JPS6034062B2 - Air fuel ratio detection device - Google Patents
Air fuel ratio detection deviceInfo
- Publication number
- JPS6034062B2 JPS6034062B2 JP54064041A JP6404179A JPS6034062B2 JP S6034062 B2 JPS6034062 B2 JP S6034062B2 JP 54064041 A JP54064041 A JP 54064041A JP 6404179 A JP6404179 A JP 6404179A JP S6034062 B2 JPS6034062 B2 JP S6034062B2
- Authority
- JP
- Japan
- Prior art keywords
- electron conductive
- fuel ratio
- gas
- solid electrolyte
- conductive layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/403—Cells and electrode assemblies
- G01N27/406—Cells and probes with solid electrolytes
- G01N27/407—Cells and probes with solid electrolytes for investigating or analysing gases
- G01N27/4073—Composition or fabrication of the solid electrolyte
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/403—Cells and electrode assemblies
- G01N27/406—Cells and probes with solid electrolytes
- G01N27/4067—Means for heating or controlling the temperature of the solid electrolyte
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/403—Cells and electrode assemblies
- G01N27/406—Cells and probes with solid electrolytes
- G01N27/407—Cells and probes with solid electrolytes for investigating or analysing gases
- G01N27/4075—Composition or fabrication of the electrodes and coatings thereon, e.g. catalysts
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Molecular Biology (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Measuring Oxygen Concentration In Cells (AREA)
- Measuring Volume Flow (AREA)
Description
【発明の詳細な説明】
本発明は、酸素イオン伝導性固体電解質を用いた空燃比
検出装置に係り、とくに被検ガス流に対する異万性が少
なく応答性にもすぐれた空燃比検出装置に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an air-fuel ratio detection device using an oxygen ion conductive solid electrolyte, and particularly to an air-fuel ratio detection device that has less anomaly with respect to a gas flow to be detected and has excellent responsiveness.
酸素イオン伝導性固体電解質を用いて空燃比(空気と燃
料との比率)を検出し、燃焼条件を制御しようとする試
みは、自動車用内燃機関をはじめ各種の燃焼機器の分野
において盛んにおこなわれている。Attempts to detect the air-fuel ratio (ratio of air and fuel) and control combustion conditions using oxygen ion-conducting solid electrolytes have been actively conducted in the field of various combustion equipment, including internal combustion engines for automobiles. ing.
このような空燃比検出装置には種々の構造のものが開発
されているが、第1図はその一例を示すものである。Various types of air-fuel ratio detection devices have been developed, and FIG. 1 shows one example.
すなわち、平面矩形状の絶縁体基板1上に電子伝導性層
2,ガス透過性の酸素イオン伝導性固体電解質層3およ
び電子伝導性層4を順次積層して全体的に略平板状の酸
素センサ本体を形成し、前記両電子伝導性層2,4間に
リード線5を介して直流電流を強制的に流す直流電源装
置6を設けると共に、両電子伝導性層2,4問に生ずる
起電力を検出するための電圧測定装置7をそなえた構造
をなしている。このような空燃比検出装置では、直流電
源装置6によって、例えば電子伝導性層2から電子伝導
性層4に向けて直流電流を流すと、電子伝導性層4から
電子伝導性層2に向けて固体電解質層3内を酸素イオン
が流れ、電子伝導性層2と団体電解質層3との界面で形
成された酸素分子がガス透過性の固体電解質層3を通し
て拡散し、前記酸素イオンの流入と酸素分子の拡散とが
均衡した高めの酸素分圧が前記界面で維持されることと
なり、この基準の酸素分圧と被検ガス中の酸素分圧との
差に対応した出力電圧が両軍子伝導性層2,4の間で発
生し、これによって空燃比の検出が可能となる。That is, an electron conductive layer 2, a gas-permeable oxygen ion conductive solid electrolyte layer 3, and an electron conductive layer 4 are sequentially laminated on an insulating substrate 1 having a rectangular planar shape to form an oxygen sensor having an overall substantially flat shape. A DC power supply device 6 is provided which forms the main body and forces a direct current to flow between the electronically conductive layers 2 and 4 via a lead wire 5, and also controls the electromotive force generated in the electronically conductive layers 2 and 4. The structure includes a voltage measuring device 7 for detecting the voltage. In such an air-fuel ratio detection device, when a direct current is passed from the electron conductive layer 2 to the electron conductive layer 4 by the DC power supply device 6, the direct current flows from the electron conductive layer 4 to the electron conductive layer 2. Oxygen ions flow through the solid electrolyte layer 3, and oxygen molecules formed at the interface between the electronically conductive layer 2 and the collective electrolyte layer 3 diffuse through the gas-permeable solid electrolyte layer 3, causing the inflow of the oxygen ions and the oxygen A high oxygen partial pressure balanced with molecular diffusion is maintained at the interface, and the output voltage corresponding to the difference between this standard oxygen partial pressure and the oxygen partial pressure in the test gas is This occurs between the magnetic layers 2 and 4, which makes it possible to detect the air-fuel ratio.
このような構造の酸素センサでは、その本体を比較的簡
素な構造で小型のものにできる点ですぐれているが、次
に示すような問題を残していることがわかった。Although the oxygen sensor having such a structure is superior in that the main body can be made compact with a relatively simple structure, it has been found that the following problems remain.
つまり、■ 平面矩形状の基板1の片面側に電子伝導性
層2,固体電解質層3,電子伝導性層4が順次積層され
て酸素センサ本体が全体として平板状をなしているため
、被検ガスの流れに対して酸素センサ本体をどの方向に
配置するかによって異なった特性を生ずることである。In other words, (1) the electron conductive layer 2, the solid electrolyte layer 3, and the electron conductive layer 4 are sequentially laminated on one side of the substrate 1, which has a rectangular planar shape, and the oxygen sensor body has a flat shape as a whole; Different characteristics are produced depending on the direction in which the oxygen sensor body is placed with respect to the gas flow.
すなわち、平板状酸素センサ本体の積層面に対して被検
ガス流が直角方向(第1図矢印A方向)に流れる場合に
その応答性は最良となるが、上記矢印A方向と反対方向
(第1図矢印B方向)に被検ガスが流れる場合にその応
答性が低下する。したがって、酸素センサ本体を取付け
るに際してはその方向を十分に考慮せね‘まならない。
■ 絶縁体基板1を構造基体としているため応答性に限
度を生ずることである。In other words, the response is best when the gas flow to be detected flows in a direction perpendicular to the laminated surface of the flat oxygen sensor body (direction of arrow A in Figure 1). When the test gas flows in the direction of arrow B in Figure 1), its responsiveness decreases. Therefore, when installing the oxygen sensor body, the direction must be carefully considered.
(2) Since the insulating substrate 1 is used as the structural base, there is a limit to the responsiveness.
