JPS60262115A - Fiber for optical transmission - Google Patents
Fiber for optical transmissionInfo
- Publication number
- JPS60262115A JPS60262115A JP59118748A JP11874884A JPS60262115A JP S60262115 A JPS60262115 A JP S60262115A JP 59118748 A JP59118748 A JP 59118748A JP 11874884 A JP11874884 A JP 11874884A JP S60262115 A JPS60262115 A JP S60262115A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- protective coating
- optical fiber
- plasticizer
- ultraviolet curable
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
- Surface Treatment Of Glass Fibres Or Filaments (AREA)
Abstract
Description
【発明の詳細な説明】
(発明の技術分野)
本発明は石英系光フアイバ素線の上に紫外線硬化型樹脂
による保護被覆層を具え、該保護被覆屑に密接して二次
保護被覆層を設けたいわゆるタイト構造型光伝送用ファ
イバ(以下タイト心線と略す)の改良に関するものであ
る。Detailed Description of the Invention (Technical Field of the Invention) The present invention provides a protective coating layer made of an ultraviolet curable resin on a quartz-based optical fiber wire, and a secondary protective coating layer in close contact with the protective coating waste. This invention relates to an improvement of a so-called tight structure optical transmission fiber (hereinafter abbreviated as tight core fiber).
(発明の背景)
近年、石英系光フアイバ素線」二の一次保護被覆層とし
て紫外線硬化型樹脂を用いた光伝送用ファイバが、従来
のシリコーン樹脂被覆素線に比して、製造線速の上昇及
び材料費の低減等低コスト化の観点から需要が高まり開
発が急速に進められている。この紫外線硬化型樹脂によ
る保護被覆層を具えた光伝送用ファイバはさらにケーブ
ル化工程時に上記保護被覆屑を保護するために、その」
二に二次保護被覆層が設けられるが、本発明は特にこの
二次保護被覆を上記の一次保護被覆に密接して設けたタ
イト心線において、初期の伝送損失特性及び温度特性な
との良好なものを与えるためになされたものである。(Background of the Invention) In recent years, optical transmission fibers that use ultraviolet curable resin as the primary protective coating layer of quartz-based optical fibers have been manufactured at a faster manufacturing speed than conventional silicone resin-coated wires. Demand is increasing from the viewpoint of cost reduction due to rising prices and lower material costs, and development is progressing rapidly. The optical transmission fiber equipped with a protective coating layer made of this ultraviolet curable resin is further coated with a protective coating layer to protect the above-mentioned protective coating waste during the cable production process.
Secondly, a secondary protective coating layer is provided, and the present invention particularly aims at achieving good initial transmission loss characteristics and temperature characteristics in tight core wires in which this secondary protective coating is provided closely to the primary protective coating. It was done to give something.
従来の紫外線硬化型樹脂による保護被覆層を具えた光伝
送用ファイバには、二次被覆屑として例えばナイロン−
12を密接に押出被覆したタイト心線が用いられていた
が、二次被覆押出後の伝送損失が増加し、ひいては得ら
れたタイト心線の低温時の温度特性において伝送損失の
劣化が大きいという問題があった。このような現象は二
次被覆を施す前の光伝送用ファイバにおいては、顕著に
見られなかったものであり、従来の/リコーン樹脂被覆
光ファイバに比較して著しく劣っている点であった。Conventional optical transmission fibers with a protective coating layer made of ultraviolet curable resin have secondary coating waste, such as nylon-
Tight core wires with a tight extrusion coating of No. 12 were used, but the transmission loss after extrusion of the secondary coating increased, and the resulting tight core wires had a large deterioration in transmission loss in the temperature characteristics at low temperatures. There was a problem. Such a phenomenon was not noticeable in the optical transmission fiber before the secondary coating was applied, and it was significantly inferior to the conventional/recone resin coated optical fiber.
