換出力され、上記周
波数変換器FC2からの周波数検出信号f c 2と比
較器COMI Kて比較され、比較器COMIからの偏
差出力ΔfVi檀分器Iに送出される。
The reference frequency setting signal fref from the reference frequency setter Fref and the frequency detection signal fC4 from the frequency converter FC1 are switched and outputted by a switching mechanism S, and the frequency detection signal fc from the frequency converter FC2 is output. 2 and the comparator COMIK, and the deviation output ΔfVi from the comparator COMI is sent to the divider I.

Pは、変成器PT2からの検出信号b1及び変流器CT
1からの検出信号Cに基づいて、変換所交流母線As2
側の電力検出信号Pを出力する電力検出器である。
P is the detection signal b1 from transformer PT2 and current transformer CT
Based on the detection signal C from 1, the converter station AC bus line As2
This is a power detector that outputs a power detection signal P on the side.

BVは、上記切換数構Sの操作により、基準周波畝設定
器Fref側に切換えたことを条件に、変換所交流母i
#AB2側の電圧位相を調整するために、直流送′It
線DL側の電力調整を行なう定電力制御回路APRに′
tは力制御信号Jpdvを出力する電力制御信号発生回
路である。定電力制御回路APRでは積分回路Iからの
電力指令信号pdpはスイッチSWを介して電力検出器
Pからの電力検出信号p及び′鱗力制御信号発生回路B
Yからの電力制御信号4Pdvと比較器C0M2にて比
較され、その偏差信号に基づいて直流送電線DL側の電
力制御を行なうための電力制御信号idpを出力する。
BV is set to the converter station AC mains i on the condition that it is switched to the reference frequency ridge setter Fref side by the operation of the switching number structure S.
In order to adjust the voltage phase on the #AB2 side, the DC feed 'It
In the constant power control circuit APR that adjusts the power on the line DL side,
t is a power control signal generation circuit that outputs a force control signal Jpdv. In the constant power control circuit APR, the power command signal pdp from the integrating circuit I is passed through the switch SW to the power detection signal p from the power detector P and the scale force control signal generation circuit B.
It is compared with the power control signal 4Pdv from Y by the comparator C0M2, and outputs the power control signal idp for controlling the power on the DC transmission line DL side based on the difference signal.

この電力制御信号iapは、定電流制御回路ACHに送
出される。この定電流制御回路ACRでは、直流送電線
DLに設けられた変流器CT2からの検出信号dと上記
電力制御信号idpとともに比較器C0M3にて比較さ
れ、その偏差信号により定電流制御を行なうための位相
制御信号phcを図示しない位相制御回路に送出する。
This power control signal iap is sent to the constant current control circuit ACH. In this constant current control circuit ACR, the detection signal d from the current transformer CT2 provided on the DC transmission line DL is compared with the power control signal idp in the comparator C0M3, and constant current control is performed based on the deviation signal. The phase control signal phc is sent to a phase control circuit (not shown).

次に直流単独送電時における具体的な制御について第2
図を参照して説明する。先づ、切換機構Sを操作して基
準周波数設定信号frafと変換所交流母線As2側の
周波数検出信号fa、とを比較器COMfにて比較する
。このとき切換機構Sの操作によシミ力制御信号発生回
路BVは動作しない、上記比較器C0M7にて偏差信号
Δf、=fr*f falを積分回路■に与え、積分処
理を施こす。積分回路Iからは電力指令信号pdPl 
””定電力制御回路APRに与えられるとともに電力検
出器Pからの電力検出信号pによシ定電力制御回路AP
R、定電流制御回路ACR及び図示しない位相制御回路
を制御し、発電所psの出力周波数、即ち変換所交流母
線As2側の周波数と、基準周波数とが一致させて、発
電所psの出力電力を制御する。なお説明を簡単にする
ために、発電所PSと交直変換所CSとの間における交
流送電線AL、での電力損失は無視する。またスイッチ
SWは直流単独送電時の電力指令信号papから交直並
列送9一 定時の電力指令信号pap’に切換えるだめのものであ
る。
Next, we will discuss the specific control during single DC power transmission in the second section.
This will be explained with reference to the figures. First, the switching mechanism S is operated to compare the reference frequency setting signal fraf and the frequency detection signal fa on the AC bus As2 side of the converter station using the comparator COMf. At this time, the stain force control signal generation circuit BV does not operate due to the operation of the switching mechanism S, and the comparator C0M7 supplies the deviation signal Δf,=fr*f fal to the integration circuit (2) to perform integration processing. The power command signal pdPl is output from the integrating circuit I.
"" Constant power control circuit AP is supplied to constant power control circuit APR and is also supplied to constant power control circuit AP according to power detection signal p from power detector P.
R, controls the constant current control circuit ACR and the phase control circuit (not shown), so that the output frequency of the power station ps, that is, the frequency on the converter station AC bus line As2 side, matches the reference frequency, and the output power of the power station ps is adjusted. Control. Note that to simplify the explanation, power loss in the AC power transmission line AL between the power station PS and the AC/DC converter station CS will be ignored. Further, the switch SW is used to switch from the power command signal pap when DC power is being transmitted alone to the power command signal pap' when AC/DC parallel power transmission is constant.

