Nothing Special   »   [go: up one dir, main page]

JPS60327A - Vortex flow meter - Google Patents

Vortex flow meter

Info

Publication number
JPS60327A
JPS60327A JP58107566A JP10756683A JPS60327A JP S60327 A JPS60327 A JP S60327A JP 58107566 A JP58107566 A JP 58107566A JP 10756683 A JP10756683 A JP 10756683A JP S60327 A JPS60327 A JP S60327A
Authority
JP
Japan
Prior art keywords
fluid
vortex
measured
straight
path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58107566A
Other languages
Japanese (ja)
Other versions
JPH059725B2 (en
Inventor
Katsuo Misumi
勝夫 三角
Masahiro Kanayama
金山 昌弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oval Kiki Kogyo KK
Oval Engineering Co Ltd
Original Assignee
Oval Kiki Kogyo KK
Oval Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oval Kiki Kogyo KK, Oval Engineering Co Ltd filed Critical Oval Kiki Kogyo KK
Priority to JP58107566A priority Critical patent/JPS60327A/en
Publication of JPS60327A publication Critical patent/JPS60327A/en
Publication of JPH059725B2 publication Critical patent/JPH059725B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/20Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow
    • G01F1/32Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow using swirl flowmeters
    • G01F1/325Means for detecting quantities used as proxy variables for swirl
    • G01F1/3282Means for detecting quantities used as proxy variables for swirl for detecting variations in infrasonic, sonic or ultrasonic waves, due to modulation by passing through the swirling fluid

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)

Abstract

PURPOSE:To measure the number of Karman's vortexes accurately by communicating guiding inlets of fluid on both the side walls of a fluid path to be measured which is crossed with a vortex generator, connecting both the inlets through a straight pipe-like communication pile and fitting detectors to both the ends of the connection pipe. CONSTITUTION:The fluid guiding inlets 5, 6 are opened on the fluid path to be measured and communicated through the straight pipe-like communication path 7. The area of the flowing course of the straight pipe-like communication path 7 is set up smaller than the area of the flowing course of said fluid guiding inlets 5, 6 and the detectors consisting of ultrasonic transmitter and receiver 3, 4 e.g. are fitted to both the ends of the straight pipe-like communication path 7.

Description

【発明の詳細な説明】 戎皿史互 本発明は、流体中に配設された渦発生体により発生され
るカルマン渦を利用した渦流量計に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a vortex flow meter that utilizes a Karman vortex generated by a vortex generator disposed in a fluid.

菜it権 第1図は、従来の渦流量計の一例を説明するための概略
構成図で、図中、1は被測定流体が流れる被測定流体流
路、2は渦発生体、3は前記被測定流体流路1の側壁で
かつ前記渦発生体2と交差する壁面に配設された超音波
発信器、4は該超音波発信器3に対向して配設された超
音波受信器で、周知のように、流体流路1中に柱状の渦
発生体2を挿入すると、該渦発生体2の両側面で流れが
剥離し、該渦発生体の下流側に交互に規則的な渦すなわ
ちカルマン渦が発生し、矢印方向に流体変位が生じる。
Figure 1 is a schematic configuration diagram for explaining an example of a conventional vortex flowmeter. In the figure, 1 is a fluid flow path to be measured through which a fluid to be measured flows, 2 is a vortex generator, and 3 is a vortex generator. An ultrasonic transmitter is disposed on a side wall of the fluid flow path to be measured 1 and intersects with the vortex generator 2, and 4 is an ultrasonic receiver disposed opposite to the ultrasonic transmitter 3. As is well known, when a columnar vortex generator 2 is inserted into a fluid flow path 1, the flow separates on both sides of the vortex generator 2, and regular vortexes are created alternately on the downstream side of the vortex generator. In other words, a Karman vortex is generated and fluid displacement occurs in the direction of the arrow.

このカルマン渦の発生数は、流体の流速又は流量に比例
しているところから、このカルマン渦の数を計数するこ
とにより、流量を計測することができる。而して、従来
は、このカルマン渦を計数するために、該カルマン渦を
横切って超音波送受信器を配設し、超音波送信器3がら
の超音波の周波数変調或いは位相変調を超音波受信器4
にて検出するようにしていたが、外部からの雑音例えば
カルマン渦による超音波の散乱、管壁における超音波の
反射等によって被測定流体の流れに乱れが生じ、これが
計測誤差の一因ともなっていた。
Since the number of Karman vortices generated is proportional to the flow velocity or flow rate of the fluid, the flow rate can be measured by counting the number of Karman vortices. Conventionally, in order to count this Karman vortex, an ultrasonic transceiver is disposed across the Karman vortex, and the frequency modulation or phase modulation of the ultrasonic wave from the ultrasonic transmitter 3 is received by the ultrasonic wave. Vessel 4
However, external noises such as scattering of ultrasound waves by Karman vortices and reflections of ultrasound waves on pipe walls cause disturbances in the flow of the fluid to be measured, which can cause measurement errors. Ta.