そこで、これらの問題点を克服すべく、紫外線硬化型樹
脂による保護被覆層を具えたタイト心線j の伝送特性
を詳細に検討した結果、前述の二次保[1
護被覆層を施した後の伝送損失の増加及び低温特性の劣
化は、二次被覆押出時に紫外線硬化型樹脂による保護被
覆層へ歪を与え、これがひいては石英系ファイバ素線へ
歪を与える現象によるものとの結論に達した。Therefore, in order to overcome these problems, we conducted a detailed study on the transmission characteristics of tight core wires equipped with a protective coating layer made of ultraviolet curable resin. It was concluded that the increase in transmission loss and deterioration of low-temperature characteristics is due to the phenomenon that distortion is applied to the protective coating layer made of ultraviolet curable resin during secondary coating extrusion, which in turn causes distortion to the quartz fiber strand. .
そこで、上記保護被覆層に与えられた歪をできるたけ早
期に緩和又は吸収して、前述の伝送特性の欠点を補う方
法として種々検討を重ねた結果、石英系ファイバ素線に
接する前記保護被覆層に潤滑作用性のある物質を添加す
ることにより、二次被覆押出後の伝送損失の増加の低減
ないしは早期解消、及び低温時の温度特性の改善が達成
されることを見出した。Therefore, as a result of various studies as a method for relieving or absorbing the strain imparted to the above-mentioned protective coating layer as early as possible to compensate for the above-mentioned defects in transmission characteristics, we found that the above-mentioned protective coating layer in contact with the silica-based fiber strands It has been found that by adding a lubricating substance to the material, it is possible to reduce or quickly eliminate the increase in transmission loss after extrusion of the secondary coating, and to improve the temperature characteristics at low temperatures.
(発明の開示)
石英系光フアイバ素線を溶融紡糸した直後に紫外線硬化
型樹脂を塗布し、紫外線を照射して該樹脂層を硬化させ
て光ファイバを製造する場合、紫外線硬化型樹脂は硬化
時に収縮をおこして紫外線硬化型樹脂層自体に不均一な
歪を発生し、石灰系光ファイバ素線にも歪応力を与えて
伝送特性に悪影響を与えることになる。さらにこの光フ
ァイバに二次保護被覆層として例えばナイロン−12な
どの熱可塑性樹脂を密接に押出被覆してタイト心線とす
る場合、押出時の二次被覆材の押出残留歪や熱収縮によ
る歪によって、石灰系光ファイバ素線はさらに不均一な
歪を紫外線硬化型樹脂層を介して受け、いわゆるマイク
ロベンディングロスを発生して伝送損失の増加を招き、
得られたタイト心線の低温特性も非常に悪い傾向を示す
。(Disclosure of the Invention) When manufacturing an optical fiber by applying an ultraviolet curable resin immediately after melt-spinning a quartz-based optical fiber and curing the resin layer by irradiating ultraviolet rays, the ultraviolet curable resin is cured. At times, shrinkage occurs, causing non-uniform strain in the ultraviolet curable resin layer itself, which also applies strain stress to the lime-based optical fiber strands, adversely affecting transmission characteristics. Furthermore, when this optical fiber is closely extruded and coated with a thermoplastic resin such as nylon-12 as a secondary protective coating layer to make a tight core, the secondary coating material is strained due to extrusion residual strain or heat shrinkage during extrusion. As a result, the lime-based optical fiber is further subjected to non-uniform strain through the ultraviolet curable resin layer, causing so-called microbending loss and increasing transmission loss.
The low-temperature properties of the obtained tight cord also tend to be very poor.
これらの発生歪を可能な限り少なくする方法として、光
ファイバの製造時に紫外線硬化型樹脂の硬化歪を少なく
シ、二次被覆を施す際にも二次被覆が誘起する歪を抑え
ることが考えられるが、これらの歪を製造時に製造上の
手段で全くなくすことはきわめて困難である。One possible way to minimize these generated strains is to reduce the curing strain of the ultraviolet curable resin during the production of optical fibers, and to suppress the strain induced by the secondary coating when applying the secondary coating. However, it is extremely difficult to completely eliminate these distortions by manufacturing means during manufacturing.