次に直流単独送電から交直並列送電へ移行する際の制御
について第2図を参照して説明する。
Next, control at the time of transition from DC independent power transmission to AC/DC parallel power transmission will be explained with reference to FIG. 2.

先づ切換機構Sを操作して交流送電線AL1側の周波数
検出信号f c 、と、変換所交流母線As2側の周波
数検出信号fe2とを比較器COMIにて比較し、偏差
信号4!2−fC2−fC4が積分回路■に送出される
。との偏差信号Δf2により積分回路K f (fe2
fa、)dt (Kは定数)が定電力制御回路APRに
与えられるとともに、電力検出器Pからの電力検出信号
pによシ定電力制御回路APR。
First, by operating the switching mechanism S, the frequency detection signal f c on the AC power transmission line AL1 side and the frequency detection signal fe2 on the conversion station AC bus line As2 side are compared by the comparator COMI, and the deviation signal 4!2- fC2-fC4 is sent to the integrating circuit (2). Integrating circuit K f (fe2
fa, )dt (K is a constant) are given to the constant power control circuit APR, and the constant power control circuit APR is supplied with the power detection signal p from the power detector P.

定電流制御回路ACR及び図示しない位相制御回路を制
御し、発電所PSの出力周波数、即ち変換所交流母線A
s2側の周波数を、交流送電線AL2側の周波数に一致
するように制御する。
Controls the constant current control circuit ACR and the phase control circuit (not shown) to control the output frequency of the power station PS, that is, the AC bus A of the converter station.
The frequency on the s2 side is controlled to match the frequency on the AC power transmission line AL2 side.

一般に、受電系統容量は、発電所psの容量よりも大き
いので、発電所PS側の周波数は、交流送電線AL2側
の周波数に合致するように制=10− 御される。
Generally, the power receiving system capacity is larger than the capacity of the power station PS, so the frequency on the power station PS side is controlled to match the frequency on the AC power transmission line AL2 side.

次に切換機構Sの操作により、一定時間後に電力制御信
号発生回路BVが動作する。この電力制御信号発生回路
BYからは電力制御信号Δpdvが出力され、定電力制
御回路APRの入力に加算される。この電力制御信号Δ
pdvに応じて直流送電線DLにおける直流電力は微少
変化し、変換所交流母線Ag3側の周波数は極〈わずか
、且つゆっくり変化する。よって変換所交流母線AB 
側の電圧位相と交流送電線AL2側の電圧位相とは合致
させることができる。
Next, by operating the switching mechanism S, the power control signal generation circuit BV is activated after a certain period of time. A power control signal Δpdv is output from the power control signal generation circuit BY and added to the input of the constant power control circuit APR. This power control signal Δ
The DC power on the DC transmission line DL changes slightly in accordance with the pdv, and the frequency on the converter station AC bus line Ag3 changes very slightly and slowly. Therefore, converter station AC bus line AB
The voltage phase on the AC power transmission line AL2 side can be made to match the voltage phase on the AC power transmission line AL2 side.

