JPS60257602A - Synthetic aperture radar antenna - Google Patents
Synthetic aperture radar antennaInfo
- Publication number
- JPS60257602A JPS60257602A JP59112210A JP11221084A JPS60257602A JP S60257602 A JPS60257602 A JP S60257602A JP 59112210 A JP59112210 A JP 59112210A JP 11221084 A JP11221084 A JP 11221084A JP S60257602 A JPS60257602 A JP S60257602A
- Authority
- JP
- Japan
- Prior art keywords
- antenna
- flatness
- displacement
- synthetic aperture
- aperture radar
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q15/00—Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
- H01Q15/14—Reflecting surfaces; Equivalent structures
- H01Q15/147—Reflecting surfaces; Equivalent structures provided with means for controlling or monitoring the shape of the reflecting surface
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Variable-Direction Aerials And Aerial Arrays (AREA)
- Details Of Aerials (AREA)
- Radar Systems Or Details Thereof (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の技術分野〕
この発明は、人工衛星等の飛翔体心、:、搭載される合
成開口し・−夕に適用されるアンうすに関する。DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an annular head applied to a synthetic aperture mounted on a flying body such as an artificial satellite.
〔発明の技44・1的背j托と問題点〕一般に、人−「
衛星や航空機等のnに翔体(プラノ1フメーJ、)に搭
載した映像レーダから、f多動飛711体の側方の地十
二に電波を発則し、移動しながらこの反則波を受信して
合成するごとにより、比較的小さい開0のアンテナで、
実効的に大間ITIのアンテナを合成することができる
ようにした合成開口レータはよく知られている。[Techniques of Invention 44.1 Disadvantages and Problems] In general, people
A video radar mounted on a flying object such as a satellite or aircraft (Plano 1 Fume J,) transmits radio waves to the ground on the side of the f-hyperactive 711 object, and transmits this foul wave while moving. By receiving and combining each time, a relatively small open 0 antenna is used.
A synthetic aperture lator that can effectively synthesize Ohma ITI antennas is well known.
そして、かかる合成開口レーダは、映像センソとして用
いC)れ、全天候型で高分解能の画像を得ることができ
るものである。Such a synthetic aperture radar is used as a video sensor and can obtain all-weather high-resolution images.
第1図は、かかる合成開[]レークの概略構成を示す図
である。図において、■は人工衛星や航空機等の飛yI
I体(プラットフォーム)、2は該飛翔体に搭載される
送信機、3は受信機、4しJ送受分波器、5は受信機3
で受信した受信電波を記録する受信電波記録装置、6は
アンテナである。FIG. 1 is a diagram showing a schematic configuration of such a synthetic open[] rake. In the figure, ■ is the flight yI of artificial satellites, aircraft, etc.
I body (platform), 2 is a transmitter mounted on the flying object, 3 is a receiver, 4 is a J transmission/reception duplexer, 5 is a receiver 3
6 is an antenna.
次に、これらの部材により構成されている合成開「II
/−夕の動作°原理を、第2図に基づいて説明する。Next, we will proceed with the synthetic development “II” made up of these members.
The principle of operation of the /-evening will be explained based on FIG. 2.
所望の14的に、1、り予め設定される特定の航路、ま
たは軸道I、を、速度Vで移動ずろ人工衛星等の飛翔体
1は、地1−からhの高度にある軌j道L 6.Z沿っ
て、八1、八。、八、・・ ・ ・・・の各位置におい
て、搭′R,する合成開口レーダの小開口アンテナ6か
ら一定時間間隔toで送信パルス電波を放1]する。こ
の送信パルス電波はヒーノ、幅βの広かりて、軌道りと
直角方向に放射され、地上Gの対象物からの反射波(レ
ーダエコー)となって同しアンテナ6で受信される。A flying object 1, such as an artificial satellite, moves at a speed V along a specific route or axis path I set in advance in a desired manner. L6. Along Z, 81, 8. , 8, . . . , transmit pulse radio waves are emitted from the small aperture antenna 6 of the synthetic aperture radar mounted on the tower R at fixed time intervals to. This transmitted pulse radio wave has a wide width β and is radiated in a direction perpendicular to the orbit, and is received by the same antenna 6 as a reflected wave (radar echo) from an object on the ground G.