従って、これらの発生歪を経時的に比較的短時間内に低
減又は全くな(してしまう方法として、紫外線硬化型樹
脂による保護被覆層に発生する歪を緩和させることを思
い当った。即ち、紫外線硬化型樹脂の石英系光フアイバ
素線への接着力に着目し、石英系光ファイバの保護効果
を害うことな(、上記樹脂の石英系光ファイバへの接着
力を低減させることにより製造時に発生、残留する歪を
石英系光ファイバ界面での紫外線硬化型樹脂のスリップ
現象により、石灰系光ファイバ素線に応力が発生しない
よう緩和低減させるものである。Therefore, as a method for reducing or completely eliminating these generated strains over time within a relatively short period of time, we came up with the idea of easing the strains generated in the protective coating layer made of ultraviolet curable resin. Focusing on the adhesive strength of the ultraviolet curable resin to the quartz-based optical fiber, we developed a method that reduces the adhesive strength of the above-mentioned resin to the silica-based optical fiber without impairing the protective effect of the silica-based optical fiber. The strain that sometimes occurs and remains is alleviated and reduced by the slip phenomenon of the ultraviolet curing resin at the interface of the silica-based optical fiber so that no stress is generated in the lime-based optical fiber strand.
上記紫外線硬化型樹脂の石灰系光ファイバへの接着力を
低減させる手段について詳細に述へる。The means for reducing the adhesive force of the ultraviolet curable resin to the lime-based optical fiber will be described in detail.
一般に紫外線硬化型樹脂組成物は、プレポリマー、反応
性希釈剤、重合開始剤、光増感剤及び種々の安定剤なと
を基本配合として構成されている。プレポリマーとして
はウレタン系アクリレート、エポキ/系アクリレートあ
るいはこれらの混合物や、ブタノエン系アクリレート及
びシリコーン系アクリレートなどがある。又反応希釈剤
きしては種々のアクリル酸エステルモノマーが単体又は
2種以上の混合物として用いられる。Generally, an ultraviolet curable resin composition is comprised of a basic combination of a prepolymer, a reactive diluent, a polymerization initiator, a photosensitizer, and various stabilizers. Examples of prepolymers include urethane acrylates, epoxy/acrylates, or mixtures thereof, butanoene acrylates, and silicone acrylates. As a reaction diluent, various acrylic acid ester monomers can be used alone or as a mixture of two or more.
上述のような紫外線硬化型樹脂に潤滑作用性のある有機
化合物を適量添加することにより、樹脂の硬化時に硬化
反応にあすかることなく残留して潤滑剤(あるいは離型
剤と表現してもよい)として作用するものである。この
ような潤滑作用性のある有機化合物としては、例えばオ
レイン酸アミドなどの種々の酸アミド、フッ素系の離型
剤及び非反応性の希講[シて働く仔機化合物などがある
が、要は紫外線硬化型樹脂か硬化した後に樹脂中に十分
残留して石莢系光ファイバ素線界面に対して潤滑剤(又
は離型剤)として作用するものであればよい。又これら
の添加剤は樹脂に対して可塑剤的な役割も果すので可塑
剤という用語で表現するものである。By adding an appropriate amount of an organic compound with lubricating properties to the ultraviolet curable resin as described above, it becomes a lubricant (or mold release agent) that remains during the curing of the resin without being affected by the curing reaction. ). Examples of such organic compounds with lubricating properties include various acid amides such as oleic acid amide, fluorine-based mold release agents, and non-reactive auxiliary compounds that act as lubricants. may be any UV-curable resin as long as it remains sufficiently in the resin after curing and acts as a lubricant (or mold release agent) on the interface of the pod-based optical fiber. These additives also play the role of plasticizers for the resin, so they are expressed using the term plasticizer.