すなわち、酸素センサとしての原理からは、固体電解質
層3およびこの両面の電子伝導性層2,4だけで起電力
を生じ、これら三層のみが温度および被検ガス雰囲気に
対して応答性がよければよいのであるが、実際には構造
基体が必要であってそれにはァルミナ等の絶縁体基板1
が使用されるため、熱容量に限界を生じて応答性にも限
界を生ずることになる。■ 構造基体として平面矩形状
の絶縁体基板1を使用しているため、酸素センサ本体が
ある程度大きくなることである。That is, based on the principle of an oxygen sensor, only the solid electrolyte layer 3 and the electron conductive layers 2 and 4 on both sides generate an electromotive force, and only these three layers have good responsiveness to the temperature and the gas atmosphere to be detected. However, in reality, a structural substrate is required, and it requires an insulating substrate such as alumina.
is used, resulting in a limit to heat capacity and a limit to responsiveness. (2) Since the insulator substrate 1 having a planar rectangular shape is used as a structural base, the oxygen sensor body becomes somewhat large.
すなわち、温度計側に使用される熱電対では非常に狭い
ところでも容易に適用可能であるのに比べて、第1図に
示すものでは非常に狭い部分における酸素濃度計測の適
用に限度がある。本発明の目的は、被検ガス流に対する
異方性が小さく、非常に簡素な構造で4・型のものにで
きると共に、応答性にもきわめてすぐれた空燃比検出装
置を提供することにある。That is, while the thermocouple used on the thermometer side can be easily applied even in very narrow areas, the one shown in FIG. 1 has a limit to the application of oxygen concentration measurement in very narrow areas. SUMMARY OF THE INVENTION An object of the present invention is to provide an air-fuel ratio detection device that has a small anisotropy with respect to a gas flow to be detected, can be made into a 4-type device with a very simple structure, and has excellent responsiveness.
本発明の空燃比検出装置は、Au,Agおよび白金族元
素の単体もしくは合金からなる電子伝導性線の周囲に、
該電子伝導性線と直接接触するガス透過性の酸素イオン
伝導性固体電解質層を設け、前記固体電解質層の周囲に
該固体電解質層と直接接触する電子伝導性層を設け、前
記電子伝導性層を被榛ガスと直接的あるいは保護層等を
介して間接的に接触可能にすると共に、前記電子伝導性
線と電子伝導性層との間に生ずる起電力を検出する電圧
測定装置をそなえ、さらに必要により前記電子伝導性線
と電子伝導性層との間に電流を強制的に流す直流電源装
置をそなえたことを特徴としている。The air-fuel ratio detection device of the present invention includes an electronically conductive wire made of Au, Ag, and a platinum group element or an alloy.
A gas permeable oxygen ion conductive solid electrolyte layer is provided in direct contact with the electron conductive wire, an electron conductive layer is provided in direct contact with the solid electrolyte layer around the solid electrolyte layer, and the electron conductive layer is provided with an electron conductive layer in direct contact with the solid electrolyte layer. contact with the exposed gas directly or indirectly through a protective layer or the like, and further comprising a voltage measuring device for detecting the electromotive force generated between the electron conductive wire and the electron conductive layer. The present invention is characterized in that it is provided with a DC power supply device for forcing a current to flow between the electron conductive wire and the electron conductive layer, if necessary.
以下、本発明の実施例を図面に基づいて詳細に説明する
。Embodiments of the present invention will be described in detail below with reference to the drawings.
第2図は本発明の一実施例における空燃比検出装置の模
式的な縦断面説明図であって、電子伝導性線(円形また
は角形断面)12の周囲に該電子伝導性線12と直接接
触するようにしてガス透過性の酸素イオン伝導性固体電
解質層13を設け、前記固体電解質層13の周囲に該固
体電解質層13と直接接触するようにして電子伝導性層
14を設け、前記電子伝導性線12と電子伝導性層14
との間に生ずる起電力を検出する電圧測定装置17をリ
ード線15により接続した構造をなしている。FIG. 2 is a schematic vertical cross-sectional explanatory diagram of an air-fuel ratio detection device according to an embodiment of the present invention, in which the area around the electronically conductive wire (circular or square cross section) 12 is in direct contact with the electronically conductive wire 12. A gas permeable oxygen ion conductive solid electrolyte layer 13 is provided, an electron conductive layer 14 is provided around the solid electrolyte layer 13 in direct contact with the solid electrolyte layer 13, and the electron conductive Sexual line 12 and electronic conductive layer 14
A voltage measuring device 17 for detecting the electromotive force generated between the two is connected by a lead wire 15.
このような構造のものでは、酸素イオン伝導性固体電解
質層13と電子伝導性線12との界面における酸素分圧
が基準となり、被検ガスすなわち排ガス中の酸素分圧が
大きく変動する場合、たとえば自動車用内燃機関の排ガ
スのように酸素分圧が非常に低いリッチガス(燃料過剰
側排ガス)と酸素分圧が非常に高いリーンガス(空気過
剰側排ガス)とが交互に流れている場合にその過渡期に
おいて出力を発生し、理論空燃比の検出が可能となる。In such a structure, the oxygen partial pressure at the interface between the oxygen ion conductive solid electrolyte layer 13 and the electron conductive wire 12 is used as a reference, and when the oxygen partial pressure in the test gas, that is, the exhaust gas fluctuates greatly, e.g. The transition period occurs when rich gas (exhaust gas on the excess fuel side) with a very low oxygen partial pressure and lean gas (exhaust gas on the excess air side) with a very high oxygen partial pressure flow alternately, such as the exhaust gas from an automobile internal combustion engine. It generates an output at , making it possible to detect the stoichiometric air-fuel ratio.
第3図は本発明の他の実施例を示すもので、電子伝導性
線12と電子伝導性層14との間に電流を強制的に流す
直流電源装置16をそなえた場合である。このように、
直流電源好ましくは定電流直流電源を接続してガス透過
性の固体電解質層13内で酸素イオンの流れを強制的に
生じさせるとともに酸素分子の拡散を生じさせることに
よって、固体電解質層13と電子伝導性線12との界面
における酸素分圧をより一定したものとすることができ
、起電力特性の安定したものが得られる。第4図は本発
明のさらに他の実施例を示すもので、前記第2図および
第3図に示すものでは電子伝導性層14が膜状であった
のに対し、コイル状にした場合である。FIG. 3 shows another embodiment of the present invention, in which a DC power supply device 16 for forcing a current to flow between the electron conductive wire 12 and the electron conductive layer 14 is provided. in this way,
Electron conduction between the solid electrolyte layer 13 and the solid electrolyte layer 13 is established by connecting a DC power source, preferably a constant current DC power source, to forcibly generate a flow of oxygen ions and to cause diffusion of oxygen molecules within the gas-permeable solid electrolyte layer 13. The oxygen partial pressure at the interface with the sex wire 12 can be made more constant, and stable electromotive force characteristics can be obtained. FIG. 4 shows still another embodiment of the present invention, in which the electron conductive layer 14 is in the form of a coil, whereas in the ones shown in FIGS. 2 and 3, it is in the form of a coil. be.
