JPS6035829B2 - memory device - Google Patents
memory deviceInfo
- Publication number
- JPS6035829B2 JPS6035829B2 JP51013051A JP1305176A JPS6035829B2 JP S6035829 B2 JPS6035829 B2 JP S6035829B2 JP 51013051 A JP51013051 A JP 51013051A JP 1305176 A JP1305176 A JP 1305176A JP S6035829 B2 JPS6035829 B2 JP S6035829B2
- Authority
- JP
- Japan
- Prior art keywords
- memory
- region
- channel stopper
- layer
- semiconductor substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000004065 semiconductor Substances 0.000 claims description 16
- 239000000758 substrate Substances 0.000 claims description 14
- 229910052581 Si3N4 Inorganic materials 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 238000005468 ion implantation Methods 0.000 description 4
- 238000000137 annealing Methods 0.000 description 3
- 239000000969 carrier Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 238000002513 implantation Methods 0.000 description 2
- 238000010884 ion-beam technique Methods 0.000 description 2
- UUTKICFRNVKFRG-WDSKDSINSA-N (4R)-3-[oxo-[(2S)-5-oxo-2-pyrrolidinyl]methyl]-4-thiazolidinecarboxylic acid Chemical compound OC(=O)[C@@H]1CSCN1C(=O)[C@H]1NC(=O)CC1 UUTKICFRNVKFRG-WDSKDSINSA-N 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/0603—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
- H01L29/0607—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
- H01L29/0638—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for preventing surface leakage due to surface inversion layer, e.g. with channel stopper
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Element Separation (AREA)
- Semiconductor Memories (AREA)
- Non-Volatile Memory (AREA)
Description
【発明の詳細な説明】
本発明は、ソース領域と、ドレィン領域と、メモリー部
とを夫々具備し、前記メモリー部に電荷を保持し得るよ
うにしたメモリー装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a memory device that includes a source region, a drain region, and a memory section, and is capable of retaining charges in the memory section.
従来此種のメモリーは不揮発メモリ−としてIC化され
ている。Conventionally, this type of memory has been integrated into an IC as a non-volatile memory.
例えば第1図〜第3図に示すMNOS型メモリーによれ
ば、N型半導体基板1に互いに対向した長手状のP十型
ソース領域2及びドレィン領域3が夫々設けられ、これ
ら両領域間においては半導体基板1上のSi02層4(
厚さ10000A程度)は薄いSi02層5(厚さ25
A程度)となっている。またSi02層4,5上にはS
i3N4層6(厚さ600A程度)が一様に形成され、
更にこのSi3N4層上には、ソース領域2及びドレィ
ン領域3に対しほぼ直角に交差した長手状のゲート電極
7が互いに平行に被着されている。従って薄いSi02
層5及びこの上のSi3N4層6部分がゲート酸化膜で
あってメモリー部を機成し、この上に重なり合うゲート
電極7に対する電圧の印加によってSi02層5とSi
3N4層6との界面に半導体基板1中の少数キャリャが
保持されるようなつている。つまりこのメモリーでは、
ソース領域2とドレィン領域3とを結ぶ第1の方向とは
直交する第2の方向に沿って、メモリー部が互いに間隔
を有するようにソース領域2及びドレィン領域3の間に
配置されている。このようなメモリ−では、各ゲート電
極7間には厚いSi02層4が存在しているが、第3図
に示す如く、この厚いSi02層4とメモリー部の薄い
Si02層5との境界部分は垂直な段差になっておらず
、Si02層5からSi02層4にかけて徐々に厚くな
る傾斜部8となっている。For example, according to the MNOS type memory shown in FIGS. 1 to 3, an N-type semiconductor substrate 1 is provided with a long P-type source region 2 and a drain region 3 facing each other, and between these regions, Si02 layer 4 on semiconductor substrate 1 (
The thin Si02 layer 5 (thickness 25
Grade A). Moreover, S on the Si02 layers 4 and 5
The i3N4 layer 6 (about 600A thick) is uniformly formed,
Furthermore, on this Si3N4 layer, a longitudinal gate electrode 7 is deposited parallel to each other and intersects the source region 2 and drain region 3 at approximately right angles. Therefore, thin Si02
The layer 5 and the portion of the Si3N4 layer 6 on it are gate oxide films and form a memory section, and by applying a voltage to the gate electrode 7 overlapping the layer 5, the Si02 layer 5 and the Si3N4 layer 6 are separated.