上述した変換所交流母線Ag3側と交流送電線AL2側
との周波数及び電圧位相を同期させた後、第3図に示し
たような同期検出回路にて同期判定を行ない、第1図に
おける連系し中断器BCを投入して、交直並列送電に移
行させる。
After synchronizing the frequency and voltage phase between the converter AC bus line Ag3 side and the AC transmission line AL2 side as described above, synchronization is determined by the synchronization detection circuit as shown in Fig. 3, and the interconnection shown in Fig. 1 is performed. Then, the interrupter BC is turned on to shift to AC/DC/parallel power transmission.

第4図において、ΔFは、交流送電線AL2側の変成器
PT、の検出信号aおよび変換所交流母線Ag3側の変
成器P2の検出信号すを入力として、交流送電線AL2
及び変換所交流母線AB2の周波数偏差を検出する周波
数偏差検出器である。
In FIG. 4, ΔF is calculated by inputting the detection signal a of the transformer PT on the AC power line AL2 side and the detection signal S of the transformer P2 on the AC bus line Ag3 side of the converter station.
and a frequency deviation detector that detects the frequency deviation of the converter station AC bus line AB2.

LDIは、周波数偏差検出器ΔFからの出力された周波
数偏差がル一定111以下になったときに18号出力す
るレベル検出器である。ΔPHは、変成器PT の検出
信号aおよび変成器PT2の検出nfi号bを入力とし
て、交v1t、送電線AL2及び変換所交流母線AB2
の電圧位相偏差を検出する電圧位相偏差検出器である。
LDI is a level detector that outputs No. 18 when the frequency deviation output from the frequency deviation detector ΔF becomes equal to or less than a constant 111. ΔPH inputs the detection signal a of the transformer PT and the detection nfi signal b of the transformer PT2, and calculates the output voltage of the AC v1t, the transmission line AL2, and the AC bus line AB2 of the converter station.
This is a voltage phase deviation detector that detects the voltage phase deviation of .

LD2は、電圧位相偏怪検出器ΔPHから出力された電
圧位相偏差が所定値以下になったときに信号出力するレ
ベル検出器である。上記レベル検出器LDI及びLD2
の信号出力は、第2図における切換機構Sの動作信号8
とともにアンドf−1・ANDに入力される。アンドグ
ーl−ANDでは上記入力信号がアンド条件を満足した
ときに、第1図における連系しゃ断器CBの投入指令と
しての信号出力mを出力する。
LD2 is a level detector that outputs a signal when the voltage phase deviation output from the voltage phase deviation detector ΔPH becomes equal to or less than a predetermined value. The above level detectors LDI and LD2
The signal output is the operating signal 8 of the switching mechanism S in FIG.
and is input to ANDf-1.AND. When the input signal satisfies the AND condition, a signal output m is output as a command to close the interconnection breaker CB in FIG. 1.

次に第4図を参照して第1図乃至第3図にて示した動作
手順を、時間tの掃過とともに説明する。第4図におい
て、時刻t1にて直流送電線DLにおける直流′成力は
増加し、また変換所交流母線Ag3側の周波数fδ2は
交流送′成線AL2側の周波数f e 1よりも高い状
態にある。このとき切換機構Sを操作すると、直流電力
は増加するとともに、変換所交流母線Ag3側の周波数
16□は徐々に小さくなる。時刻t1からT1時間径通
した時刻t2にて、変換所交流母線Ag3側の周波数f
 c 2と交流送−線AL2側の周波数fδ、は一致し
、このときにレベル検出器LD、は信号出力する。更に
時刻t2から時間T2径過した時刻t3にて、変換所交
流母線Ag3側の周波数f c 2は、わずかに変動し
つつも、変換所交流母線Ag3側と交流送電線AL2側
との電圧位相は一致し、レベル検出器LD2は信号出力
する。
Next, referring to FIG. 4, the operating procedure shown in FIGS. 1 to 3 will be explained along with the sweep of time t. In FIG. 4, at time t1, the DC power on the DC transmission line DL increases, and the frequency fδ2 on the AC bus line Ag3 side of the converter station becomes higher than the frequency f e 1 on the AC transmission line AL2 side. be. When the switching mechanism S is operated at this time, the DC power increases and the frequency 16□ on the AC bus line Ag3 side of the converter station gradually decreases. At time t2, which has passed for T1 time from time t1, the frequency f on the AC bus line Ag3 side of the converter station
c2 and the frequency fδ on the AC transmission line AL2 side match, and at this time the level detector LD outputs a signal. Furthermore, at time t3, which has elapsed for a time T2 from time t2, the frequency f c 2 on the AC bus line Ag3 side of the converter station changes slightly, but the voltage phase between the AC bus line Ag3 side of the converter station and the AC power transmission line AL2 side changes slightly. match, and the level detector LD2 outputs a signal.