第1図は本発明でいう紫外線硬化型樹脂による保護被覆
層を具えたタイト心線の縦断面図で、(1)は石英系光
フアイバ系素線、■は紫外線硬化型樹脂に潤滑作用のあ
る可塑剤を添加した保護被覆層、(8)は該保護被覆層
■に密接して設けたナイロン−12等の二次保護被覆層
である。Fig. 1 is a vertical cross-sectional view of a tight core wire provided with a protective coating layer made of an ultraviolet curable resin according to the present invention, (1) is a quartz-based optical fiber strand, and ■ is a lubricating layer of the ultraviolet curable resin. The protective coating layer (8) to which a certain plasticizer has been added is a secondary protective coating layer of nylon-12 or the like provided in close contact with the protective coating layer (1).
第1図のように紫外線硬化型樹脂による保護被覆層が単
層のものが一般的であるが、さらに検討を加えた結果、
第2図に示すような2層の保護液、1:″ 頂層からな
るものが、伝送特性上及び製造プロセ1 ス」二よりす
ぐれた光フアイバ心線を与えることを見出した。即ち第
1の紫外線硬化型樹脂m (2cL)にはヤング率1〜
30 kg / c+1”のソフト層を配し、この石英
系光フアイバ素線(1)に密接する第1層には勿論潤滑
作用のある可塑剤が適量添加されている。As shown in Figure 1, the protective coating layer made of ultraviolet curable resin is generally a single layer, but as a result of further investigation,
It has been found that a two-layer protective solution, including a 1:'' top layer, as shown in FIG. 2, provides an optical fiber core with superior transmission characteristics and manufacturing process. That is, the first ultraviolet curable resin m (2 cL) has a Young's modulus of 1 to
A soft layer of 30 kg/c+1'' is disposed, and an appropriate amount of a plasticizer having a lubricating effect is naturally added to the first layer that is in close contact with the quartz-based optical fiber (1).
又第2の紫外線硬化型樹脂層(2幻にはヤング率50〜
lGOOOkg / c♂のハード層(硬化時にタック
性のない層)を配し、この第2層には潤滑作用のある可
塑剤を添加しなくてもよいし、必要により添加すること
もできる。ここで定義するヤング率とはJISK711
3で規定するJI82号ダンベル(厚さ250!1m)
を用いて、引張り速度11IIIZ分で評価したときの
伸び2.5%時の割線モジュラスである。In addition, a second ultraviolet curable resin layer (with a Young's modulus of 50 to
A hard layer (a layer with no tackiness upon hardening) of lGOOOkg/c♂ is arranged, and a lubricating plasticizer may not be added to this second layer, or may be added if necessary. Young's modulus defined here is JISK711
JI No. 82 dumbbell specified in 3 (thickness 250!1m)
This is the secant modulus at an elongation of 2.5% when evaluated at a tensile rate of 11IIIZ.
このように紫外線硬化型樹脂層を2層構造とする理由は
、二次保護被覆層を押出被覆する場合に、押出時の歪に
よるマイクロベンディングの影響を低減するためには、
−次保護被覆J悶としては低ヤング率(1〜30kg
/ am” )のものを使用するのが好ましいが、樹脂
の硬化後もタック性を示し、素線の製造時及び二次保護
被覆層の押出被覆時に線振れ、ンヤクリ等の種々のトラ
ブルを伴うので、第2層として硬化後にタンク性を示さ
ない比較的ヤング率の高いハード層(ヤング率50〜l
oooOkg / c11’ )を施すことにより、こ
れら製造」二の問題を排除できるからである。The reason why the ultraviolet curable resin layer has a two-layer structure is that in order to reduce the influence of microbending due to distortion during extrusion when extrusion coating the secondary protective coating layer,
- Low Young's modulus (1 to 30 kg) for the next protective coating
/ am”), but it shows tackiness even after the resin is cured, and it causes various troubles such as wire runout and smearing during the manufacturing of the wire and the extrusion coating of the secondary protective coating layer. Therefore, as a second layer, we use a hard layer with a relatively high Young's modulus (Young's modulus of 50 to l) that does not show tank properties after curing.