Minority carriers in the semiconductor substrate 1 are held at the interface with the 3N4 layer 6. In other words, in this memory,
The memory portions are arranged between the source region 2 and the drain region 3 so as to be spaced from each other along a second direction perpendicular to the first direction connecting the source region 2 and the drain region 3. In such a memory, a thick Si02 layer 4 exists between each gate electrode 7, but as shown in FIG. 3, the boundary between this thick Si02 layer 4 and the thin Si02 layer 5 in the memory section There is no vertical step, but a sloped portion 8 that gradually becomes thicker from the Si02 layer 5 to the Si02 layer 4.
そしてゲート電極7はこの傾斜部から厚いSi02層4
にかけてその両側部が延びている。今、ゲート電極7に
負の電圧を印加して少数キャリャであるホールをSi0
2層5とSi3N4層6との界面にトラップ(捕獲)し
てメモリーする場合、ゲート電極7下において、厚いS
i02層4においては薄いSi02層5に比してトラツ
プされるキャリャの量が少なくなり、この結果、上述の
傾斜部8におけるVTHのシフト量がメモリー部のVT
Hのシフト量よりも小さくなる。Then, the gate electrode 7 is formed from the thick Si02 layer 4 from this inclined part.
Both sides of it extend across. Now, by applying a negative voltage to the gate electrode 7, holes, which are minority carriers, are removed from the Si0
When storing memory by trapping at the interface between the second layer 5 and the Si3N4 layer 6, a thick S layer is formed under the gate electrode 7.
In the i02 layer 4, the amount of trapped carriers is smaller than in the thin Si02 layer 5, and as a result, the shift amount of VTH in the above-mentioned slope part 8 is equal to the VT of the memory part.
It is smaller than the shift amount of H.
これを第4図の等価回路で説明すると、例えば一10V
とVrHの高いメモリー部のMNOS型メモリー9と、
例えば一3VとVrHの低い傾斜部8のMNOS型メモ
リー10とがメモリ‐した“1”状態で並列に存在し、
メモリ‐しない“0”状態から“1”状態への低電流領
域のシフト量が第5図に示す如く小さくなる。従ってメ
モリ‐した状態では低電流領域で1。sが徐々に増大す
るが、これは傾斜部8を流れるリーク電流によるもので
ある。こうしてリーク電流が大きくなり、パワーロスが
多くなってしまうと共に、メモリー論出し回路の設計も
厳しくなる。この欠点を防止するために、第1図及び第
3図で示したように、メモリー部の幅W,に亘つて各ゲ
ート電極7間に高濃度のN+型半導体領域11を形成し
、これをチャンネルストッパーとして用いることが知ら
れている。しかしながら、チャンネルストッパー1 1
はメモリー部の幅W,に亘つているためにソース領域2
及びドレィン領域3との間の鹿璃雀を十分に取れないか
ら、耐圧が十分にはならない。然もチャンネルストッパ
ー11の両端部はゲート電極7の両側端に位置している
から、傾斜部8によるリーク電流を十分に防止すること
が出来ない。また別のメモリーとして、第6図に示すも
のがあるが、これによれば、P型半導体基板12にP+
型のチャンネルストッパー11を形成する断面のSi0
2層5及びSi3N4層6はメモリー部の絶縁層と同じ
厚みを有している。To explain this using the equivalent circuit in Figure 4, for example -10V
and MNOS type memory 9 in the memory section with high VrH,
For example, an MNOS type memory 10 with a low slope 8 of -3V and VrH exists in parallel in the memory state of "1",
The amount of shift in the low current region from the non-memory "0" state to the "1" state becomes small as shown in FIG. Therefore, in the memorized state, it is 1 in the low current region. s gradually increases, but this is due to the leakage current flowing through the slope portion 8. In this way, leakage current increases, power loss increases, and the design of the memory logical output circuit becomes more difficult. In order to prevent this drawback, as shown in FIGS. 1 and 3, a highly doped N+ type semiconductor region 11 is formed between each gate electrode 7 over the width W of the memory section. It is known to be used as a channel stopper. However, channel stopper 1 1
spans the width W of the memory section, so the source area 2
Since the gap between the drain area 3 and the drain area 3 cannot be sufficiently removed, the withstand pressure will not be sufficient. However, since both ends of the channel stopper 11 are located on both sides of the gate electrode 7, leakage current due to the slope portion 8 cannot be sufficiently prevented. Another type of memory is shown in FIG. 6, in which P+
Si0 of the cross section forming the channel stopper 11 of the mold
The second layer 5 and the Si3N4 layer 6 have the same thickness as the insulating layer of the memory section.