このようにすれば、前記第2図および第3図に示す如く
電子伝導性層14に直接あらためてリード線を接続する
必要がない。前述したように、本発明では構造基体とし
て電子伝導性線(円形または角形断面)12を用い、そ
の周囲に固体電解質層13および電子伝導性層14を設
けているため、とくに円周方向には異万性が全くなく、
被検ガス流がいかなる方向の場合でも同様の起電力特性
を得ることができる。また、第1図に示すような絶縁体
基板を使用していないため酸素センサ本体の熱容量をさ
らに小さくすることができ、被検ガス雰囲気ならびに温
度に対する追随性すなわち酸素センサとしての応答性に
きわめてすぐれたものとなる。この点に関し、電子伝導
性線12の太さは構造基体としての強度を保持する範囲
内で小さく、たとえば円形断面の場合直径0.5側以下
にするのが望ましく、固体電解質層13の厚さは0.1
肋以下とするのが望ましい。このようにすれば非常に小
さな酸素ガス検出部としての酸素センサ本体が得られる
ため、従来の熱電対に匹敵する汎用性をもたらすことが
できる。上述した電子伝導性線12としては、Au,A
gおよびPt,Pdなどの白金族元素のように高温で酸
化物を作らない安定な金属紬線を使用するのが好ましい
。In this way, there is no need to directly connect a lead wire to the electron conductive layer 14 as shown in FIGS. 2 and 3. As mentioned above, in the present invention, the electron conductive wire (circular or square cross section) 12 is used as the structural base, and the solid electrolyte layer 13 and the electron conductive layer 14 are provided around it, so that the wire is particularly thin in the circumferential direction. There is no anomaly,
Similar electromotive force characteristics can be obtained regardless of the direction of the gas flow to be detected. In addition, since it does not use an insulating substrate as shown in Figure 1, the heat capacity of the oxygen sensor body can be further reduced, and it has excellent responsiveness as an oxygen sensor, in other words, the ability to follow the test gas atmosphere and temperature. It becomes something. In this regard, the thickness of the electron conductive wire 12 is preferably as small as possible within a range that maintains its strength as a structural base, for example, in the case of a circular cross section, it is desirable to have a diameter of 0.5 or less, and the thickness of the solid electrolyte layer 13 is 0.1
It is preferable to keep it below the ribs. In this way, a very small oxygen sensor body serving as an oxygen gas detection section can be obtained, which can provide versatility comparable to that of conventional thermocouples. The above-mentioned electronic conductive wire 12 is made of Au, A
It is preferable to use stable metal pongee wires that do not form oxides at high temperatures, such as platinum group elements such as g and platinum group elements such as Pt and Pd.
あるいは、Ag−Pd,Au−PdのようなAu,Ag
および白金族元素の合金でもよい。また、酸素イオン固
体電解質層13としては、Ca0,Y203,Sr0,
Mg0,Tho2,W03,Ta205などで安定化し
たZの2、あるいはNb205,Sの,W03,Ta2
05,Y203などで安定化したBi203、さらには
Tho2−Y203,Ca○−Y203などの既知のも
のを素材とすることができ、電子伝導性線12の周囲に
形成するに際してはスパッタリングやイオンプレーティ
ング等の物理的な蒸着法、電気化学的な方法、あるいは
ペーストを用いた高温焼成法などを用いることができる
。さらに、電子伝導性層14としては、触媒作用のない
Au,AgおよびSIC、あるいはTj02,Coo,
いCの3などの酸化物半導体、または触媒作用のあるR
へPd,Rh,0s,lr,Pt等の白金族元素の単体
ならびにこれらの合金、さらには白金族元素と卑金属元
素との合金などを素材とすることができ、固体電解質層
13の周囲に形成するに際してはスパッタリングやイオ
ンプレーティング等の物理的な蒸着法、めつきなどの電
気化学的な方法、あるいはペーストを用いた高温焼成法
などを採用することができ、さらには第4図に示すよう
に紬線をコイル状に巻きつけることもできる。Or Au, Ag such as Ag-Pd, Au-Pd
It may also be an alloy of platinum group elements. Further, as the oxygen ion solid electrolyte layer 13, Ca0, Y203, Sr0,
Z2 stabilized with Mg0, Tho2, W03, Ta205, etc. or Nb205, S, W03, Ta2
Bi203 stabilized with 05, Y203, etc., or known materials such as Tho2-Y203, Ca○-Y203, etc. can be used as the material, and sputtering or ion plating can be used to form it around the electron conductive line 12. A physical vapor deposition method such as, an electrochemical method, a high temperature firing method using a paste, etc. can be used. Further, as the electron conductive layer 14, Au, Ag and SIC without catalytic action, or Tj02, Coo,
Oxide semiconductors such as C3 or catalytic R
The material can be a single platinum group element such as Pd, Rh, 0s, lr, or Pt, an alloy thereof, or an alloy of a platinum group element and a base metal element, and is formed around the solid electrolyte layer 13. For this purpose, physical vapor deposition methods such as sputtering and ion plating, electrochemical methods such as plating, or high-temperature firing methods using paste can be used. You can also wrap the Tsumugi wire into a coil.
その上、前記酸素センサ本体の表面に保護層を設けるの
も望ましく、この場合の保護層としては、Ca○−Zr
02(カルシウムジルコネート),山202(アルミナ
),スピネルなどを浸漬焼成し、あるいはプラズマ溶射
して付着させたものなどを用いることができる。なお、
固体電解質の酸素イオン伝導度は低温になると悪化する
ため、上記保護層内に導電体を設けて発熱可能にし、あ
るいは酸素センサ本体を発熱雰囲気中に設けておくのも
望ましい。Furthermore, it is also desirable to provide a protective layer on the surface of the oxygen sensor body, and in this case, the protective layer may be Ca○-Zr.
02 (calcium zirconate), Yama 202 (alumina), spinel, etc., deposited by immersion firing or plasma spraying can be used. In addition,
Since the oxygen ion conductivity of the solid electrolyte deteriorates at low temperatures, it is also desirable to provide a conductor within the protective layer to enable heat generation, or to place the oxygen sensor body in a heat generating atmosphere.
実験例 1
第5図ないし第7図は本発明の実験例1において製造し
た空燃比検出装置を示すものである。Experimental Example 1 FIGS. 5 to 7 show an air-fuel ratio detection device manufactured in Experimental Example 1 of the present invention.
