Nothing Special   »   [go: up one dir, main page]

JPS6031115A - Optical modulating device - Google Patents

Optical modulating device

Info

Publication number
JPS6031115A
JPS6031115A JP14000083A JP14000083A JPS6031115A JP S6031115 A JPS6031115 A JP S6031115A JP 14000083 A JP14000083 A JP 14000083A JP 14000083 A JP14000083 A JP 14000083A JP S6031115 A JPS6031115 A JP S6031115A
Authority
JP
Japan
Prior art keywords
light
luminous flux
light modulation
optical modulating
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14000083A
Other languages
Japanese (ja)
Inventor
Kazuo Minoura
一雄 箕浦
Takeshi Baba
健 馬場
Kazuhiko Matsuoka
和彦 松岡
Masayuki Usui
臼井 正幸
Atsushi Someya
染谷 厚
Yukio Nishimura
征生 西村
Yuko Mochizuki
望月 祐子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP14000083A priority Critical patent/JPS6031115A/en
Publication of JPS6031115A publication Critical patent/JPS6031115A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0102Constructional details, not otherwise provided for in this subclass
    • G02F1/0105Illuminating devices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0121Operation of devices; Circuit arrangements, not otherwise provided for in this subclass

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

PURPOSE:To obtain a good light extinction ratio by shielding a luminous flux which is not modulated by a luminous flux generated from each light emitting part at a position optically conjugate to plural light emitting parts placed along an optical modulating part in order to illuminate an optical modulating element. CONSTITUTION:A luminous flux from a light source 20 is condensed to a pin hole part of a pin hole plate 22 by a condensing lens 21. As for the luminous flux for which each pin hole is used as the secondary light source, a component in the in hole array direction is collimated by a collimator lens 23 and made incident to an optical modulating element 24. A luminous flux L1 whose wave surface is not converted by the optical modulating element 24 is made to form an image on a light shielding part 31b of a light shielding filter 30 by a multi-lens array 30. On the other hand, a luminous flux L2 whose wave surface has been converted by the optical modulating element 24 is condensed by the multi-lens array 30, passes through a light transmitting part 31b of the light shielding filter 31, and is made to form an image on a photosensitive drum. In this way, a modulating device of a high extinction ratio is obtained by a simple constitution.

Description

【発明の詳細な説明】 本発明は、記録装置、表示装置、光通信装置等に広く利
用可能な光変調装置に関するものである0 従来よシ、記録或いは表示を光束を用いて行なうことは
広く行なわれている。レーザービームプリンターの如き
は、この代表例であシ、機械的な偏向器で光束を偏向さ
せると共に、光束に変調を与え、感光ドラム上に情報を
記録している。これに対して近年、局所的に物理変化を
発生させ、この物理変化によシ光束を変調することが提
案されている。例えば、特開昭56−5523号公報で
は、電気光学材料から成る結晶に局所的に電界をかけ、
この電界のかかった部分の屈折率を変化させて光変調を
行うことが示されている。又、本件出願人に係る特願昭
57−128566号には液体内の局所に蒸気泡を発生
することによシ、この蒸気泡によシ光束を変調させる方
法、同じく特願昭57−179265号には、液体の局
所へ熱によシ屈折率分布を発生させることによシ光束を
変調する方法が示されている。斯様な光変調装置では、
光変調部は微細な構造である為に、−走査線を形成する
のに必要な解像点数、例えばA4の短手方向ならおよそ
2千、に対応する個数の光変調部を直線状に設け、同時
に一走査線に相当する画像を形成することが可能である
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a light modulation device that can be widely used in recording devices, display devices, optical communication devices, etc. Conventionally, recording or displaying using a light beam has been widely used. It is being done. A typical example of this is a laser beam printer, which uses a mechanical deflector to deflect a light beam, modulates the light beam, and records information on a photosensitive drum. On the other hand, in recent years, it has been proposed to cause a physical change locally and to modulate the luminous flux by this physical change. For example, in Japanese Patent Application Laid-Open No. 56-5523, an electric field is locally applied to a crystal made of an electro-optic material,
It has been shown that optical modulation is performed by changing the refractive index of the portion to which this electric field is applied. Furthermore, Japanese Patent Application No. 57-128566 filed by the present applicant discloses a method of generating vapor bubbles locally in a liquid and modulating the luminous flux by the vapor bubbles. The paper describes a method of modulating the luminous flux by thermally generating a refractive index distribution locally in a liquid. In such a light modulation device,
Since the light modulation section has a fine structure, the number of light modulation sections corresponding to the number of resolution points necessary to form a scanning line, for example, approximately 2,000 in the width direction of an A4 sheet, is provided in a straight line. , it is possible to simultaneously form an image corresponding to one scanning line.