この反射波は、飛翔体Iが速度■で移動している間、次
々に入力され、各時点での受信信号として、振幅情報と
位相情報が記録装置5に記録される。例えば、対象物の
点目標Pは、飛翔体1の進行軌道り上の点A1で送信パ
ルス電波の照射を受け始め、点へ、で送信パルス電波の
照射を受け終る。These reflected waves are inputted one after another while the flying object I is moving at a speed of {circle around (2)}, and amplitude information and phase information are recorded in the recording device 5 as received signals at each time point. For example, the point target P of the object starts being irradiated with the transmitted pulse radio waves at a point A1 on the trajectory of the flying object 1, and ends being irradiated with the transmitted pulse radio waves at the point A1.
点目標Pからの反射波はこの間受信され、その受信信号
は距離情報と共に、絶えず変化する相対速度に対応する
位相情報を含んでおり、この受信信号を記録しておいて
、一括演算処理(ホログラフインク処理)することによ
り、己の長い間口径り、を有するアンテナを用いた場合
と実効的に同し効果が得られる(合成開口法)。The reflected wave from the point target P is received during this time, and the received signal contains distance information as well as phase information corresponding to the constantly changing relative velocity.This received signal is recorded and subjected to batch calculation processing (holographic processing). Ink processing), the same effect as using an antenna with a long aperture can be obtained (synthetic aperture method).
このようにして、次々に各位置で取得した受信信号を記
録しておいて合成することにより、実際に搭載されてい
るアンテナの数十倍〜数万倍の大きさの大開口アンテナ
を用いて対象物を観測した場合と等価になり、それだけ
方位分解能が向上し鮮明な映像が得られることになる。In this way, by recording and synthesizing the received signals acquired at each location one after another, a large aperture antenna that is several tens to tens of thousands of times larger than the antenna actually installed is used. This is equivalent to observing the object, and the azimuth resolution is improved accordingly, resulting in a clearer image.
以上のような動作原理によって合成開口が形成されるも
のであるから、合成開口を形成するのに必要な動作時間
中は、飛翔体の軌道や姿勢は勿論のこと、使用するアン
テナ自体にも厳しい安定性が要求される。Since a synthetic aperture is formed according to the operating principle described above, during the operating time required to form a synthetic aperture, there are strict conditions not only for the trajectory and attitude of the flying object but also for the antenna itself. Stability is required.
人工衛星に搭載する場合には、合成開口レーダのアンテ
ナは、通常、衛星本体に比べて大型になるため、折りた
たみ可能な展開パネル形アンテナが用いられているが、
宇宙環境にも十分耐えなければならないから、機械的に
も、熱的にも厳しい平面度が要求される。例えば、10
数mのアンテナに対しては、平均(アンテナパネル全体
における基準面に対する変位の平均値)50以下、最大
(アンテナパネル全体における基準面に対して最も大き
な変位)25fl以下という厳密な平面度が要求されて
いる。When installed on a satellite, the synthetic aperture radar antenna is usually larger than the satellite itself, so a foldable deployable panel antenna is used.
Since it must be able to withstand the space environment, strict mechanical and thermal flatness is required. For example, 10
For antennas of several meters in length, strict flatness is required, with an average (average value of the displacement of the entire antenna panel relative to the reference plane) of 50 or less and a maximum (largest displacement relative to the reference surface of the entire antenna panel) of 25 fl or less. has been done.