そしてチャンネルストッパー11を形成するには、ゲー
ト電極7をマスクとしてB+のイオンビーム12をイオ
ン注入するようにしているため、やはりメモリー部の幅
分のチャンネルストッパー11が形成され、上述したと
同様に耐圧が低くなる。また、イオン注入後にアニール
によって活性化する際に、ゲート電極7は通常AIから
なっていてこのAIの融点が530〜540つ○と低い
ために、アニールの温度はこれより高温であってはなら
ず、せいぜい500qC程度である。従ってイオンビー
ムの注入量を3×1び5個/地と大量にしなければなら
ず、大型の注入装置が必要となり、注入時間も長くなる
。本発明は上述の如き欠陥を是正すべく発明されたもの
であって、半導体基板の表面に設けられている第1導電
型のソース領域と、前記半導体基板の前記表面に設けら
れている第1導電型のドレィン領域と、これらのソース
領域とドレィン領域とを結ぶ第1の方向とは直交する第
2の方向に沿って互いに間隔を有するように前記ソース
領域及び前記ドレィン領域の間に配置されているメモリ
ー部と、これらメモリー部の間において前記半導体基板
の表面に設けられている第2導電型のチャンネルストッ
パー領域とを夫々具備し、前記メモリー部は前記半導体
基板上に順次積層されている薄い絶縁層と電荷を保持し
得る絶縁層とゲート電極とを夫々有し、前記チャンネル
ストッパー領域は前記ソース領域及び前記ドレィン領域
の間のほぼ中央に位置するようにこれらのソース領域及
びドレィン領域から夫々ほぼ等距離ずつ離れており、前
記チャンネルストッパー領域の両端部は前記表面と直交
する方向において互いに隣り合う前記メモリー部の互い
に対向する側部と夫々重なり合っていることを特徴とす
るメモリー装置に係るものである。In order to form the channel stopper 11, since the B+ ion beam 12 is implanted using the gate electrode 7 as a mask, the channel stopper 11 corresponding to the width of the memory section is formed, and the same process as described above is performed. Pressure resistance decreases. In addition, when activating by annealing after ion implantation, the gate electrode 7 is usually made of AI and the melting point of this AI is as low as 530 to 540 degrees, so the annealing temperature should not be higher than this. However, it is about 500qC at most. Therefore, the amount of ion beam implanted must be as large as 3×1 and 5 ions/field, which requires a large implantation device and increases the implantation time. The present invention was invented to correct the above-mentioned defects, and includes a first conductivity type source region provided on the surface of a semiconductor substrate, and a first conductivity type source region provided on the surface of the semiconductor substrate. A conductive type drain region is arranged between the source region and the drain region so as to be spaced from each other along a second direction perpendicular to a first direction connecting the source region and the drain region. and a channel stopper region of a second conductivity type provided on the surface of the semiconductor substrate between these memory parts, and the memory parts are sequentially stacked on the semiconductor substrate. The channel stopper region includes a thin insulating layer, an insulating layer capable of retaining charge, and a gate electrode, and the channel stopper region is formed from the source region and the drain region so that the channel stopper region is located approximately in the center between the source region and the drain region. The channel stopper regions are spaced apart from each other by approximately the same distance, and both ends of the channel stopper regions overlap opposing sides of the memory portions that are adjacent to each other in a direction perpendicular to the surface. It is something.