This is because by applying oooOkg/c11'), these manufacturing problems can be eliminated.
さらに、前述のように第2層(24)にも潤滑作用のあ
る可塑剤を添加することにより、二次保護被覆層を施す
際に発生する歪を緩和するスリップ効果が生まれ、すぐ
れた紫外線硬化型樹脂被覆のタイト心線が得られる。Furthermore, as mentioned above, by adding a lubricating plasticizer to the second layer (24), a slip effect is created that alleviates the distortion that occurs when applying the secondary protective coating layer, resulting in excellent ultraviolet curing. A tight core wire coated with mold resin is obtained.
(実施例)
実施例1:コア径50μ、クラツド径125μ、比屈折
率差△n=1%のGI型光ファイバ素線に、種々のウレ
タンアクリレート系紫外線硬化型樹脂に潤滑作用のある
可塑剤を添加した組成物を塗布硬化させた素線(外径4
00μ)に、ナイロン−12を押出被覆して得られた第
1図のような紫外線樹脂被覆タイト心線(外径0.9m
)について、初期伝送損失及び低温特性を調べたX^果
は第1表の通りである。(Example) Example 1: A plasticizer that has a lubricating effect on various urethane acrylate ultraviolet curable resins was added to a GI type optical fiber with a core diameter of 50μ, a cladding diameter of 125μ, and a relative refractive index difference △n = 1%. Wire (outer diameter 4) coated and cured with a composition containing
A tight core wire coated with ultraviolet resin (outer diameter 0.9 m) as shown in Fig. 1 obtained by extrusion coating nylon-12 on
), the results of investigating the initial transmission loss and low temperature characteristics are shown in Table 1.
第 1 表
上表の結果から紫外線硬化型樹脂に潤滑性のある可塑剤
を添加した方が、心線化後の伝送損失の増加及び低温時
の温度特性がすぐれていることがわかる。From the results shown in Table 1, it can be seen that adding a lubricating plasticizer to the ultraviolet curable resin results in an increase in transmission loss after cording and better temperature characteristics at low temperatures.
実施例2:実施例1と同じGI型光ファイバに。Example 2: Used the same GI type optical fiber as Example 1.
種々のウレタンアクリレート系紫外線硬化型樹脂を第1
層には低ヤング率のソフト層(厚さ300μ)、第2層
には比較的高ヤング率のハード層(厚さ400μ)を配
した2層構造の保護被覆層を被覆し、第1層には可塑剤
を添加した素線を製造し、その]ニにナイロン−12を
押出し被覆して得られた第2図のような紫外線硬化型樹
脂被覆タイト心線について、初期伝送損失及び低温時の
温度特性を調べた結果は第2表の通りである。Various urethane acrylate-based ultraviolet curing resins
The layer is covered with a protective coating layer with a two-layer structure consisting of a soft layer with a low Young's modulus (thickness 300μ) and a second layer with a hard layer (thickness 400μ) with a relatively high Young's modulus. The initial transmission loss and low-temperature characteristics of the ultraviolet curable resin-coated tight core wire as shown in Fig. 2 obtained by manufacturing a wire to which a plasticizer has been added and then extruding and coating it with nylon-12 are as follows. Table 2 shows the results of examining the temperature characteristics of .
第 2 表
実施例3:実施例2と同様に紫外線硬化型樹脂層を2層
構造とし、そのいずれの層にも潤滑作用のある可塑剤を
添加した第2図のような紫外線硬化型樹脂被覆タイ1心
線について、初期伝送損失及び低温時の温度特性を調べ
た結果は第3表の通りである。Table 2 Example 3: UV-curable resin coating as shown in Figure 2, in which the UV-curable resin layer has a two-layer structure as in Example 2, and a lubricating plasticizer is added to both layers. Table 3 shows the results of investigating the initial transmission loss and temperature characteristics at low temperatures for the tie 1 core wire.