しかしながら、このように厳しい平面度が要求されてい
るにも拘らず、従来は、観測動作中に、このアンテナの
平面度を直接モニターすることは考えられていなかった
ため、取得された画像とアンテナの平面度との関係を評
価・解析することは行われておらず、したがって、宇宙
環境におけるアンテナの平面度に変動がある場合、その
変動に基づく画像の補正がなされず、画像にはこの変動
による誤差が入り込み、正確な観測対象物の画像が得ら
れないという問題点があった。However, despite this strict requirement for flatness, it has not been considered to directly monitor the flatness of the antenna during observation operations, so the obtained images and antenna The relationship with flatness has not been evaluated or analyzed. Therefore, if there is a variation in the flatness of the antenna in the space environment, the image will not be corrected based on that variation, and the image will not be corrected based on this variation. There was a problem in that errors were introduced and accurate images of the observed object could not be obtained.
本発明は、従来の合成開口レーダのかがる問題点を解消
すべくなされたもので、アンテナ平面度モニターを配設
して、アンテナ表面皮の変位量を検出できるようにした
合成開口レーダアンテナを提供することを目的とするも
のである。The present invention was made in order to solve the problem of overcasting in conventional synthetic aperture radars, and provides a synthetic aperture radar antenna that is equipped with an antenna flatness monitor to detect the amount of displacement of the antenna surface skin. The purpose is to provide
本発明は、発光素子及び受光素子とこれと離間して配設
されるミラーとからなる能動型平面度モニターを、合成
開口レーダアンテナに備え、アンテナ平面度の変位量を
検出して、合成開口レーダの画像再生時に観測対象物の
正確な画像が得られるようにするものである。The present invention equips a synthetic aperture radar antenna with an active flatness monitor consisting of a light-emitting element, a light-receiving element, and a mirror disposed apart from these, detects the amount of displacement of the antenna flatness, and detects the amount of displacement of the antenna flatness to detect the synthetic aperture. This allows accurate images of objects to be observed to be obtained when reproducing radar images.
以下本発明の実施例について説明する。 Examples of the present invention will be described below.
第3図は、本発明に係る合成開口レーダアンテナの一実
施例の平面図、第4図は、その側面図、第5図は、平面
度モニタ一本体の拡大正面図を示す。図において、11
は人工衛星等の飛翔体で、12は該飛翔体11に搭載さ
れた合成開口レーダの展開パネル形アンテナである。ア
ンテナ12の中央支持フレーム13の一端には、平面度
モニタ一本体14が取付けられている。該モニタ一本体
14は発光素子15を中心として多数の受光素子16を
同心円状に配置して構成されている。一方、アンテナ1
2の先端部12’には、ミラー17が平面度モニタ一本
体14と対向するように配設されている。FIG. 3 is a plan view of one embodiment of the synthetic aperture radar antenna according to the present invention, FIG. 4 is a side view thereof, and FIG. 5 is an enlarged front view of the main body of the flatness monitor. In the figure, 11
1 is a flying object such as an artificial satellite, and 12 is a deployable panel antenna of a synthetic aperture radar mounted on the flying object 11. A flatness monitor main body 14 is attached to one end of the central support frame 13 of the antenna 12. The monitor main body 14 is constructed by arranging a large number of light receiving elements 16 concentrically around a light emitting element 15. On the other hand, antenna 1
A mirror 17 is disposed at the tip end 12' of the flatness monitor 2 so as to face the flatness monitor body 14.
このように構成された合成開口レーダアンテナ12にお
いて、平面度モニタ一本体14の発光素子15から発射
された光(例えばレーザ光)は、アンテナ12の先端部
12′に配置されたミラー17で反射され、発光素子1
5に対して同心円状に配列されている受光素子16のい
ずれかで検知される。したがって、どの受光素子】6に
よって検知されたかによって、ミラー配置部分(この実
施例では先端部)の平面度の変位量を検出することがで
きる。In the synthetic aperture radar antenna 12 configured in this manner, light (for example, laser light) emitted from the light emitting element 15 of the flatness monitor main body 14 is reflected by the mirror 17 disposed at the tip 12' of the antenna 12. and light emitting element 1
The light is detected by one of the light receiving elements 16 arranged concentrically with respect to the light receiving element 5. Therefore, depending on which light receiving element 6 is used for detection, the amount of displacement in flatness of the mirror arrangement portion (in this embodiment, the tip) can be detected.