このように構成することによって、リーク電流を十分に
減少させ得てパワー。ス及び回路設計の点で有利となり
、耐圧を十分に取ることが出来、また製造工程も簡単と
なる。次に本発明をIC化されたMNOS型メモリーに
適用した実施例を第7図〜第11図に付き述べる。By configuring this way, leakage current can be sufficiently reduced. This is advantageous in terms of space and circuit design, provides sufficient withstand voltage, and simplifies the manufacturing process. Next, an embodiment in which the present invention is applied to an MNOS type memory integrated into an IC will be described with reference to FIGS. 7 to 11.
第7図〜第9図は本発明の第1の実施例を示すものであ
る。7 to 9 show a first embodiment of the present invention.
本実施例によるメモリーは第1図に示すものと共通部分
があるので、この共通部分には共通符号を付して説明を
省略する。Since the memory according to this embodiment has parts in common with the one shown in FIG. 1, the common parts will be designated by common reference numerals and a description thereof will be omitted.
このメモリーにおいては、半導体基板1に設けられる高
濃度のN十型半導体領域からなるチャンネルストッパー
21は互いに隣接するメモリー部又は薄いSi02層5
間にまたがる如くに形成されている。In this memory, a channel stopper 21 made of a high concentration N0 type semiconductor region provided on a semiconductor substrate 1 is formed in a memory portion adjacent to each other or a thin Si02 layer 5.
It is formed so as to straddle the gap.
即ちチャンネルストッパー21は厚いSi02層4から
傾斜部8に及んでから更にその両端部は薄いSi02層
5にまで延びていて、メモリー部と重なり合っている。
またチャンネルストッパー21の幅W2(即ちソース・
ドレイン間のチャンネル方向における長さ)はメモリー
部のSi02層5の幅W,よりも短く、かつこれらのチ
ャンネルストッパー21はソース領域2及びドレィン領
域3から夫々ほぼ等距離ずつ離れている。このようにチ
ャンネルストッパー21を形成すれば、その端部が上述
の傾斜部8下からメモIJ−部にまで及んでいるために
、メモリー状態(即ち“1”状態)において傾斜部8を
通じてのりーク電流を大中に減少させることが出来、パ
ワーロスが減少し、メモリー読出し回路も簡単になる。
またチャンネルストッパー21はソース領域2及びドレ
ィン領域3の間のほぼ中央に位置しているから、チャン
ネルストッパー21とソース領域2及びドレィン領域3
との間の距離を十分に取ることが出来る。従って、素子
を大きくすることなく耐圧を大きくすることが出来、ま
たチャンネルストッパー21の位置ずれに対してその許
容範囲を大きくすることが出来るために製造工程を簡単
にすることが出来る。また本実施例によるチャンネルス
トッパ−21の形成に際しては第6図に示したようなイ
オン注入法を用いる必要はなく、通常の拡散法によって
半導体基板1上に設けたマスクによりN十型不純物を高
濃度拡散し、しかる後に活性化処理する。That is, the channel stopper 21 extends from the thick Si02 layer 4 to the inclined portion 8, and further extends to the thin Si02 layer 5 at both ends thereof, and overlaps the memory portion.
Also, the width W2 of the channel stopper 21 (i.e., the width of the source
The length (length in the channel direction between the drains) is shorter than the width W of the Si02 layer 5 in the memory section, and these channel stoppers 21 are spaced from the source region 2 and the drain region 3 by approximately equal distances. If the channel stopper 21 is formed in this way, since the end thereof extends from below the above-mentioned inclined part 8 to the memo IJ- part, the channel stopper 21 can pass through the inclined part 8 in the memory state (i.e., "1" state). It is possible to significantly reduce the load current, reduce power loss, and simplify the memory read circuit.