この時刻t3にてアンドグー1− ANDはアンド条件
を満たし、信号出力mによシ連系し中断器CBを投入す
る。
At this time t3, AND GO 1-AND satisfies the AND condition, and is connected to the signal output m to turn on the interrupter CB.

以上述べたように本実施例では、変換所交流母線Ag3
側と交流送電線AL2側の周波数を一致された後、電圧
位相を一致させて同期条件を整え、この同期条件により
連系しゃ断器CBを投13− 大して、直流単独送電から交直並列送電に容易且つ短時
間に移行させることができる。
As described above, in this embodiment, the converter station AC bus line Ag3
After matching the frequencies of the AC transmission line AL2 side and the AC transmission line AL2 side, the voltage phases are matched to establish synchronization conditions, and with this synchronization condition, the interconnection breaker CB is set. Moreover, it can be transferred in a short time.

なお、本発明は上記実施例に限定されるものではない。Note that the present invention is not limited to the above embodiments.

即ち、第6図に示すように電力制御信号発生回路BYの
出力は、定電流制御回路ACHに加算しても、上述した
実施例と同一の効果を得ることができる。また定電圧制
御にて運転されている変換器の電圧設定入力に、上記電
力制御信号発生回路BYの出力を作用させても同様の効
果が得られる。
That is, even if the output of the power control signal generation circuit BY is added to the constant current control circuit ACH as shown in FIG. 6, the same effect as in the above embodiment can be obtained. The same effect can also be obtained by applying the output of the power control signal generation circuit BY to the voltage setting input of a converter operated under constant voltage control.

更に、電力制御信号発生回路BYの出力信号を、定電力
制御回路APRの′成力検出量フィードパ、クループま
たは、定電流制御回路ACHの電流検出量フィードバッ
クルーズに作用させても、同様の効果が得られることは
いうまでもない。
Furthermore, the same effect can be obtained by applying the output signal of the power control signal generation circuit BY to the output detection amount feeder loop of the constant power control circuit APR or the current detection amount feedback loose of the constant current control circuit ACH. Needless to say, you can get it.