本発明の目的は、上述した如き光変調素子を用いた光変
調装置に於いて、消光比が良好に取れる様な光変調装置
を提供することにある。
An object of the present invention is to provide a light modulation device that uses the above-mentioned light modulation element and can obtain a good extinction ratio.

本発明に係る光変調装置に於いては、媒体内に局所的に
物理変化を生ぜしめ光変調を可能とする光変調部を所定
の方向に複数個配列した光変調素子、該光変調素子を照
明する為に、前記光変調部に沿って配された複数の発光
部、該発光部と光学的に共役な位置で、各々の発光部か
ら発せられる光束で変調を受けない光束を遮光する遮光
部材を有している。尚、発光部と遮光部材とは、これ等
の間に配される光学部材に関して、光学部材の光軸を含
み且つ光変調部の配列方向で定まる面内に於いて少なく
とも光学的に共役な関係を満たせば良い0尚、本発明の
更なる特徴は以下に示す本発明の記載より明らかになる
であろう。以後の説明に於いては、光変調素子として熱
によシ媒体内の屈折率分布を変化させるタイプの光変調
素子を用いるが、本発明に係る光変調素子としては、上
述した如き種々のタイプの光変調素子が利用可能である
ことは言うまでもない。
The light modulation device according to the present invention includes a light modulation element in which a plurality of light modulation parts that cause a local physical change in a medium and enable light modulation are arranged in a predetermined direction; A plurality of light emitting sections arranged along the light modulating section for illumination, and a light shielding section that blocks light beams that are not modulated by the light beams emitted from each light emitting section at positions optically conjugate with the light emitting sections. It has a member. Note that the light emitting part and the light shielding member have an optically conjugate relationship at least in a plane that includes the optical axis of the optical member and is determined by the arrangement direction of the light modulating part with respect to the optical member disposed between them. Further features of the present invention will become clear from the description of the present invention shown below. In the following description, a type of light modulation element that changes the refractive index distribution in a heat-generating medium will be used as the light modulation element, but the light modulation element according to the present invention may be of the various types described above. It goes without saying that the following light modulation elements can be used.

第1図から第4図は本発明に係る光変調装置に適用する
光変調素子の一実施例を示す図である。第1図に於いて
、1は透明保護板、2は熱によシその屈折率が変化しや
すい熱効果媒体の薄層、3は熱伝導性のある絶縁層、4
は6a。
1 to 4 are diagrams showing one embodiment of a light modulation element applied to a light modulation device according to the present invention. In Figure 1, 1 is a transparent protective plate, 2 is a thin layer of a thermal effect medium whose refractive index is easily changed by heat, 3 is a thermally conductive insulating layer, and 4
is 6a.