Further, since the channel stopper 21 is located approximately in the center between the source region 2 and the drain region 3, the channel stopper 21 and the source region 2 and the drain region 3
It is possible to maintain sufficient distance between the Therefore, the withstand voltage can be increased without increasing the size of the device, and the tolerance range for misalignment of the channel stopper 21 can be increased, thereby simplifying the manufacturing process. Furthermore, when forming the channel stopper 21 according to this embodiment, it is not necessary to use the ion implantation method as shown in FIG. The concentration is diffused and then activated.
そしてこの後に上述のSj3N4層6上にAIを蒸着し
て所定部分をエッチング除去し、ゲート電極7を形成す
る。従ってチャンネルストッパー21の活性化の時点で
はゲート電極7が禾だ存在していないから、処理温度を
十分に上げることが出来、第6図に示す方法に比べて工
程に要する装置及び時間等の点で大中に簡略化すること
が出来る。次に本発明の第2の実施例を第10図に付き
述べる。本実例によれば、チャンネルストッパー31は
第9図に示すチャンネルストッパー21の中間部分を除
去したような形状になっている。Thereafter, AI is deposited on the above-mentioned Sj3N4 layer 6 and a predetermined portion is removed by etching to form a gate electrode 7. Therefore, since the gate electrode 7 is not present at the time of activation of the channel stopper 21, the processing temperature can be raised sufficiently, and the process requires less equipment and time than the method shown in FIG. It can be simplified to Onaka. Next, a second embodiment of the present invention will be described with reference to FIG. According to this example, the channel stopper 31 has a shape similar to that of the channel stopper 21 shown in FIG. 9 with the middle portion removed.
即ち、一方のチャンネルストッパー31はメモリー部の
Si02層5に重なり合った状態で傾斜部8を十分に含
んで厚いSi02層4にまで右方向に延び、また他方の
チャンネルストッパー31はやはりSj02層5に重な
り合った状態で傾斜部8を十分に含んで厚いSi02層
4にまで左方向に延びている。従って本実施例におても
、チャンネルストッパー31が傾斜部8下に存在し、し
かもソース領域2及びドレィン領域3のほぼ中央に位置
しているから、前記第1の実施例と同様の効果を得るこ
とが出来る。次に本発明の第3の実施例を第11図に付
き述べる。That is, one channel stopper 31 overlaps the Si02 layer 5 of the memory section and extends rightward to the thick Si02 layer 4, fully including the slope part 8, and the other channel stopper 31 also overlaps the Sj02 layer 5. In an overlapping state, they fully include the sloped portion 8 and extend to the left up to the thick Si02 layer 4. Therefore, also in this embodiment, since the channel stopper 31 is located below the inclined portion 8 and is located approximately in the center of the source region 2 and drain region 3, the same effect as in the first embodiment can be obtained. You can get it. Next, a third embodiment of the present invention will be described with reference to FIG.
本実施例によれば、前記第1及び第2の実施例とは違っ
て、チャンネルストッパー41が形成される断面におい
てSi02層45はメモリー部のSi02層と同じ厚さ
を有しており、更にこの上のSi3N4層46は600
A程度の厚さで一様に形成されている。According to this embodiment, unlike the first and second embodiments, the Si02 layer 45 has the same thickness as the Si02 layer in the memory section in the cross section where the channel stopper 41 is formed, and The Si3N4 layer 46 on this is 600
It is uniformly formed with a thickness of about A.
この場合、ゲート電極7下の絶縁層がメモli−部とし
て作用するが、チャンネルストッパー41は第9図に示
したと同様に、互いに隣接するメモリー部間に存在し、
かつその両端部はメモリー部と重なり合っている。In this case, the insulating layer under the gate electrode 7 acts as a memory section, but the channel stopper 41 is present between adjacent memory sections, as shown in FIG.
And both ends thereof overlap with the memory section.