また、第1図においては複数の発電機G1.G2゜・・
・、G からなる発電所psと交直変換所c s’とは
、交流送電線AL1にて離れて設置された場合を示して
いるが、同一地点に設置された場合、また交流送電線A
L1が変換所交流母線AB2と同一14= −であっても適用可能である。更に多端子直流送電系統
における交直並列送電にても適用可能である。
In addition, in FIG. 1, a plurality of generators G1. G2゜...
The power plant ps and the AC/DC converter station cs', which consist of
It is applicable even if L1 is the same as the converter station AC bus line AB2 (14=-). Furthermore, it is also applicable to AC/DC parallel power transmission in a multi-terminal DC transmission system.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によれば、複数の発電機を有し
た発電所あるいは発電所を含む電力系統の相互間におい
て、交直変換器の交流側端の周波数を交流送電線側の周
波数に一致するように交直変換器を制御し、更に直流送
電線側の所定の電気量の微少変化により交直変換器の交
流側端の電圧位相が交流送電線側の電圧位相に一致する
ように交直変換器を制御するようにしたので、直流単独
送電の状態にて、交直変換器の交流側と交流送電線側の
周波数および電圧位相の同期を短時間のうちに行ない、
交直並列送電への移行を容易に行なうことが可能な同期
併入方法が提供できる。
As described above, according to the present invention, the frequency of the AC side end of the AC/DC converter is matched to the frequency of the AC transmission line side between power plants having multiple generators or power systems including power plants. The AC/DC converter is controlled so that the voltage phase at the AC side end of the AC/DC converter matches the voltage phase at the AC power line side due to minute changes in a predetermined amount of electricity on the DC power line side. As a result, the frequency and voltage phase of the AC side of the AC/DC converter and the AC transmission line side can be synchronized in a short time in the state of DC single power transmission,
It is possible to provide a synchronous merging method that allows easy transition to AC/DC parallel power transmission.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明が適用される電力系統の構成の一例を示
す系統構成図、第2図及び第3図は15− ル検出回路、AND−・・アンドダート。 本発明による同期V(入力法の一実施例を:i’?、明
するためのブロック図、第4図は同実施例の作用を訝、
明するための図、第5図は本発明の他の実施例を説明す
るための図である。 G1 + 02 +・・・l Gn・・・発電機、PS
・・・発電所、T1$ T2.・・・9 Tn・・・変
圧器、ABl・・・発電所交流母線、AL、 、 AL
2・・・交流送電線、C8・・・交直変換所、AH,変
換所交流母線、CB・・・連系しゃ断器、SS・・・変
電所、Tconv・・・変換器用変圧器、■・・・交直
変換器、DCR・・・直流リアクトル、C0NV・・・
交直変換装置、DL・・・直流送電線、CR・・・直交
変換所、INV・・・自交変換装置、A・・・交流負荷
、PTl + PT2・・・変成器、CT4. CT2
・・・変流器、Fr・f・・・基準周波数設定回路、F
C,・・・周波数変換器、FC2・・・周波数変換器、
S・・・切換機構、COMJ 、 C0M2 、 C0
M3・・・比較器・■−°°積分回路、P・・・電力検
出器、BY・・・電力制御信号発生回路、SW・・・ス
イッチ、APR・・・定電流制御回路、ACR・・・定
電流制御回路、AF・・・周波数偏差検出回路、Δl)
H・・・電圧位相差検出回路、LDI 、 LD2・・
・レペ16− 出願人代理人 弁理士 鈴 江 武 彦17一
FIG. 1 is a system configuration diagram showing an example of the configuration of a power system to which the present invention is applied, and FIGS. 2 and 3 show a 15-rule detection circuit, AND-...and dart. An embodiment of the synchronization V(input method) according to the present invention is shown in a block diagram for clarification.
FIG. 5 is a diagram for explaining another embodiment of the present invention. G1 + 02 +...l Gn... Generator, PS
...Power plant, T1$ T2. ...9 Tn...Transformer, ABl...Power plant AC bus, AL, , AL
2... AC transmission line, C8... AC/DC converter station, AH, converter station AC bus, CB... interconnection breaker, SS... substation, Tconv... converter transformer, ■. ...AC/DC converter, DCR...DC reactor, C0NV...
AC/DC converter, DL...DC transmission line, CR...DC converter station, INV...Auto/DC converter, A...AC load, PTl + PT2...Transformer, CT4. CT2
...Current transformer, Fr.f...Reference frequency setting circuit, F
C, ... frequency converter, FC2 ... frequency converter,
S...Switching mechanism, COMJ, C0M2, C0
M3...Comparator/■-°°integrator circuit, P...Power detector, BY...Power control signal generation circuit, SW...Switch, APR...Constant current control circuit, ACR...・Constant current control circuit, AF...frequency deviation detection circuit, Δl)
H...Voltage phase difference detection circuit, LDI, LD2...
・Repe 16- Applicant's agent Patent attorney Takehiko Suzue 171

Claims (1)