、1.1
1′1
シ
第 3 表
上表の結果から潤滑性のある可塑剤を紫外線硬化型樹脂
層の第1層及び第2層のいずれの層にも添加した方が、
第1層のみに添加したのに比して伝送損失、低温特性が
すぐれていることがわかる。, 1.1 1'1 Table 3 From the results in the above table, it is better to add a lubricating plasticizer to both the first and second layers of the ultraviolet curable resin layer.
It can be seen that the transmission loss and low-temperature characteristics are superior to when it is added only to the first layer.
(発明の効果)
上述したように、紫外線硬化型樹脂に潤滑性のある可塑
剤を添加した保護被覆層を石英系光フアイバ素線上に具
えた本発明の光伝送用ファイバによれば、初期伝送損失
も十分低く、低温時における伝送損失変化も少なくする
ことが可能となった。(Effects of the Invention) As described above, according to the optical transmission fiber of the present invention, which is provided with a protective coating layer made of an ultraviolet curable resin and a lubricating plasticizer added to the quartz-based optical fiber, the initial transmission The loss is also sufficiently low, making it possible to reduce changes in transmission loss at low temperatures.
又」1記保護層を第1層にソフト層、第2層にハード層
を配した2層構造上することにより製造プロセス」二の
問題もなく、伝送特性も良好な光伝送用ファイバが得ら
れ、さらに上記第1層及び第2層のいずれの層にも潤滑
性のある可塑剤を添加することによりきわめてすぐれた
光伝送用ファイバが得られる。Furthermore, by applying the protective layer as described in 1 above to a two-layer structure in which the first layer is a soft layer and the second layer is a hard layer, an optical transmission fiber with good transmission characteristics can be obtained without any problems in the manufacturing process. Furthermore, by adding a lubricating plasticizer to both the first layer and the second layer, an extremely excellent optical transmission fiber can be obtained.
なお、本発明は保護被覆層に紫外線硬化型樹脂を用いる
ことを述べたが、他の放射線、例えば電子線硬化型樹脂
を用いても同様の効果が期待できる。Although the present invention has been described using an ultraviolet curable resin for the protective coating layer, the same effect can be expected by using other radiation, such as an electron beam curable resin.
図面はいずれも本発明に係る光伝送用ファイバの実施態
様を示すもので、第1図は紫外線硬化型樹脂による保護
被覆層が1層+I&造の横断面図、第2図は上記保護被
覆層が2層+il造の横断面図である。
1・・・石英系光フアイバ素線、2・・・保護被覆層、
26L・・・保護被覆のソフト層、2も・・・保護被覆
のハード層、3・・・二次保護被覆層。
〕
72−
大1図
大2図
b lThe drawings all show embodiments of the optical transmission fiber according to the present invention, and Fig. 1 is a cross-sectional view of one protective coating layer made of ultraviolet curable resin + I&, and Fig. 2 is a cross-sectional view of the above protective coating layer. is a cross-sectional view of a 2-layer + il structure. 1... Quartz-based optical fiber wire, 2... Protective coating layer,
26L... Soft layer of protective coating, 2... Hard layer of protective coating, 3... Secondary protective coating layer. ] 72- Large figure 1 Large figure 2 b l
Claims (4)
よる保護被覆層を具え、該保護被覆層に密接して二次保
護被覆層を設けた光伝送用ファイバにおいて、前記紫外
線硬化型樹脂に潤滑作用のある可塑剤を添加したことを
特徴とする光伝送用ファイバ。(1) In an optical transmission fiber comprising a protective coating layer made of an ultraviolet curable resin on the strand of a stone capsule-based optical fiber, and a secondary protective coating layer provided in close contact with the protective coating layer, the ultraviolet curable type An optical transmission fiber characterized by adding a lubricating plasticizer to the resin.