製造に際しては、まず電子伝導性線12として使用され
る直径0.2肋,長さ3仇肌の白金線の一端側2脚の間
を団体電解質ペーストに浸潰させる。このとき使用した
固体電解質ペーストは、5モル%Y203一Zr02粉
末とラッカーとを重量比で1:1の割合で混合し、混練
したのちさらにシンナーで粘度を約8万センチポアズに
調整したものである。そして、上記浸債の後、100o
o×1時間で乾燥した。ここで得られた固体電解質層1
3(ただし未焼成)の膜厚は約50rmであった。次に
電子伝導性層14としての白金ペーストを前記白金線に
直接接触しないようにして固体電解質層13の表面に浸
債により付着させ、さらにリード線18として使用され
る直径0.2肋,長さ30伽の白金線を前記白金線ペー
スト膜に押しあてて10000×1時間の乾燥をおこな
った。In manufacturing, first, a platinum wire having a diameter of 0.2 ribs and a length of 3 ribs used as the electronic conductive wire 12 is immersed between two legs on one end side in a mass electrolyte paste. The solid electrolyte paste used at this time was a mixture of 5 mol% Y203-Zr02 powder and lacquer at a weight ratio of 1:1, kneaded, and then adjusted to a viscosity of approximately 80,000 centipoise with thinner. . After the above bond immersion, 100o
It was dried at OX for 1 hour. Solid electrolyte layer 1 obtained here
The film thickness of No. 3 (unfired) was approximately 50 rm. Next, a platinum paste as the electron conductive layer 14 is attached to the surface of the solid electrolyte layer 13 by bonding without directly contacting the platinum wire, and then a platinum paste with a diameter of 0.2 ribs and a length to be used as the lead wire 18 is applied. A 30 mm platinum wire was pressed against the platinum wire paste film and dried for 1 hour at 10,000 mm.
この後、前記団体電解質ペースト膜および白金ペースト
膜を1400oo×3時間の加熱により焼成をおこなっ
た。この際の昇温速度は室温から140000まで60
00/hrであった。得られた固体電解質層13はガス
透過性を有するものであってその膜厚は約30仏m,電
子伝導性層(白金)14の膜厚は7〜8仏mであった。Thereafter, the collective electrolyte paste membrane and the platinum paste membrane were fired at 1400 oo x 3 hours. The temperature increase rate at this time is 60% from room temperature to 140,000℃.
00/hr. The obtained solid electrolyte layer 13 was gas permeable and had a thickness of about 30 meters, and the thickness of the electron conductive layer (platinum) 14 was 7 to 8 meters.
さらに、プラズマ溶射によってCa○−Zr02(カル
シウムジルコネート)を保護層19として付着させて酸
素センサ本体20を製造した。なお、保護層19の厚さ
は約50仏mであった。第6図および第7図は上記酸素
センサ本体20を絹付けた状態の一例を示すもので、酸
素センサ本体20はステンレス鋼製のルーバー21内に
収められて直接被検ガスにさらされないようにし、被検
ガスはルーバー21に形成した孔21aを通過して酸素
センサ本体2川こ到達し、そして排出される。Furthermore, Ca○-Zr02 (calcium zirconate) was deposited as a protective layer 19 by plasma spraying to manufacture the oxygen sensor body 20. Note that the thickness of the protective layer 19 was approximately 50 mm. Figures 6 and 7 show an example of the oxygen sensor main body 20 attached with silk, and the oxygen sensor main body 20 is housed in a stainless steel louver 21 to prevent it from being directly exposed to the gas to be detected. The test gas passes through the hole 21a formed in the louver 21, reaches the two oxygen sensor bodies, and is then discharged.
酸素センサ本体20はSi02よりなるセラミック接着
剤22によってアルミナ製絶縁管23に接合されており
、該接着剤22はガス封止の役目も果している。また、
絶縁管23は白金線12,18を短絡させないようにし
た孔23a,23bをそなえている。さらに、絶縁管2
3の破損を防止するためその外部にステンレス鋼製のホ
ルダ24をかぶせ、前記ルーバー21を同じくステンレ
ス鋼製のリング25を介して溶接により固定している。
前記白金線12,18は溶接部2‐6においてそれぞれ
ニッケル線27,27と接続され、該ニッケル線27,
27を通過させる孔23a,23b内にはガス封止のた
めのセラミック接着剤を充填している。The oxygen sensor main body 20 is bonded to an alumina insulating tube 23 by a ceramic adhesive 22 made of Si02, and the adhesive 22 also serves as a gas seal. Also,
The insulating tube 23 has holes 23a and 23b to prevent the platinum wires 12 and 18 from being short-circuited. Furthermore, insulation tube 2
In order to prevent the louver 3 from being damaged, a holder 24 made of stainless steel is placed over the outside of the louver 21, and the louver 21 is fixed by welding via a ring 25 also made of stainless steel.
The platinum wires 12 and 18 are connected to nickel wires 27 and 27, respectively, at the welding portion 2-6, and the nickel wires 27 and
The holes 23a and 23b through which the cylindrical member 27 passes are filled with a ceramic adhesive for gas sealing.
また、前記ホルダ24は熔接によって別のホルダ28と
接合され、該ホルダ28はアルミナ粉末29を保持して
いる。このアルミナ粉末29はニッケル線27の短絡を
防止する。前記ホルダ28はロールかしめ部30の形成
によってステンレス鋼製管31と結合されており、該ス
テンレス鋼製管31内には前記アルミナ粉末29のもれ
を防止すると同時にニッケル線27および銅線32の短
絡を防止するためのシリコンゴム製セパレータ33を介
挿させている。Further, the holder 24 is joined to another holder 28 by welding, and the holder 28 holds alumina powder 29. This alumina powder 29 prevents the nickel wire 27 from shorting. The holder 28 is connected to a stainless steel tube 31 by forming a roll caulking portion 30, and the alumina powder 29 is prevented from leaking into the stainless steel tube 31, and the nickel wire 27 and the copper wire 32 are inserted into the stainless steel tube 31. A silicone rubber separator 33 is inserted to prevent short circuits.
上記ニッケル線27と銅線32とは銀ろう付部分34に
より接合されている。さらに、銅線32はシリコンゴム
35によって相互の短絡を防止され、シリコンゴム35
の周囲にシールド線36を設けてロールかしめ部37に
より前記ステンレス鋼製管31とシールド線36とを固
定している。The nickel wire 27 and the copper wire 32 are joined by a silver soldered portion 34. Further, the copper wires 32 are prevented from shorting each other by the silicone rubber 35, and the silicone rubber 35
A shield wire 36 is provided around the stainless steel tube 31 and the shield wire 36 is fixed by a roll caulking portion 37.
上記シールド線36の外側にはナット38が遊隊されて
おり、このナット38を矢印方向にリング25部分まで
移動させてたとえば排気管に固定できるようにしている
。A nut 38 is loosely attached to the outside of the shield wire 36, and the nut 38 can be moved in the direction of the arrow up to the ring 25 and fixed to, for example, an exhaust pipe.
次に、前記した構造の空燃比検出装置を使用して評価試
験をおこなった。Next, an evaluation test was conducted using the air-fuel ratio detection device having the structure described above.