6b16c、6d・・・・・・で示される発熱抵抗体が
配列される発熱抵抗体層、5は絶縁層3及び発熱抵抗体
6a)6bl 6c、6d・・・・・・の支持体である
。そして発熱抵抗体が発熱すると、この熱は前記絶縁層
3を伝わり熱効果媒体薄層2に伝わり、液体薄層内に温
度分布を生ぜしめて、屈折率分布を形成する。例えば、
第1図に示す様に、発熱抵抗体6bが選択されて発熱す
ると、この熱は抵抗体6bに隣接する絶縁層3を介して
熱効果媒体薄層2に伝達され、抵抗体6bに対向する熱
効果媒体薄層2の領域の液体を加熱させて、この領域に
屈折率分布7を形成する。この屈折率分布7は所定の時
間が経過すると、この領域の熱効果媒体が冷却するに伴
って、消滅する。この屈折率分布形成から消滅までの1
サイクルは非常に短かい時間であj)、KHzのオーダ
ーで行うことが可能である。上記発熱抵抗体は、■・C
の製造技術によシ支持体5上に形成されるものであシ、
隣接する発熱抵抗体の間隔をmμオーダーで形成してい
る。前記熱効果媒体としては、液体では、水、アルコー
ル、その他側をでは−4,0X 10 である。又、固
体としては、アクリル、ポリカーボネートなどのプラス
チック材あるいは接着材として使用されるエポキシ樹a
^n 脂などの高分子材料が良い。c、kTは、アクリルの場
合、約−1,0X10.ポリカーボネートの場合で約−
1,3X 10である0 第2図は第1図に示す光変調素子の構成を示す斜視概略
図であシ、付番1〜6は第1図に示したものと同じであ
る。8は導電線であシ、発熱抵抗体(6a、6b、・・
・・・・)を各々独立に駆動できる機側々の駆動電圧に
接続され、一方、発熱抵抗体の他端は接地あるいは共通
の電圧に設定されている。導電線8より、発熱抵抗体6
a。
6b16c, 6d... is a heat generating resistor layer in which heat generating resistors are arranged; 5 is a support for the insulating layer 3 and the heat generating resistors 6a) 6bl 6c, 6d... . When the heating resistor generates heat, this heat is transmitted through the insulating layer 3 to the thin thermal effect medium layer 2, creating a temperature distribution within the thin liquid layer and forming a refractive index distribution. for example,
As shown in FIG. 1, when the heat-generating resistor 6b is selected and generates heat, this heat is transmitted to the heat effect medium thin layer 2 through the insulating layer 3 adjacent to the resistor 6b, and the heat is transferred to the heat effect medium thin layer 2 facing the resistor 6b. The liquid in the area of the thin thermal effect medium layer 2 is heated to form a refractive index profile 7 in this area. This refractive index distribution 7 disappears after a predetermined period of time as the thermal effect medium in this region cools. 1 from the formation of this refractive index distribution to its extinction
The cycles are very short (j) and can be performed on the order of KHz. The above heating resistor is ■・C
It is formed on the support 5 by the manufacturing technique of
The spacing between adjacent heating resistors is on the order of mμ. As for the thermal effect medium, liquids are water, alcohol, and others are -4.0X 10 . In addition, solid materials include plastic materials such as acrylic and polycarbonate, and epoxy resins used as adhesives.
^n High polymer materials such as fat are good. c, kT is approximately -1.0X10. in the case of acrylic. Approximately - for polycarbonate
1,3X 10 is 0 FIG. 2 is a schematic perspective view showing the configuration of the light modulation element shown in FIG. 1, and numbered 1 to 6 are the same as shown in FIG. 1. 8 is a conductive wire and heat generating resistor (6a, 6b,...
...) are connected to the drive voltage of each machine that can be driven independently, while the other end of the heating resistor is grounded or set to a common voltage. From the conductive wire 8, the heating resistor 6
a.

6b、・・・・・・に各々電圧信号が印加されると、各
発熱抵抗体の近傍の熱効果媒体薄層内に屈折率分布が発
生する。この屈折率分布は、電圧信号を零にすると冷却
され再び元の屈折率分布のない状態に戻る。
When a voltage signal is applied to each of 6b, . . . , a refractive index distribution is generated in the thin layer of the thermal effect medium in the vicinity of each heating resistor. When the voltage signal is reduced to zero, this refractive index distribution is cooled and returns to the original state without refractive index distribution.

第3図は、透過タイプの光変調素子を示す図で、光変調
素子の構成自体は第1図に示すものと同じであるが、支
持体5′、発熱抵抗体(6a′、6b’パ・・・)及び
絶縁層3′が透明な媒体で構成されている。
FIG. 3 is a diagram showing a transmission type light modulation element. The structure of the light modulation element itself is the same as that shown in FIG. ) and the insulating layer 3' are made of a transparent medium.