フアイバ素線に接する側に設けたヤング率1〜30 k
g / cm’のソフト層と、その外側に設けたヤング
率50〜l0000kg / c♂のハード層の2層構
造よりなることを特徴とする特許請求の範囲第1項記載
の光伝送用ファイバ。(2) Young's modulus of 1 to 30 k provided on the side where the protective coating waste made of ultraviolet curable resin is in contact with the quartz-based optical fiber bare wire
The optical transmission fiber according to claim 1, characterized in that it has a two-layer structure: a soft layer with a Young's modulus of 50 to 10,000 kg/c♂ and a hard layer provided outside the soft layer with a Young's modulus of 50 to 10,000 kg/cm.
ことを特徴とする特許請求の範囲第2項記載の光伝送用
ファイバ。(3) The optical transmission fiber according to claim 2, wherein a plasticizer having a lubricating effect is added to the soft layer.
方に添加したことを特徴とする特5′1請求の範囲第2
項記載の光伝送用ファイバ。(4) Claim 2 of Claim 5'1 characterized in that a plasticizer with lubricating action is added to both the soft layer and the hard layer.
Optical transmission fiber described in section.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59118748A JPS60262115A (en) | 1984-06-08 | 1984-06-08 | Fiber for optical transmission |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59118748A JPS60262115A (en) | 1984-06-08 | 1984-06-08 | Fiber for optical transmission |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60262115A true JPS60262115A (en) | 1985-12-25 |
Family
ID=14744074
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59118748A Pending JPS60262115A (en) | 1984-06-08 | 1984-06-08 | Fiber for optical transmission |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60262115A (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62189413A (en) * | 1986-02-15 | 1987-08-19 | Sumitomo Electric Ind Ltd | Resin coated optical fiber strand |
JPH01214808A (en) * | 1988-02-23 | 1989-08-29 | Sumitomo Electric Ind Ltd | Fiber for light transmission |
JPH01214809A (en) * | 1988-02-23 | 1989-08-29 | Sumitomo Electric Ind Ltd | Fiber for light transmission |
JPH0250111A (en) * | 1988-05-18 | 1990-02-20 | Sumitomo Electric Ind Ltd | Optical fiber cable |
JPH0250112A (en) * | 1988-05-18 | 1990-02-20 | Sumitomo Electric Ind Ltd | Optical fiber cable |
JPH0284606A (en) * | 1988-06-16 | 1990-03-26 | Sumitomo Electric Ind Ltd | Optical fiber unit for pneumatic feeding |
JPH02216113A (en) * | 1989-02-17 | 1990-08-29 | Fujikura Ltd | Optical cable for cryogenic service |
JPH03163505A (en) * | 1989-11-22 | 1991-07-15 | Furukawa Electric Co Ltd:The | Coated optical fiber |
JPH04116609A (en) * | 1990-09-07 | 1992-04-17 | Hitachi Cable Ltd | Heat resistant optical fiber |
WO1996008741A1 (en) * | 1994-09-16 | 1996-03-21 | Toray Industries, Inc. | Wide band optical fiber, optical fiber core wire and optical fiber cord |
WO1999059930A1 (en) * | 1998-05-21 | 1999-11-25 | Dsm N.V. | Radiation-curable, optical fiber coating system |
US6298189B1 (en) | 1996-11-08 | 2001-10-02 | Dsm N.V. | Radiation-curable optical glass fiber coating compositions, coated optical glass fibers, and optical glass fiber assemblies |
JP5876913B1 (en) * | 2014-09-22 | 2016-03-02 | 日本電信電話株式会社 | Optical fiber and optical fiber manufacturing apparatus |
-
1984
- 1984-06-08 JP JP59118748A patent/JPS60262115A/en active Pending
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62189413A (en) * | 1986-02-15 | 1987-08-19 | Sumitomo Electric Ind Ltd | Resin coated optical fiber strand |
JPH01214808A (en) * | 1988-02-23 | 1989-08-29 | Sumitomo Electric Ind Ltd | Fiber for light transmission |