」−一一咋 本発明は、上述のごとき実情に鑑みてなされたもので、
外部雑音等の影響を受けることなく、正確にカルマン渦
を計測し得るようにした渦流量計に関する。
” - 11 Kui The present invention was made in view of the above-mentioned circumstances.
The present invention relates to a vortex flow meter that can accurately measure Karman vortices without being affected by external noise.

且−一戒 第2図は、本発明の一実施例を説明するための断面構成
図で、図中、第1図と同様の作用をする部分には第1図
の場合と同一の参照番号が付しである。而して、発明は
、第2図から明らかなように、被測定流体流路1の側壁
に直接超音波送受信器を設けるようなことはせず、この
部分には被測定流体に開口する流体導入口5,6を設け
るとともに、これら両流体導入口5,6を直管状連通路
7にて連通し、該直管状連通路7の流路面積を前記流体
導入口5,6の流路面積よりも小さくし、かつ、該直管
状連通路7の両端に例えば超音波送受信器3,4からな
る検出器を配設するようにしタモのである。なお、この
超音波送受信器として、コーン付超音波検出器を用いる
と、より精度よくカルマン渦を計測することができる。
Figure 2 is a cross-sectional configuration diagram for explaining one embodiment of the present invention. In the figure, parts having the same functions as those in Figure 1 are designated by the same reference numerals as in Figure 1. is attached. As is clear from FIG. 2, the invention does not provide an ultrasonic transmitter/receiver directly on the side wall of the fluid flow path 1 to be measured. Inlet ports 5 and 6 are provided, and both of these fluid inlet ports 5 and 6 are communicated through a straight tubular communication path 7, and the flow area of the straight tubular communication path 7 is set to be the flow path area of the fluid inlet ports 5 and 6. It is possible to make it smaller than the size of the straight pipe communicating path 7, and to arrange a detector consisting of, for example, ultrasonic transceivers 3 and 4 at both ends of the straight tubular communication path 7. Note that if an ultrasonic detector with a cone is used as the ultrasonic transmitter/receiver, the Karman vortex can be measured with higher accuracy.

効 果 以上の説明から明らかなように、本発明によると、圧力
取出口より取り出された圧力は有効に流速に変換され直
管状連通路部分においては、流体は外部からの雑音等に
よって乱されることなく略層流となって矢印方向に移動
し、しかも、その移動速度も大きいので、より精度よく
カルマン渦の数を計測することができる。
Effects As is clear from the above explanation, according to the present invention, the pressure extracted from the pressure outlet is effectively converted into flow velocity, and the fluid in the straight tubular communication passage is not disturbed by external noise etc. Since the flow moves in the direction of the arrow in a substantially laminar flow, and the speed of movement is high, the number of Karman vortices can be measured with higher accuracy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来の渦流量計の一例を説明するための概略
構成図、第2図は、本発明による渦流量計の断面構成図
である。 1・・・被測定流体流路、2・・・渦発生体、3・・・
超音波発信器、4・・・超音波受信器、5,6・・・流
体導入口。 7・・・直管状連通路。 第 1 図 ス 第 2 図。
FIG. 1 is a schematic configuration diagram for explaining an example of a conventional vortex flowmeter, and FIG. 2 is a cross-sectional configuration diagram of a vortex flowmeter according to the present invention. 1... Fluid flow path to be measured, 2... Vortex generator, 3...
Ultrasonic transmitter, 4... Ultrasonic receiver, 5, 6... Fluid inlet. 7... Straight tubular communication path. Figure 1 Figure 2.