第4図は前記屈折率分布による反射型の光変調素子L−
Mを使用した光変調装置の一実施例を示す図で、屈折率
分布で波面が変形される光束を情報光として使用する場
合の例である。前記光変調素子L−Mに光束10を入射
し、発熱抵抗体(6a、6b、−・・)のうち任意の発
熱抵抗体6cが電圧Viによって駆動されたとき、屈折
率分布7が発生し、発熱抵抗体6cに入射した光束は波
面が変形された光束12となって射出する。発熱抵抗体
の表面で正反射して、屈折率分布7によって波面が変形
されない光束11は、レンズ13aによって結像され、
その結像位置に配した遮光フィルター15aによって遮
光される○前記波面が変形された光束12はその遮光フ
ィルター15aによって一部分遮光されるが、遮光フィ
ルター15aの大きさを前記の波面が変形されない光束
11の結像スポットを遮光する最小限の大きさにするこ
とによって、大部分の波面変換光束12′を受光媒体1
4上に照射することが可能である。
FIG. 4 shows a reflective light modulation element L- based on the refractive index distribution.
FIG. 2 is a diagram showing an example of a light modulation device using M, and is an example in which a light beam whose wavefront is modified by a refractive index distribution is used as information light. When the light beam 10 is incident on the light modulation element LM and any heating resistor 6c among the heating resistors (6a, 6b, . . . ) is driven by the voltage Vi, a refractive index distribution 7 is generated. The light beam incident on the heating resistor 6c becomes a light beam 12 with a deformed wavefront and exits. The light beam 11 that is specularly reflected on the surface of the heating resistor and whose wavefront is not deformed by the refractive index distribution 7 is imaged by the lens 13a,
The light beam 12 whose wavefront is deformed is partially blocked by the light-shielding filter 15a placed at the image forming position. By making the imaging spot of
It is possible to irradiate on 4.

以上の如く、発熱抵抗体6cに、画像信号に応じた電圧
パルスViを導電線8を通じて印加あるいは零にするこ
とにより、それに応じて屈折率分布7の発生あるいは消
滅が繰シ返される。
As described above, by applying the voltage pulse Vi corresponding to the image signal to the heating resistor 6c through the conductive wire 8 or making it zero, the refractive index distribution 7 is repeatedly generated or eliminated accordingly.

その場合、受光媒体14上には、光スポットの点滅が発
生される。レンズ13aによって、発熱抵抗体上の点と
受光媒体14上の点とを共役関係にすることによって、
発熱抵抗体(6a16b、・・・・・・)近傍に発生し
た屈折率分布の発生部分の像をスポットとして受光媒体
14上に形成する。
In that case, a blinking light spot is generated on the light receiving medium 14. By creating a conjugate relationship between a point on the heating resistor and a point on the light-receiving medium 14 using the lens 13a,
An image of a portion where a refractive index distribution occurs near the heating resistor (6a16b, . . . ) is formed as a spot on the light receiving medium 14.

第5図(4)、ω)は、本発明に係る光変調素子を用い
た記録装置の一実施例を示す図で、第5図(2)は斜視
図を、第5図(B)は平面概略図を示す。
FIG. 5(4), ω) is a diagram showing an embodiment of a recording device using a light modulation element according to the present invention, FIG. 5(2) is a perspective view, and FIG. 5(B) is a A schematic plan view is shown.

第5図囚、■に於いて、20はハロゲンランプの如き光
源、21はその光源から射出した光束を線状に集光する
シリンドリカルレンズの如き集光レンズ、22は前記集
光レンズ21の集光位置に配され、直線上に等間隔で複
数個配列されたピンホールを有するピンホール板、23
は前!ピンホール板22の各ピンホールを点光源として
射出する各光束の、少なくともピンホール配列方向の光
束成分をコリメートする機能を有するコリメートレンズ
で、該レンズは通常の1本の光軸よ構成るレンズ系で構
成しても、又は図に示す如くバーレンズ、屈折率分布型
レンズの如きマルチレンズアレーで構成しても良い。
In FIG. A pinhole plate having a plurality of pinholes arranged at an optical position and arranged at equal intervals on a straight line, 23
Before! A collimating lens that has a function of collimating at least a luminous flux component in the pinhole arrangement direction of each luminous flux emitted from each pinhole of the pinhole plate 22 as a point light source, and the lens is constituted by a single normal optical axis. It may be constructed as a system, or as shown in the figure, it may be constructed as a multi-lens array such as a bar lens or a gradient index lens.