JPH01214809A (en) * | 1988-02-23 | 1989-08-29 | Sumitomo Electric Ind Ltd | Fiber for light transmission |
JPH0250111A (en) * | 1988-05-18 | 1990-02-20 | Sumitomo Electric Ind Ltd | Optical fiber cable |
JPH0250112A (en) * | 1988-05-18 | 1990-02-20 | Sumitomo Electric Ind Ltd | Optical fiber cable |
JPH0284606A (en) * | 1988-06-16 | 1990-03-26 | Sumitomo Electric Ind Ltd | Optical fiber unit for pneumatic feeding |
JPH02216113A (en) * | 1989-02-17 | 1990-08-29 | Fujikura Ltd | Optical cable for cryogenic service |
JPH03163505A (en) * | 1989-11-22 | 1991-07-15 | Furukawa Electric Co Ltd:The | Coated optical fiber |
JPH04116609A (en) * | 1990-09-07 | 1992-04-17 | Hitachi Cable Ltd | Heat resistant optical fiber |
WO1996008741A1 (en) * | 1994-09-16 | 1996-03-21 | Toray Industries, Inc. | Wide band optical fiber, optical fiber core wire and optical fiber cord |
US6298189B1 (en) | 1996-11-08 | 2001-10-02 | Dsm N.V. | Radiation-curable optical glass fiber coating compositions, coated optical glass fibers, and optical glass fiber assemblies |
US6339666B2 (en) | 1996-11-08 | 2002-01-15 | Dsm N.V. | Radiation-curable optical glass fiber coating compositions, coated optical glass fibers, and optical glass fiber assemblies |
US6661959B2 (en) | 1996-11-08 | 2003-12-09 | Dsm N.V. | Radiation-curable optical glass fiber coating compositions, coated optical glass fibers, and optical glass fiber assemblies |
WO1999059930A1 (en) * | 1998-05-21 | 1999-11-25 | Dsm N.V. | Radiation-curable, optical fiber coating system |
US6110593A (en) * | 1998-05-21 | 2000-08-29 | Dsm N.V. | Radiation-curable optical fiber primary coating system |
US6534557B2 (en) | 1998-05-21 | 2003-03-18 | Dsm N.V. | Radiation-curable, optical fiber primary coating system |
JP5876913B1 (en) * | 2014-09-22 | 2016-03-02 | 日本電信電話株式会社 | Optical fiber and optical fiber manufacturing apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS60262115A (en) | Fiber for optical transmission | |
US5621838A (en) | Resins for coated optical fiber units | |
US7729564B2 (en) | Optical fiber provided with reliable coating layers | |
JPH01133011A (en) | Optical fiber with synthetic resin coating and manufacture thereof | |
JP2836285B2 (en) | Coated optical fiber | |
WO2013099500A1 (en) | Colored optical fiber, optical fiber ribbon and optical fiber cable | |
US6004675A (en) | Optical glass fiber | |
JPS6198305A (en) | Manufacture of optical fiber having synthetic resin coating and optical fiber having synthetic resin coating produced thereby | |
JPH0329907A (en) | Coated optical fiber | |
CN112654908A (en) | Optical fiber core wire and optical fiber cable | |
JP2004107184A (en) | Coated optical fiber | |
JPH0776118B2 (en) | Manufacturing method of coated optical fiber | |
JPH0551545B2 (en) | ||
JP3321930B2 (en) | Glass fiber for optical transmission and method of manufacturing the same | |
JP3084702B2 (en) | Glass fiber for optical transmission | |
JP2925099B2 (en) | Optical fiber core and tape type optical fiber core | |
JPS6046512A (en) | Plastic coated optical fiber | |
JPS61249008A (en) | Optical fiber | |
JP3303460B2 (en) | Glass fiber for optical transmission and method of manufacturing the same | |
JPS6227710A (en) | Optical glass fiber having synthetic resin coating and hardening elastomer forming material | |
JPH02118608A (en) | Coated optical fiber tape | |
JPH0425685Y2 (en) | ||
JPH01214809A (en) | Fiber for light transmission | |
JPH0629888B2 (en) | Coated optical fiber | |
JPS59162151A (en) | Resin coating of glass fiber for light transmission |