従って、上述の傾斜部8のある場合とは違うが、やはり
メモリー部の周辺を通じてのりーク電流を減少させるこ
とが出来、然もチャンネルストッパー41がソース及び
ドレィンから十分離れるようにその幅も選定されている
から耐圧も大きく取れる。Therefore, although it is different from the case with the sloped portion 8 described above, leakage current can still be reduced through the periphery of the memory section, and the width of the channel stopper 41 is also selected so as to be sufficiently far away from the source and drain. Because of this, it can withstand a large amount of pressure.
更にまたイオン注入法を用いることなくチャンネルスト
ッパー41を形成するようにしているから工程を簡略化
出来る。なお本実施例によるチャンネルストッパーを前
記第2の実施例と同様に2つに分割することも出来る。Furthermore, since the channel stopper 41 is formed without using ion implantation, the process can be simplified. Note that the channel stopper according to this embodiment can also be divided into two parts as in the second embodiment.
以上本発明を実施例に基し、て説明したが、本発明はこ
れら実施例に限定されるものではなく、その技術的思想
に基いて更に変形が可能であることが理解されよう。Although the present invention has been described above based on examples, it will be understood that the present invention is not limited to these examples and can be further modified based on the technical idea thereof.
例えば、チャンネルストッパーのサイズはリーク電流の
減少及び耐圧向上のために様々に変更してよい。また、
Si02層上の絶縁層としてSj3N4以外にもSi州
y0zや山203等からなるものを用いてもよい。また
導電型の変換も勿論可能である。本発明は上述の如く、
互いに隣り合うメモリ−部の互いに対向する側部とチャ
ンネルストッパー領域の両端部とが半導体基板の表面と
直交する方向において夫々重なり合うように構成してい
るので、メモリー部の周辺を通じてのりーク電流を減少
させることが出釆、パワーロス、回路設計の点で有利と
なる。For example, the size of the channel stopper may be varied in order to reduce leakage current and improve breakdown voltage. Also,
As the insulating layer on the Si02 layer, in addition to Sj3N4, a layer made of Si state y0z, mountain 203, etc. may be used. Furthermore, it is of course possible to convert the conductivity type. As mentioned above, the present invention
Since the opposing side portions of adjacent memory portions and both ends of the channel stopper region overlap each other in the direction perpendicular to the surface of the semiconductor substrate, leakage current is prevented from flowing through the periphery of the memory portion. Reducing it is advantageous in terms of output, power loss, and circuit design.
またチャンネルストッパー領域をソース領域及びドレィ
ン領域の間のほぼ中央に位置させるように構成している
ので、チャンネルストッパー領域とソース領域及びドレ
ィン領域との間の距離を十分に取ることが出来て、素子
を大きくすることなく耐圧を大中に向上させることが出
来ると共に、チャンネルストッパー領域の位置ずれに対
してその許容範囲を大きくすることが出釆るために製造
工程を簡単にすることが出来る。In addition, since the channel stopper region is configured to be located approximately in the center between the source and drain regions, a sufficient distance can be maintained between the channel stopper region and the source and drain regions, and the device The withstand voltage can be greatly improved without increasing the voltage, and the manufacturing process can be simplified because the tolerance range for misalignment of the channel stopper region can be increased.
然も従来のようにチャンネルストッパー領域をイオン注
入法によって形成しなくて済むから、アニーリング等の
点からみて工程を簡略化することが出来る。Moreover, since the channel stopper region does not have to be formed by ion implantation as in the conventional method, the process can be simplified in terms of annealing and the like.