すなわち、温度600℃において、2硯砂間隔でリッチ
ガス(酸素分圧約10‐孤atm)とりーンガス(酸素
分圧約10−3atm)とを交互に流して出力電圧の変
化を調べた。なお、ここでは、電圧測定装置17のプラ
ス側を電子伝導性層14側に接続した。その結果を第8
図に示す。本実験において、排ガスが燃料過剰(リッチ
)の状態に保持されているときは、排ガス中の酸素分圧
と、電子伝導性線12と固体電解質層13の界面での酸
素分圧とは等しいため、出力電圧は0である。That is, at a temperature of 600[deg.] C., rich gas (oxygen partial pressure of about 10-atm) and lean gas (oxygen partial pressure of about 10-3 atm) were alternately flowed at intervals of two inkstones to examine changes in output voltage. Note that here, the positive side of the voltage measuring device 17 was connected to the electron conductive layer 14 side. The results are shown in the 8th section.
As shown in the figure. In this experiment, when the exhaust gas is kept in a fuel-rich state, the oxygen partial pressure in the exhaust gas is equal to the oxygen partial pressure at the interface between the electronic conductive wire 12 and the solid electrolyte layer 13. , the output voltage is 0.
しかし、次に空気過剰(リーン)ガスが流入すると、そ
の瞬間においてネルンストの式により、E=帯洋孝=7
4皿v
の出力が発生する。However, the next time excess air (lean) gas flows in, at that moment, according to Nernst's equation, E = Hirotaka Obi = 7
An output of 4 dishes v is generated.
ところが、電子伝導性層14および固体電解質層13を
通って電子伝導性線12と固体電解質層13との界面に
リーンガスが侵入していくため、前記界面における酸素
分圧と排ガス中の酸素分圧とが等しくなるので、出力電
圧は0に近づく。次に燃料過剰(リッチ)ガスが流入す
ると、その瞬間において、E=帯n特筆〒−胸v
の出力が発生し、リッチガスが固体電解質層13内を通
って拡散するため出力電圧は再び0に近づき、第8図に
示すような起電力特性となる。However, since the lean gas enters the interface between the electron conductive wire 12 and the solid electrolyte layer 13 through the electron conductive layer 14 and the solid electrolyte layer 13, the oxygen partial pressure at the interface and the oxygen partial pressure in the exhaust gas decrease. Since these become equal, the output voltage approaches zero. Next, when fuel excess (rich) gas flows in, at that moment an output of E = band n special mention 〒 - chest v is generated, and as the rich gas diffuses through the solid electrolyte layer 13, the output voltage becomes 0 again. As it approaches, the electromotive force characteristics become as shown in FIG.
このように、リッチガスからリーンガスに切換わった際
に理論空燃比を切ると正の起電力を生じ、リーンガスか
らリッチガスに切換わった際に理論空燃比を切ると負の
起電力を生ずる。なおト電圧測定装置17の接続極性を
逆にすれば起電力の正負も反対になるが、いずれにして
も理論空燃比の検出が可能になる。実験例 2
本実験では、実験例1において述べたとほぼ同じ空燃比
検出装置を用いて評価試験をおこなった。In this way, if the stoichiometric air-fuel ratio is cut when switching from rich gas to lean gas, a positive electromotive force is generated, and if the stoichiometric air-fuel ratio is cut when switching from lean gas to rich gas, a negative electromotive force is generated. Note that if the connection polarity of the voltage measuring device 17 is reversed, the positive and negative electromotive force will also be reversed, but in any case, the stoichiometric air-fuel ratio can be detected. Experimental Example 2 In this experiment, an evaluation test was conducted using almost the same air-fuel ratio detection device as described in Experimental Example 1.
すなわち、実験例1と異なるところは、電子伝導性線1
2と電子伝導性層14とを直流電源装置16(第3図参
照)に接続し、これらの間で強制的に電流を流した点で
異なっている。なお、ここでは直流電源装置16に定電
流直流電源を用い、その負極を電子伝導性層14側に接
続すると共に、この正極を電子伝導性線12側に接続し
た。そこで、温度60000において定電流5仏Aを常
に流しつつ、実験例1の場合と同様にリッチガスとりー
ンガスとを2の軸、間隔で交互に流して出力特性を調べ
た。That is, the difference from Experimental Example 1 is that the electron conductive wire 1
The difference is that 2 and the electron conductive layer 14 are connected to a DC power supply 16 (see FIG. 3), and a current is forced to flow between them. Here, a constant current DC power source was used as the DC power supply device 16, and its negative electrode was connected to the electron conductive layer 14 side, and its positive electrode was connected to the electron conductive wire 12 side. Therefore, while a constant current of 5 A was constantly flowing at a temperature of 60,000, as in Experimental Example 1, rich gas and lean gas were alternately flowed at two axes and intervals to examine the output characteristics.
なお、ここでは電子伝導性線12側を電圧測定装置17
のプラス側に接続しており、測定インピータンスはIM
Oであった。その結果を第9図に示す。この場合、強制
的に電流を流しているために、固体電解質層13を介し
て酸素イオンが常に電子伝導性線12と固体電解質層1
3との界面に流れ込み、この界面で発生した酸素分子が
固体電解質層13を通して拡散しているので、その界面
での酸素分圧が前記酸素イオンの流入と酸素分子の拡散
とが均衡した状態で高くなっている。Note that here, the electronic conductive wire 12 side is connected to the voltage measuring device 17.
The measured impedance is IM.
It was O. The results are shown in FIG. In this case, since the current is forced to flow, oxygen ions are constantly flowing between the electron conductive wire 12 and the solid electrolyte layer 1 through the solid electrolyte layer 13.
Since the oxygen molecules flowing into the interface with 3 and generated at this interface are diffusing through the solid electrolyte layer 13, the oxygen partial pressure at the interface is in a state where the inflow of oxygen ions and the diffusion of oxygen molecules are balanced. It's getting expensive.
このため、リッチガスのように排ガス中の酸素分圧が低
い場合に高い出力電圧を発生し、逆にリーンガスのよう
に排ガス中の酸素分圧が高い場合には出力電圧が低くな
る。また、同じリッチガスであってもさらに空燃比を変
えて測定したところ第10図に示す結果を得た。一方、
定電流直流電源装置16との接続を反対にし、その正極
を電子伝導性層14側に接続すると共に、その負極を電
子伝導性線12側に接続して試験をおこなった。For this reason, a high output voltage is generated when the oxygen partial pressure in the exhaust gas is low, such as in rich gas, and conversely, when the oxygen partial pressure in the exhaust gas is high, as in lean gas, the output voltage is low. Furthermore, even when using the same rich gas, measurements were performed with the air-fuel ratio changed, and the results shown in FIG. 10 were obtained. on the other hand,
The test was conducted by reversing the connection to the constant current DC power supply 16, connecting the positive electrode to the electron conductive layer 14 side, and connecting the negative electrode to the electron conductive wire 12 side.