24は前述した光変調素子であル、前記ピンホールの配
列方向に合致して複数個の発熱抵抗体(25a、25b
、25cb−・・)を有する026はビデオ信号源、2
7はビデオ信号源26からの電気信号を電圧に変換する
電圧印加手段、28は電圧印加手段27からの電圧を各
々の発熱抵抗体(25a 、 25 b 、 25 c
 、−・・)に伝達する導電線、29は一方が発熱抵抗
体(25a、 25bs25c1・・・・・・)に接続
され、他端が接地されている導電線である。30は光変
調素子24を通過して来る光束を集光する為のレンズ系
で、このレンズ系は1つの光軸を有するレンズ系で構成
しても、図に示される様にマルチレンズアレーで構成し
ても良い031は、前記レンズ系30の焦点面に配され
た遮光フィルターで、前記ピンホール板22に配設され
たピンホールのピッチに比例するピッチ、あるいはこの
ピッチと同一のピッチで遮光部31mと透光部31bと
が交互に設けられている。従って、光変調素子24で波
面変換を受けないコリメート光束は、レンズ系30によ
シ、遮光フィルター31の遮光部に結像される。32は
前記レンズ系30に関して、発熱抵抗体(25&、25
b% 25c1”・・”)とほぼ光学的に共役な位置に
配された感光ドラムである。
24 is the above-mentioned light modulation element, and a plurality of heating resistors (25a, 25b) are arranged in the direction in which the pinholes are arranged.
, 25cb-...) 026 is a video signal source, 2
7 is a voltage applying means for converting the electric signal from the video signal source 26 into a voltage, and 28 is a means for applying the voltage from the voltage applying means 27 to each heating resistor (25a, 25b, 25c).
, -...) is a conductive wire whose one end is connected to the heating resistor (25a, 25bs25c1...) and the other end is grounded. Reference numeral 30 denotes a lens system for condensing the light beam passing through the light modulation element 24. This lens system may be composed of a lens system having one optical axis, or it may be composed of a multi-lens array as shown in the figure. Reference numeral 031, which may be configured, is a light-shielding filter disposed on the focal plane of the lens system 30, with a pitch proportional to the pitch of the pinholes disposed on the pinhole plate 22, or a pitch equal to this pitch. Light blocking portions 31m and light transmitting portions 31b are provided alternately. Therefore, the collimated light beam that is not subjected to wavefront conversion by the light modulation element 24 is imaged by the lens system 30 on the light-shielding portion of the light-shielding filter 31 . 32 is a heating resistor (25&, 25
b% 25c1"...") is a photosensitive drum arranged at a position that is almost optically conjugate.

光源20からの光束は集光レンズ21により、ピンホー
ル板22のピンホール部に集光される。
The light beam from the light source 20 is focused onto a pinhole portion of a pinhole plate 22 by a condenser lens 21 .

各々のピンホールを二次光源とする光束は、少なくとも
ピンホール配列方向の成分はコリメーターレンズ23に
よシコリメートされ光変調素子24に入射する。光変調
素子24で波面の変換を受けない光束L1はマルチレン
ズアレー30によシ辿光フィルター30の遮光部31b
に結像される。一方、光変調素子24で波面の変換を受
けた光束L2は、マルチレンズアレー30により集光さ
れ、遮光フィルター31の透光部31bを通過して感光
ドラム上に結像される。
At least a component of the light flux using each pinhole as a secondary light source in the pinhole arrangement direction is collimated by the collimator lens 23 and enters the light modulation element 24 . The light beam L1 whose wavefront is not converted by the light modulation element 24 is routed to the multi-lens array 30 and passes through the light shielding portion 31b of the light filter 30.
is imaged. On the other hand, the light beam L2 whose wavefront has been converted by the light modulation element 24 is focused by the multi-lens array 30, passes through the transparent portion 31b of the light-blocking filter 31, and is imaged on the photosensitive drum.