第1図〜第5図は従釆例を示すものであって、第1図は
MNOS型メモリーの一部分の平面図、第2図は第1図
における0ーロ線断面図、第3図は第1図におけるm−
m線一部拡大断面図、第4図はメモリー部及びこの周辺
に関する等価回路図、第5図はメモリー状態におけるV
THのシフトを示す曲線図である。
第6図は別の従来例を示すものであって、MNOS型メ
モリーの一部分の断面図である。第7図〜第11図は本
発明をIC化されたM皿OS型メモリーに適用した実施
例を示すものであって、第7図は第1の実施例によるメ
モリーの一部分の平面図、第8図は第7図における風一
風線断面図、第9図は第7図におけるK−X線一部拡大
断面図、第10図は第2の実施例によるメモリーの一部
分の拡大断面図、第11図は第3の実施例によるメモリ
ーの一部分の断面図である。なお図面に用いられている
符号において、2はソース領域、3はドレィン領域、7
はゲート電極、8は傾斜部、21,31,41はチャン
ネルストッパーである。第1図
第2図
第3図
第4図
第5図
第6図
第7図
第8図
第9図
第10図
第11図Figures 1 to 5 show examples of follow-up functions, in which Figure 1 is a plan view of a portion of an MNOS type memory, Figure 2 is a sectional view taken along the 0-Ro line in Figure 1, and Figure 3 is a sectional view of a portion of the MNOS type memory. m- in Figure 1
Fig. 4 is an equivalent circuit diagram of the memory section and its surroundings, and Fig. 5 is a partial enlarged cross-sectional view of the m-line.
It is a curve diagram showing the shift of TH. FIG. 6 shows another conventional example, and is a sectional view of a portion of an MNOS type memory. 7 to 11 show an embodiment in which the present invention is applied to an IC-based M-disk OS type memory, in which FIG. 7 is a plan view of a portion of the memory according to the first embodiment, and FIG. 8 is a wind line sectional view in FIG. 7, FIG. 9 is a partially enlarged sectional view taken along the line K-X in FIG. 7, and FIG. 10 is an enlarged sectional view of a portion of the memory according to the second embodiment. FIG. 11 is a cross-sectional view of a portion of the memory according to the third embodiment. In addition, in the symbols used in the drawings, 2 is the source region, 3 is the drain region, and 7 is the source region.
8 is a gate electrode, 8 is an inclined portion, and 21, 31, and 41 are channel stoppers. Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11
Claims (1)
ース領域と、前記半導体基板の前記表面に設けられてい
る第1導電型のドレイン領域と、これらのソース領域と
ドレイン領域とを結ぶ第1の方向とは直交する第2の方
向に沿つて互いに間隔を有するように前記ソース領域及
び前記ドレイン領域の間に配置されているメモリー部と
、これらのメモリー部の間において前記半導体基板の表
面に設けられている第2導電型のチヤンネルストツパー
領域とを夫々具備し、前記メモリー部は前記半導体基板
上に順次積層されている薄い絶縁層と電荷を保持し得る
絶縁層とゲート電極とを夫々有し、前記チヤンネルスト
ツパー領域は前記ソース領域及び前記ドレイン領域の間
のほぼ中央に位置するようにこれらのソース領域及びド
レイン領域から夫々ほぼ等距離ずつ離れており、前記チ
ヤンネルストツパー領域の両端部は前記表面と直交する
方向において互いに隣り合う前記メモリー部の互いに対
向する側部と夫々重なり合つていることを特徴とするメ
モリー装置。1 A source region of a first conductivity type provided on the surface of a semiconductor substrate, a drain region of a first conductivity type provided on the surface of the semiconductor substrate, and a first conductivity type drain region connecting these source regions and drain regions. a memory portion disposed between the source region and the drain region so as to be spaced apart from each other along a second direction perpendicular to the first direction; and a surface of the semiconductor substrate between the memory portions. channel stopper regions of a second conductivity type provided in the semiconductor substrate, and the memory portion includes a thin insulating layer, an insulating layer capable of retaining charge, and a gate electrode, which are sequentially laminated on the semiconductor substrate. the channel stopper region is spaced approximately equidistant from the source region and the drain region so as to be located approximately centrally between the source region and the drain region; A memory device characterized in that both end portions overlap mutually opposing side portions of the memory portions that are adjacent to each other in a direction perpendicular to the surface.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP51013051A JPS6035829B2 (en) | 1976-02-09 | 1976-02-09 | memory device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP51013051A JPS6035829B2 (en) | 1976-02-09 | 1976-02-09 | memory device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5296875A JPS5296875A (en) | 1977-08-15 |