この場合、第9図に示す状態と反対に、排ガス中の酸素
分圧が高いリーンガスのときに高い出力電圧を発生し、
排ガス中の酸素分圧が低いリッチガスのときに出力電圧
が低く出た。また、同じリーンガスであってもさらに空
燃比を変えて測定したところ第11図に示す結果を得た
。実験例 3
第12図は本発明の実験例3において製造した空燃比検
出装置の酸素センサ本体20を示すものである。In this case, contrary to the situation shown in FIG. 9, a high output voltage is generated when the exhaust gas is a lean gas with a high oxygen partial pressure,
The output voltage was low when the exhaust gas was a rich gas with a low oxygen partial pressure. Further, even though the same lean gas was used, the results shown in FIG. 11 were obtained when the air-fuel ratio was further changed. Experimental Example 3 FIG. 12 shows the oxygen sensor main body 20 of the air-fuel ratio detection device manufactured in Experimental Example 3 of the present invention.
製造に際しては、まず電子伝導性線12として使用され
る直径0.2肌,長さ30柳の白金線の一端側2側の間
を固体電解質ペーストに浸潰させる。In manufacturing, first, a platinum wire having a diameter of 0.2 mm and a length of 30 willow used as the electronic conductive wire 12 is immersed in a solid electrolyte paste between one end and two sides.
このとき使用した固体電解質ペーストは5モル%Y20
3−Zの2粉末とラッカーとを重量比で1:1の割合で
混合し、混練したのちさらにシンナーで粘度を約8万セ
ンチポィズに調整したものである。そして、上記浸債の
後、100午○×1時間で乾操した。ここで得られた固
体電解質層13(ただし未焼成)の膜厚は約50〆mで
あった(第12図a参照)。次に、同じく直径0.2側
の白金線の一端側を第12図aに示す固体電解質層13
のまわりに巻きつけてコイル状の電子伝導性層14を形
成した。なお、白金線の一端側をコイル状に巻きつける
に際しては前記電子伝導性線12の池端側を折り返えし
て巻きつけ、その後両者を切断するようにしてもよい。
続いて、固体電解質層13を焼結させるために1400
00×3時間の焼成をおこなった。The solid electrolyte paste used at this time was 5 mol% Y20
The two powders of 3-Z and lacquer were mixed at a weight ratio of 1:1, kneaded, and then the viscosity was adjusted to about 80,000 centipoise with thinner. After the above-mentioned soaking, drying was carried out for 1 hour at 100 pm. The thickness of the solid electrolyte layer 13 (unfired) thus obtained was about 50 m (see FIG. 12a). Next, the solid electrolyte layer 13 shown in FIG.
A coiled electronically conductive layer 14 was formed by winding it around the . Incidentally, when winding one end of the platinum wire into a coil, the end of the electronically conductive wire 12 may be folded back and wound, and then both may be cut.
Subsequently, in order to sinter the solid electrolyte layer 13,
Firing was performed for 3 hours.
このときの昇温速度は室温から140000まで600
0/hrであった。得られた焼成後の固体電解質層13
の膜厚は約30仏mで酸素ガスを通過しうる程度の多孔
質であった。その後さらにCao−Zの2をプラズマ溶
射により保護層19として付着させて酸素センサ本体2
0を製造した。そこで、上記酸素センサ本体20を第7
図に示すようなル−バー21内に収容し、それぞれ白金
線よりなる電子伝導性線12および電子伝導性層14を
ニッケル線27に接続して評価試験をおこなったところ
、実験例1(温度600℃で2硯砂間隔でリッチガスと
りーンガスとを交互に流す)と同様の試験では第8図に
示すような、また実験例2(直流電源装置16を接続し
て同様にリッチガスとりーンガスとを交互に流す)と同
機の試験では第9図に示すような起電力特性を得ること
ができた。The temperature increase rate at this time is 600 from room temperature to 140,000
It was 0/hr. Obtained solid electrolyte layer 13 after firing
The film had a thickness of about 30 mm and was porous enough to allow oxygen gas to pass through. Thereafter, Cao-Z 2 was further deposited as a protective layer 19 by plasma spraying to form the oxygen sensor body 2.
0 was manufactured. Therefore, the oxygen sensor main body 20 is
An evaluation test was carried out by placing the electron conductive wire 12 and the electron conductive layer 14 made of platinum wire in a louver 21 as shown in the figure and connecting them to a nickel wire 27. A similar test was carried out in which rich gas and lean gas were alternately flowed at 600°C at intervals of two inkstones, as shown in FIG. In tests using the same machine, we were able to obtain the electromotive force characteristics shown in Figure 9.
比較例
第13図は従来の平板型酸素センサ本体(第1図参照)
の製造工程を示す説明図であって、第13図aに示すア
ルミナ基板1(5×4xo.6肋)上に、第13図bに
斜線で示すような電子伝導性層2を形成するための白金
ペーストを印刷し、10000×1時間で乾燥させたの
ち大気中で1300qo×1時間の焼成をおこなった。Comparative example Figure 13 shows the conventional flat plate oxygen sensor body (see Figure 1)
FIG. 13 is an explanatory diagram showing the manufacturing process for forming an electron conductive layer 2 as shown by diagonal lines in FIG. 13 b on an alumina substrate 1 (5×4×0.6 ribs) shown in FIG. 13 a. A platinum paste was printed, dried at 10,000 x 1 hour, and then fired at 1,300 qo x 1 hour in the air.
ここで得られた電子伝導性層2の膜厚は5〜6仏mであ
った。次に固体電解質層3を形成するために第13図c
に斜線で示す部分に固体電解質ペーストをEO綱した。
そして、10000×1時間で乾燥させたのち1400
00×3時間の焼成をおこなった。ここで得られた固体
電解質層3の膜厚は約50山mでガス透過性を有するも
のであった。さらに電子伝導性層4を形成するために第
13図dに斜線で示す部分に白金べーストを印刷し、1
0び0×1時間で乾燥させたのち大気中で130ぴ0×
1時間の焼成をおこなった。ここで得られた電子伝導性
層4の膜厚は5〜6仏mであった。その後第13図eに
示すようにリード線5を圧着により取り出してアルミナ
保護管に組みこみ、評価試験に供した。そこで、実験例
1において述べた本発明品aと、第13図に示した従来
品を用いて被検ガスをその積層面と直角方向(第1図矢
印A)に流したものbと、同じく被検ガスを矢印Aと反
対の方向(第1図矢印B)に流したものcとについて、
それぞれ排ガスがリーン(空気過剰)側からリッチ(燃
料過剰)側に急激に変化した場合の出力の応答性につい
て比較試験をおこなった。The thickness of the electron conductive layer 2 obtained here was 5 to 6 meters. Next, in order to form the solid electrolyte layer 3, as shown in FIG.
Solid electrolyte paste was applied to the shaded area.
Then, after drying at 10,000 x 1 hour, 1,400
Firing was performed for 3 hours. The solid electrolyte layer 3 obtained here had a thickness of about 50 m and had gas permeability. Furthermore, in order to form an electron conductive layer 4, platinum base was printed on the shaded area in FIG.
After drying at 0 and 0x for 1 hour, dry at 130p and 0x in the air.