Claims (5)

【特許請求の範囲】[Claims] (1)、被測定流体路中に配設された渦発生体と、該渦
発生体と交差する前記被測定流体路の両側壁に開口され
た流体の導入口と、該導入口同志を連通ずる直管状連通
管と、該直管状連通路内における流体変位を検出する検
出器とを有することを特徴とする渦流量計。
(1) A vortex generator disposed in a fluid path to be measured, a fluid inlet opened on both side walls of the fluid path to be measured that intersects the vortex generator, and a fluid inlet connected to the inlet. A vortex flow meter characterized by having a straight communication pipe that communicates with the straight pipe and a detector that detects fluid displacement within the straight pipe.
(2)、前記直管状連通路はその中央直管部断面積を該
直管状連通路両端近傍および導入口に到る連通路断面積
に比し小さく構成されていることを特徴とする特許請求
の範囲第(1)項記載の渦流量計。
(2) A patent claim characterized in that the straight tubular communication passage has a central straight section cross-sectional area smaller than the cross-sectional area of the communication passage near both ends of the straight tubular communication passage and reaching the inlet. The vortex flowmeter according to item (1).
(3)、前記検出器はその1部が被測定流体に接してい
ることを特徴とする特許請求の範囲第(1)項または第
(2)項記載の渦流量計。
(3) The vortex flowmeter according to claim (1) or (2), wherein a portion of the detector is in contact with the fluid to be measured.
(4)、前記検出器は前記直管状連通路の両端に取付け
られていることを特徴とする特許請求の範囲第(1)項
乃至第(3)項いずれか1項に記載の渦流量計。
(4) The vortex flowmeter according to any one of claims (1) to (3), wherein the detector is attached to both ends of the straight tubular communication path. .
(5)、前記検出器はコーン付超音波検出素子であるこ
とを特徴とする特許請求の範囲第(1)項乃至第(4)
項いずれか1項に記載の渦流量計。
(5) Claims (1) to (4) characterized in that the detector is an ultrasonic detection element with a cone.
The vortex flowmeter according to any one of the above items.
JP58107566A 1983-06-15 1983-06-15 Vortex flow meter Granted JPS60327A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58107566A JPS60327A (en) 1983-06-15 1983-06-15 Vortex flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58107566A JPS60327A (en) 1983-06-15 1983-06-15 Vortex flow meter

Publications (2)

Publication Number Publication Date
JPS60327A true JPS60327A (en) 1985-01-05
JPH059725B2 JPH059725B2 (en) 1993-02-05

Family

ID=14462412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58107566A Granted JPS60327A (en) 1983-06-15 1983-06-15 Vortex flow meter

Country Status (1)

Country Link
JP (1) JPS60327A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4795972A (en) * 1986-04-08 1989-01-03 Brown, Boveri & Cie A.G. Digital measuring method and apparatus for a quasi-analog measured value display

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4986040A (en) * 1972-12-21 1974-08-17
JPS5036776A (en) * 1973-08-02 1975-04-07

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4986040A (en) * 1972-12-21 1974-08-17
JPS5036776A (en) * 1973-08-02 1975-04-07

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4795972A (en) * 1986-04-08 1989-01-03 Brown, Boveri & Cie A.G. Digital measuring method and apparatus for a quasi-analog measured value display

Also Published As

Publication number Publication date
JPH059725B2 (en) 1993-02-05

Similar Documents

Publication Publication Date Title
AU2008224760B2 (en) Bi-directional oscillating jet flowmeter
GB2161941A (en) Mass flow meter
JPH06249690A (en) Ultrasonic flowmeter
WO2008033035A1 (en) Arrangement for measuring fluid flow velocity
US4843889A (en) Trapped-vortex pair flowmeter
US11815381B2 (en) Ultrasonic flowmeter, use of an ultrasonic flowmeter in a shut-off device and shut-off device
US11885654B2 (en) Ultrasonic flowmeter, use of an ultrasonic flowmeter in a shut-off device and shut-off device
US3314289A (en) Swirl flow meter transducer system
JPS60327A (en) Vortex flow meter
CN206945090U (en) Contain the latus rectum ultrasonic meter structure for dividing chamber dividing plate
GB1598581A (en) Flowmeters
JP7373772B2 (en) Physical quantity measuring device
JPS59187222A (en) Vortex flow-meter
JPS6040914A (en) Vortex flowmeter
JPS6015518A (en) Vortex flowmeter
JP3491185B2 (en) Vortex flow meter
KR0133625Y1 (en) Vibration type flow meter
JPS6326537A (en) Ultrasonic flow meter
RU32875U1 (en) Ultrasonic Gas Flow Meter
JP4675503B2 (en) Ultrasonic vortex flowmeter
JPH0128421Y2 (en)
JP2003214916A (en) Vortex flowmeter
JPH08285643A (en) Vortex flow meter
JPS60262015A (en) Ultrasonic doppler flow meter
JPH0585025B2 (en)