JPS6035829B2 true JPS6035829B2 (en) | 1985-08-16 |
Family
ID=11822317
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP51013051A Expired JPS6035829B2 (en) | 1976-02-09 | 1976-02-09 | memory device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6035829B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6323341B2 (en) * | 1983-10-13 | 1988-05-16 | Riken Keikinzoku Kogyo Kk | |
JPH0421779B2 (en) * | 1986-04-25 | 1992-04-13 | Tsuzuki Kk | |
JPH0513220B2 (en) * | 1986-04-11 | 1993-02-22 | Riken Keikinzoku Kogyo Kk | |
JPH0510097Y2 (en) * | 1988-03-15 | 1993-03-12 | ||
JPH0520827Y2 (en) * | 1989-03-24 | 1993-05-28 | ||
JPH0544505B2 (en) * | 1986-04-11 | 1993-07-06 | Riken Keikinzoku Kogyo Kk | |
JPH0544420Y2 (en) * | 1988-07-20 | 1993-11-11 |
-
1976
- 1976-02-09 JP JP51013051A patent/JPS6035829B2/en not_active Expired
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6323341B2 (en) * | 1983-10-13 | 1988-05-16 | Riken Keikinzoku Kogyo Kk | |
JPH0513220B2 (en) * | 1986-04-11 | 1993-02-22 | Riken Keikinzoku Kogyo Kk | |
JPH0544505B2 (en) * | 1986-04-11 | 1993-07-06 | Riken Keikinzoku Kogyo Kk | |
JPH0421779B2 (en) * | 1986-04-25 | 1992-04-13 | Tsuzuki Kk | |
JPH0510097Y2 (en) * | 1988-03-15 | 1993-03-12 | ||
JPH0544420Y2 (en) * | 1988-07-20 | 1993-11-11 | ||
JPH0520827Y2 (en) * | 1989-03-24 | 1993-05-28 |
Also Published As
Publication number | Publication date |
---|---|
JPS5296875A (en) | 1977-08-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4115914A (en) | Electrically erasable non-volatile semiconductor memory | |
KR910007377B1 (en) | Semiconductor device | |
JP2546150Y2 (en) | Electrically programmable and erasable memory cells | |
KR930011232A (en) | Nonvolatile semiconductor memory device and manufacturing method thereof | |
US4454524A (en) | Device having implantation for controlling gate parasitic action | |
US4316203A (en) | Insulated gate field effect transistor | |
JPH11135654A (en) | Split-gate flash memory cell structure | |
JPS6042634B2 (en) | charge coupled device | |
JPH11330280A (en) | Manufacture of flash memory cell structure by erasing/ writing channel and its operation method | |
KR20050017861A (en) | High voltage transistor and method for manufacturing the same | |
JPH03119765A (en) | Nonvolatile semiconductor storage device | |
JPS6035829B2 (en) | memory device | |
US4063267A (en) | MNOS Memory device | |
KR0172548B1 (en) | Semiconductor device and method of manufacturing the same | |
JPH03132079A (en) | Semiconductor involatile memory device | |
JP3869066B2 (en) | Nonvolatile semiconductor memory device and manufacturing method thereof | |
JPS62224076A (en) | Semiconductor integrated circuit device | |
JP3973616B2 (en) | Method for manufacturing nonvolatile semiconductor memory device | |
KR950021134A (en) | Contact formation method of semiconductor device | |
KR100268905B1 (en) | Nonvolatile memory cell and method for manufacturing the same | |
KR100299595B1 (en) | Split Gate Flash Memory Cell Structure | |
JPH0493086A (en) | Semiconductor device and manufacture thereof | |
JPS58121681A (en) | Nonvolatile semiconductor memory cell | |
JPS5924548B2 (en) | Method for manufacturing semiconductor memory device | |
JPS63281470A (en) | Semiconductor device |