Firing was performed for 1 hour. The thickness of the electron conductive layer 4 obtained here was 5 to 6 meters. Thereafter, as shown in FIG. 13e, the lead wire 5 was taken out by crimping, assembled into an alumina protection tube, and subjected to an evaluation test. Therefore, the product a of the present invention described in Experimental Example 1 and the product b using the conventional product shown in FIG. Regarding c, where the test gas is flowed in the direction opposite to arrow A (arrow B in Figure 1),
A comparative test was conducted on the output response when the exhaust gas suddenly changed from lean (excess air) to rich (excess fuel).
なお、いずれの場合にも定電流電源装置6または16の
負極を排ガス側電子伝導性層4または14側にそれぞれ
接続し定電流5仏Aを流し込んだ。その結果を第14図
に示す。なお、第1 4図のaは70000の場合、b
は50000の場合、cは35000の場合の測定値で
あり、縦軸に出力の変化率,横軸に時間をとった。なお
、出力の変化率F(%)は、第15図に示すように、リ
ッチ雰囲気における安定状態での出力電圧VR,リーン
雰囲気における安定状態での出力電圧VL,一定時間経
過後の測定時における出力電圧Vとした場合に、F=美
三手X1oo(%)
で表わされるものであり、第14図から明らかなように
、本発明品aおよび従来品b,cとも高温になるほど応
答性にすぐれている。In either case, the negative electrode of the constant current power supply device 6 or 16 was connected to the exhaust gas side electron conductive layer 4 or 14 side, respectively, and a constant current of 5 A was applied. The results are shown in FIG. In addition, if a in Fig. 14 is 70000, then b
is the measured value in the case of 50,000, and c is the measured value in the case of 35,000, with the vertical axis representing the rate of change in output and the horizontal axis representing time. As shown in Fig. 15, the output change rate F (%) is the output voltage VR in a stable state in a rich atmosphere, the output voltage VL in a stable state in a lean atmosphere, and the output voltage VL in a stable state in a lean atmosphere, and the output voltage VL in a stable state in a lean atmosphere, and the output voltage VL in a stable state in a lean atmosphere, and the output voltage VL in a stable state in a lean atmosphere, as shown in Fig. 15. When the output voltage is V, it is expressed as F = Bisanshi X1oo (%), and as is clear from Fig. 14, the responsiveness of both the invention product a and the conventional products b and c decreases as the temperature increases. It is excellent.
加えて、同一温度の場合には本発明品aと従来品b,c
との間においてかなりの応答性の開きがあり、従来のよ
うに絶縁体基板1を用いない効果が非常に大きくあらわ
れている。さらに、同じ従来品であっても、bとcとで
は応答性にかなりの開きがあり、第1図に示す平板型の
ものでは被検ガスの流れが矢印A方向になるように考慮
して用いなければ良好な応答性を得ることができないこ
とが明らかである。以上のように、本発明によれば、絶
縁体基板のような構造基体を全く用いていないため非常
に簡素で小型のものを得ることができ、部品の軽量化が
可能であるのはもちろん、熱容量が小さいために非常に
応答性にすぐれており、取付空間の狭い窮屈な場所にお
いても従釆の熱電対並みに使用できるため非常に汎用性
に富んでいるほか、性能の異方性をなくすことが可能で
あるためその取付け方向を個々に考慮せねばならないと
いう不具合が全くないなどの非常にすぐれた効果を奏す
る。In addition, in the case of the same temperature, the present invention product a and the conventional products b and c
There is a considerable difference in responsiveness between the two, and the effect of not using the insulating substrate 1 as in the conventional case is very large. Furthermore, even with the same conventional product, there is a considerable difference in response between b and c, and in the flat plate type shown in Figure 1, the flow of the gas to be detected is in the direction of arrow A. It is clear that good responsiveness cannot be obtained unless it is used. As described above, according to the present invention, since no structural base such as an insulating substrate is used, it is possible to obtain a very simple and compact product, and of course, it is possible to reduce the weight of parts. Due to its small heat capacity, it has excellent responsiveness, and can be used as well as conventional thermocouples even in tight installation spaces, making it extremely versatile, and eliminates anisotropy in performance. Since it is possible to do this, there is no problem of having to consider the mounting direction individually, and it has very excellent effects.
第1図は従来の空燃比検出装置の縦断面説明図、第2図
ないし第4図は本発明の各実施例における空燃比検出装
置の榛式的な縦断面説明図、第5図ないし第7図は本発
明の一実験例における空燃比検出装置のそれぞれ酸素セ
ンサ本体部拡大断面図、酸素センサ本体取付部拡大断面
図および酸素センサ取付装置部分断面図、第8図および
第9図は本発明の各実験例における時間と出力電圧との
関係を示すグラフ、第10図および第11図は同じく空
燃比と出力電圧との関係を示すグラフ、第12図a,b
は本発明の他の実験例にお‘・ナる空燃比検出装置のそ
れぞれ製造過程断面説明図および酸素センサ本体断面説
明図、第13図a〜eは本発明の比較例において用いた
従来の酸素センサ本体の製造過程を示す説明図、第14
図a,b,cは本発明品および従来の時間と出力の変化
率との関係を示すグラフ、第15図は出力の変化率を説
明する空気過剰率と出力電圧との関係を示すグラフであ
る。
12・・・・・・電子伝導性線、13・・・・・・酸素
イオン伝導性固体電解質層、14・・・・・・電子伝導
性層、16・・・・・・直流電源装置、17・・・・・
・電圧測定装置。
第1図第2図
第3図
第4図
第5図
第6図
図
ト
船
第8図
第9図
第10図
第11図
第12図
第13図
第14図
第15図FIG. 1 is an explanatory vertical cross-sectional view of a conventional air-fuel ratio detection device, FIGS. 2 to 4 are schematic vertical cross-sectional views of an air-fuel ratio detection device in each embodiment of the present invention, and Figure 7 is an enlarged cross-sectional view of the oxygen sensor main body, an enlarged cross-sectional view of the oxygen sensor main body mounting part, and a partial cross-sectional view of the oxygen sensor mounting device, respectively, of an air-fuel ratio detection device in an experimental example of the present invention. Graphs showing the relationship between time and output voltage in each experimental example of the invention, FIGS. 10 and 11 are graphs showing the relationship between air-fuel ratio and output voltage, and FIGS. 12a and b
13A to 13E are cross-sectional explanatory views of the manufacturing process of the air-fuel ratio detection device and cross-sectional explanatory views of the oxygen sensor body, respectively, which are used in other experimental examples of the present invention. Explanatory diagram showing the manufacturing process of the oxygen sensor body, No. 14
Figures a, b, and c are graphs showing the relationship between time and the rate of change in output for the present invention and the conventional product, and Figure 15 is a graph showing the relationship between excess air ratio and output voltage to explain the rate of change in output. be. 12...Electron conductive wire, 13...Oxygen ion conductive solid electrolyte layer, 14...Electron conductive layer, 16...DC power supply device, 17...