この実施例では、直線状に設けられた複数の点光源を形
成する為にピンホール板を用いたが、このピンホール板
に代って、レーザダイオードのアレーを設けても良い。
In this embodiment, a pinhole plate is used to form a plurality of linear point light sources, but an array of laser diodes may be provided instead of the pinhole plate.

そして、このレーザダイオードアレーの各発光部が、レ
ンズ系(23,24)によって、遮光フィルター31の
遮光部31と光学的に共役な関係となる様にするもので
ある〇 第6図(4)は、第5図囚に示す記録装置に於いて、光
源からの光束を有効に利用する為の光変調素子24の発
熱抵抗体の形状を示す図であυ。
Each light emitting part of this laser diode array is made to have an optically conjugate relationship with the light shielding part 31 of the light shielding filter 31 by the lens system (23, 24).〇Figure 6 (4) 5 is a diagram showing the shape of the heating resistor of the light modulation element 24 for effectively utilizing the luminous flux from the light source in the recording apparatus shown in FIG.

4xt(t=t〜N)は発熱抵抗体、42(i)は電圧
印加手段よシ印加される電圧の電極、43は接地電極で
ある。発熱抵抗体の形状は、その配列方向に偏向された
光束を効率良く導びけることを第6図の)で説明する。
4xt (t=t~N) is a heating resistor, 42(i) is an electrode for voltage applied by the voltage applying means, and 43 is a ground electrode. It will be explained in FIG. 6) that the shape of the heating resistor can efficiently guide the light beam deflected in the direction in which it is arranged.

第6図@)は、第6図(2)に示す発熱抵抗体の一個4
1(i)に電圧を印加したときに形成される熱効果媒体
中の等屈折率分布曲線を示すものである。第6図(4)
に示したように発熱抵抗体の配列方向の長さtYがそれ
と直交する方向の長さ1xよ)短い関係(tY< tx
 )にあるとき、等屈折率曲線は44のようにtxの方
向に長軸な有する長楕円形状の分布となる。このことは
、t、の方向に屈折率変化が急勾配となることを意味し
、仁の屈折率分布の部分に入射した光束は、txの方向
よ’)、tYの方向に強い波面の変換作用を受けるから
である。従って、発熱抵抗体の配列方向に多量の光束が
偏向され、第5図(4)に示す如き光学系で変調光束と
非変調光束とを分離すれば、効率良く光束を利用するこ
とが出来る。
Figure 6 @) shows one heating resistor 4 shown in Figure 6 (2).
1(i) shows an equal refractive index distribution curve in a thermal effect medium formed when a voltage is applied. Figure 6 (4)
As shown in , the length tY of the heating resistor in the arrangement direction is shorter than the length 1x in the direction perpendicular to it (tY < tx
), the equirefractive index curve becomes an elongated ellipsoidal distribution with the major axis in the tx direction, as shown in 44. This means that the refractive index change becomes steep in the direction of t, and the light flux incident on the part of the refractive index distribution has a strong wavefront transformation in the direction of tx and tY. This is because it is acted upon. Therefore, a large amount of light beam is deflected in the direction in which the heating resistors are arranged, and the light beam can be efficiently utilized by separating the modulated light beam and the non-modulated light beam using an optical system as shown in FIG. 5(4).