【特許請求の範囲】[Claims] 発電機を有する発電所あるいは発電所を含む電力系統の
相互間の交流電力を交直変換器により直流電力に変換し
て直流送電線で直流単独送電してφる状態から、前記交
直変換器の交流側端の相互間に連系しゃ断器を介して交
流送電線を連系し交直並列送電に移行する際に、前記交
直変換器の交流側端の周波数を、前記交流送電線側の周
波数に一致するように前記交直変換器を制御し、前記直
流送電線側の所定の電気量の微小変化により前記交直変
換器の交流側端の電圧位相が、前記交流送電線側の電圧
位相に一致するように前記交直変換器を制御して、前記
交直変換器の交流側端と前記交流送電線側との周波数お
よび電圧位相を同期させて前記連系しゃ断器を投入する
ことを特徴とする同期併入方法。
AC power between power plants with generators or power systems including power plants is converted to DC power by an AC/DC converter, and DC power is transmitted solely through a DC transmission line. When connecting AC transmission lines between the side ends via a interconnection breaker and transitioning to AC/DC parallel power transmission, the frequency of the AC side end of the AC/DC converter is made to match the frequency of the AC power transmission line side. The AC/DC converter is controlled so that the voltage phase at the AC side end of the AC/DC converter matches the voltage phase at the AC power line side due to a minute change in a predetermined amount of electricity on the DC power line side. The synchronous addition is characterized in that the AC/DC converter is controlled to synchronize the frequency and voltage phase between the AC side end of the AC/DC converter and the AC power transmission line side, and the interconnection breaker is turned on. Method.
JP58142751A 1983-08-03 1983-08-03 Synchronization adopting method Granted JPS6035921A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58142751A JPS6035921A (en) 1983-08-03 1983-08-03 Synchronization adopting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58142751A JPS6035921A (en) 1983-08-03 1983-08-03 Synchronization adopting method

Publications (2)

Publication Number Publication Date
JPS6035921A true JPS6035921A (en) 1985-02-23
JPH0515137B2 JPH0515137B2 (en) 1993-02-26

Family

ID=15322731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58142751A Granted JPS6035921A (en) 1983-08-03 1983-08-03 Synchronization adopting method

Country Status (1)

Country Link
JP (1) JPS6035921A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007522784A (en) * 2004-02-10 2007-08-09 リーバート・コーポレイシヨン Changeover switch device and method
US8678152B2 (en) 2008-10-06 2014-03-25 Sinfonia Technology Co., Ltd. Electromagnetic clutch with brake

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS579230A (en) * 1980-06-17 1982-01-18 Tokyo Shibaura Electric Co Method of synchronously inputting in parallel

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS579230A (en) * 1980-06-17 1982-01-18 Tokyo Shibaura Electric Co Method of synchronously inputting in parallel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007522784A (en) * 2004-02-10 2007-08-09 リーバート・コーポレイシヨン Changeover switch device and method
US8678152B2 (en) 2008-10-06 2014-03-25 Sinfonia Technology Co., Ltd. Electromagnetic clutch with brake

Also Published As

Publication number Publication date
JPH0515137B2 (en) 1993-02-26

Similar Documents

Publication Publication Date Title
EP1788688B1 (en) Apparatus for synchronizing uninterruptible power supplies
EP2036181B2 (en) Hvdc system and method to control a voltage source converter in a hvdc system
US20130073109A1 (en) Droop control system for grid-connected synchronization
CA2074176A1 (en) Method and device for switching inverters in parallel
JPH04506146A (en) Power extraction system from DC high voltage line
Choi et al. Selective frequency synchronization technique for fast grid connection of islanded microgrid using prediction method
CN112909999B (en) Phase-locked loop-free high-power-quality seamless switching system and control method thereof
D'silva et al. Microgrid control strategies for seamless transition between grid-connected and islanded modes
He et al. Switching-Cycle-Based Startup for Grid-tied Inverters
US5559686A (en) Stepped waveform inverter control
JPS6035921A (en) Synchronization adopting method
Qian et al. Control and synchronization of a fixed-frequency control method in microgrid based on global positioning system
KR20040057673A (en) N+1 Module Type UPS Having Self-Support Control Structure
US11152865B2 (en) Power converter
Malkhandi et al. A synchronizing strategy for seamless interconnection of an isolated microgrid
US5780939A (en) Method and apparatus for determining orders of non-characteristic harmonic currents, and for compensation of the noncharacteristic harmonic currents
CN113676069B (en) Parallel circulation suppression method for cascaded high-voltage frequency converter
CN116454953A (en) Secondary fusion distributed network-structured energy storage method and device
CN114362265A (en) Reactive power flexible control method for series-parallel electric energy router
JP2732667B2 (en) Battery power storage system
An et al. Optimal Control of Flexible Transfer Converter for Synchronization of Microgrid with Utility Grid
Manohar et al. Performance of grid connected dg inverter system by using intelligent controllers
JPS6260898B2 (en)
JPS6112461B2 (en)
CN117578559A (en) Grid-connected inverter virtual mirror power grid control method based on mixed power feedback