・Voltage measurement device. Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Boat Figure 8 Figure 9 Figure 10 Figure 11 Figure 12 Figure 13 Figure 14 Figure 15
Claims (1)
らなる電子伝導性線の周囲に、該電子伝導性線と直接接
触するガス透過性の酸素イオン伝導性団体電解質層を設
け、前記固体電解質層の周囲に該固体電解質層と直接接
触する電子伝導性層を設け、前記電子伝導性層を被検ガ
スと接触可能にすると共に、前記電子伝導性線と電子伝
導性層との間に生ずる起電力を検出する電圧測定装置を
そなえたことを特徴とする空燃比検出装置。 2 電子伝導性層が膜状である特許請求の範囲第1項記
載の空燃比検出装置。 3 電子伝導性層がコイル状である特許請求の範囲第1
項記載の空燃比検出装置。 4 電子伝導性線と電子伝導性層との間に電流を流す直
流電源装置をそなえた特許請求の範囲第1項,第2項ま
たは第3項記載の空燃比検出装置。[Claims] 1. A gas-permeable oxygen ion conductive collective electrolyte layer is provided around an electron conductive wire made of a single substance or an alloy of Au, Ag, and platinum group elements, and is in direct contact with the electron conductive wire. , providing an electron conductive layer in direct contact with the solid electrolyte layer around the solid electrolyte layer, making the electron conductive layer contactable with the gas to be detected; An air-fuel ratio detection device characterized by comprising a voltage measurement device for detecting an electromotive force generated between the two. 2. The air-fuel ratio detection device according to claim 1, wherein the electron conductive layer is in the form of a film. 3 Claim 1 in which the electron conductive layer is coiled
The air-fuel ratio detection device described in . 4. The air-fuel ratio detection device according to claim 1, 2, or 3, comprising a DC power supply device that allows current to flow between the electron conductive wire and the electron conductive layer.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP54064041A JPS6034062B2 (en) | 1979-05-25 | 1979-05-25 | Air fuel ratio detection device |
DE19803019825 DE3019825C2 (en) | 1979-05-25 | 1980-05-23 | Device for determining the air / fuel ratio in a gas |
FR8011628A FR2457487A1 (en) | 1979-05-25 | 1980-05-23 | AIR / FUEL RATIO DETECTION APPARATUS |
GB8017292A GB2051379B (en) | 1979-05-25 | 1980-05-27 | Air-fuel ratio detecting apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP54064041A JPS6034062B2 (en) | 1979-05-25 | 1979-05-25 | Air fuel ratio detection device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS55156854A JPS55156854A (en) | 1980-12-06 |
JPS6034062B2 true JPS6034062B2 (en) | 1985-08-06 |
Family
ID=13246624
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP54064041A Expired JPS6034062B2 (en) | 1979-05-25 | 1979-05-25 | Air fuel ratio detection device |
Country Status (4)
Country | Link |
---|---|
JP (1) | JPS6034062B2 (en) |
DE (1) | DE3019825C2 (en) |
FR (1) | FR2457487A1 (en) |
GB (1) | GB2051379B (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57119250A (en) * | 1981-01-19 | 1982-07-24 | Nissan Motor Co Ltd | Oxygen sensor element holder |
DE3319186A1 (en) * | 1983-05-27 | 1984-11-29 | Bosch Gmbh Robert | METHOD FOR GENERATING A REFERENCE POTENTIAL IN POTENTIOMETRIC LAMBDA PROBE |
US4479868A (en) * | 1983-10-21 | 1984-10-30 | Westinghouse Electric Corp. | Gas measuring probe |
DE3615960A1 (en) * | 1985-05-13 | 1986-11-27 | Toyota Motor Co Ltd | SENSOR FOR DETERMINING A AIR-FUEL RATIO |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE322927B (en) * | 1967-09-28 | 1970-04-20 | Asea Ab | |
DE1926445A1 (en) * | 1969-05-23 | 1970-12-03 | Gen Electric | Electrode for a cell with oxygen ion solid electrolyte |
DE2631819A1 (en) * | 1976-07-15 | 1978-01-19 | Bbc Brown Boveri & Cie | PROCESS AND DEVICE FOR DETERMINING THE CONTENT OF MOLECULAR AND / OR Bound OXYGEN IN GASES |
JPS5339789A (en) * | 1976-09-22 | 1978-04-11 | Nissan Motor | Oxygen sensor |
JPS5348594A (en) * | 1976-10-14 | 1978-05-02 | Nissan Motor | Oxygen sensor |
DE2718907C2 (en) * | 1977-04-28 | 1984-04-12 | Robert Bosch Gmbh, 7000 Stuttgart | Sensor for determining the oxygen content in exhaust gases |
-
1979
- 1979-05-25 JP JP54064041A patent/JPS6034062B2/en not_active Expired
-
1980
- 1980-05-23 FR FR8011628A patent/FR2457487A1/en active Granted
- 1980-05-23 DE DE19803019825 patent/DE3019825C2/en not_active Expired
- 1980-05-27 GB GB8017292A patent/GB2051379B/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
FR2457487B1 (en) | 1983-08-05 |
GB2051379A (en) | 1981-01-14 |
DE3019825C2 (en) | 1983-11-03 |
GB2051379B (en) | 1983-10-26 |
DE3019825A1 (en) | 1980-11-27 |
JPS55156854A (en) | 1980-12-06 |
FR2457487A1 (en) | 1980-12-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4264425A (en) | Device for detection of air/fuel ratio from oxygen partial pressure in exhaust gas | |
JPS58124943A (en) | Threshold electric current type oxygen sensor attached microheater and threshold electric current type detecting device of oxygen concentration using said oxygen sensor | |
JPS584986B2 (en) | Oxygen concentration measuring device | |
JPS6138414B2 (en) | ||
JPS5824855A (en) | Oxygen concentration detector | |
US4880519A (en) | Gas sensor element | |
GB2052758A (en) | Device for Detection of Air/Fuel Ratio From Oxygen Partial Pressure in Exhaust Gas | |
JPS6118854A (en) | Oxygen concentration detecting element | |
JPH11153571A (en) | Oxygen sensor element | |
CN1085338C (en) | Combustible gas sensor and method for fabricating the same | |
JPS6034062B2 (en) | Air fuel ratio detection device | |
JPS6133132B2 (en) | ||
JP2514664B2 (en) | Oxygen sensor | |
JP2805811B2 (en) | Combustion control sensor | |
JP2948124B2 (en) | Oxygen sensor | |
JPH01201149A (en) | Composite gas sensor | |
JPS6138411B2 (en) | ||
JPS5819554A (en) | Oxygen concentration detector | |
JP3003957B2 (en) | Oxygen sensor | |
JPS6311644Y2 (en) | ||
JPH0550702B2 (en) | ||
JPH01185440A (en) | Oxygen sensor element | |
JPS61254847A (en) | Flame sensor | |
JPH10206380A (en) | Oxygen concentration detecting element | |
JPS6259855A (en) | Pump type oxygen concentration detector |