以上、本発明に係る光変調装置に於いては、簡易な構成
で消光比が高い変調装置が得られるものである。
As described above, in the optical modulation device according to the present invention, a modulation device with a high extinction ratio can be obtained with a simple configuration.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図、第3図及び第4図は、本発明の光変調
装置に適用可能な光変調素子の一例を説明する為の図、
第5図囚、(B)は、本発明の光変調装置を適用した記
録装置の一実施例を示す図、第6図囚、(B)は、第5
図(4)、(B)に示す光変調素子の発熱抵抗体の形状
の一実施例を示す図。 2o・・・・・・光源、21・・曲集光レンズ、22・
・・・・・ピンホール板、24・・曲変調素子、25a
。 25b、25c・・・・・・発熱抵抗体、23.30・
・・・・・マルチレンズアレー、31°゛曲辿光フィル
ター、32・・・・・・感光ドラム、Ll・・・・・・
非変調光束、L、・・・・・・変調光束。 −= ( 旧 は ■) )眠
FIG. 1, FIG. 2, FIG. 3, and FIG. 4 are diagrams for explaining an example of a light modulation element applicable to the light modulation device of the present invention,
FIG. 5 (B) is a diagram showing an embodiment of a recording device to which the optical modulation device of the present invention is applied; FIG.
FIG. 4 is a diagram showing an example of the shape of the heating resistor of the light modulation element shown in FIGS. (4) and (B). 2o... Light source, 21... Curved condensing lens, 22...
...Pinhole plate, 24...Tune modulation element, 25a
. 25b, 25c...Heating resistor, 23.30.
...Multi-lens array, 31° curved light tracing filter, 32...Photosensitive drum, Ll...
Non-modulated light flux, L...Modulated light flux. −= (old name is ■) ) sleep

Claims (3)

【特許請求の範囲】[Claims] (1)局所的に物理変化を媒体に与えることにより光を
変調する光変調部を複数配列した光変調素子と、前記光
変調素子を照明する為に光変調部の配列方向に沿って配
された複数個の発光部と、前記各々の発光部と光学的に
共役な位置に設けられた遮光部材よシ成る光変調装置。
(1) A light modulation element in which a plurality of light modulation parts are arranged to modulate light by locally applying physical changes to a medium, and a light modulation element arranged along the arrangement direction of the light modulation parts to illuminate the light modulation element. A light modulation device comprising a plurality of light emitting sections and a light shielding member provided at a position optically conjugate with each of the light emitting sections.
(2) 前記発光部は、光束を発する光源と該光源から
の光束を規制するピンホール列よシ成る特許請求の範囲
第1項記載の光変調装置。
(2) The light modulation device according to claim 1, wherein the light emitting section comprises a light source that emits a luminous flux and a pinhole array that regulates the luminous flux from the light source.
(3) 前記発光部は、発光ダイオードアレーである特
許請求の範囲第1項記載の光変調装置。
(3) The light modulation device according to claim 1, wherein the light emitting section is a light emitting diode array.
JP14000083A 1983-07-29 1983-07-29 Optical modulating device Pending JPS6031115A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14000083A JPS6031115A (en) 1983-07-29 1983-07-29 Optical modulating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14000083A JPS6031115A (en) 1983-07-29 1983-07-29 Optical modulating device

Publications (1)

Publication Number Publication Date
JPS6031115A true JPS6031115A (en) 1985-02-16

Family

ID=15258597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14000083A Pending JPS6031115A (en) 1983-07-29 1983-07-29 Optical modulating device

Country Status (1)

Country Link
JP (1) JPS6031115A (en)

Similar Documents

Publication Publication Date Title
US4872743A (en) Varifocal optical element
US4848879A (en) Light modulating device
JP2001074989A (en) Improved method and device for accurately arranging array having periodical structure to composited image
JP5232493B2 (en) Optical modulator and image recording apparatus
JP2009031732A5 (en)
JP4357077B2 (en) Internal reflection type spatial modulator
EP0437596B1 (en) Scanner
US4641920A (en) Optical element having the function of changing the cross-sectional intensity distribution of a light beam
JPS6031115A (en) Optical modulating device
JP2003524196A (en) Imaging device and method for eliminating edge effects in a spatial modulator
JPS6014221A (en) Optical modulating method and optical modulating element
JPH0522886B2 (en)
US6407849B1 (en) Method and system for illumination using laser diode bar and microlenses array of same pitch
JPH0522887B2 (en)
JPS6050518A (en) Optical modulating device
US6249502B1 (en) Optical recording head
JPS59189326A (en) Optical modulator
JPS59214019A (en) Method and device for optical modulation
JP5058935B2 (en) Optical modulator and image recording apparatus
JPS6079334A (en) Optical modulating element
JPS59197021A (en) Optical modulator
JPH0522888B2 (en)
JPS59195614A (en) Expander lens
JPS60108819A (en) Optical printer
JPS59189313A (en) Optical modulator