そして、検出されたアンテナ平面度の変位量は、他のデ
ータと共に地上に伝送され、画像再生時に、その変位量
からアンテナパターン計算を行なし)、これに基づいて
画像再生上の各種パラメータに補正を加えることによっ
て、正確な観測対象物の画像を得ることができる。Then, the detected antenna flatness displacement is transmitted to the ground together with other data, and the antenna pattern is calculated from the displacement during image playback), and various parameters for image playback are corrected based on this. By adding , an accurate image of the observed object can be obtained.
上記実施例では、アンテナに一個の平面度モニターを配
置したもの、すなわち、モニタ一本体を中央支持フレー
ムに、ミラーを先端部に配置したものを示したが、平面
度モニターは一個に限らず、アンテナの大きさなどに応
し、複数個配置したり、また、その配置位置もアンテナ
中央と先端部に限らず、必要に応し適宜設定することが
できる。In the above embodiment, one flatness monitor is arranged on the antenna, that is, the main body of the monitor is placed on the central support frame, and the mirror is placed on the tip, but the number of flatness monitors is not limited to one. Depending on the size of the antenna, a plurality of antennas can be arranged, and the arrangement position is not limited to the center and tip of the antenna, but can be appropriately set as necessary.
また、上記実施例では、アンテナ平面度の変位量の検出
後、その検出量を画像再生時のパラメータ補正量として
用いたものを示したが、アンテナパネルの平面度そのも
のを、モーフ駆動あるいは熱的制御で補正できるように
構成した場合には、検出変位量に応じて、アンテナパネ
ルの平面度自体を自動補正するように構成することもで
きる。In addition, in the above embodiment, after detecting the displacement amount of the antenna flatness, the detected amount is used as the parameter correction amount during image reproduction. If the antenna panel is configured to be corrected by control, the flatness of the antenna panel itself may be automatically corrected in accordance with the detected displacement amount.
以上実施例に基づき詳細に説明したように、本発明によ
れば、平面度モニターによりアンテナパネルの平面度の
変位量を容易に検出することができ、その変位量に応じ
た画像再生時における補正、あるいはアンテナパネル自
体の平面度の補正により、正値な観測対象物の画像を得
ることができる。As described above in detail based on the embodiments, according to the present invention, the amount of displacement in the flatness of the antenna panel can be easily detected by the flatness monitor, and correction is made during image reproduction according to the amount of displacement. Alternatively, by correcting the flatness of the antenna panel itself, a positive image of the observation object can be obtained.
第1FIは、一般の合成開口レーダの概略構成図、第2
図は、その動作態様を示す説明図、第3図は、本発明に
係る合成開口レーダアンテナの一実施例の平面図、第4
図は、その側面図、第5図は、平面度モニタ一本体の拡
大正面図である。
図において、11は飛翔体、12は合成開口レーダアン
テナ、14は平面度モニタ一本体、15は発光素子、1
6は受光素子、17はミラーを示す。
第1 図
完2図
東3図
第5図The first FI is a schematic configuration diagram of a general synthetic aperture radar, and the second
3 is a plan view of an embodiment of the synthetic aperture radar antenna according to the present invention, and FIG.
The figure is a side view thereof, and FIG. 5 is an enlarged front view of the main body of the flatness monitor. In the figure, 11 is a flying object, 12 is a synthetic aperture radar antenna, 14 is a flatness monitor body, 15 is a light emitting element, 1
Reference numeral 6 indicates a light receiving element, and reference numeral 17 indicates a mirror. Figure 1 Complete Figure 2 East Figure 3 Figure 5
Claims (1)
いて、発光素子及び受光素子と1、こ旧2と離間して設
置されるミラーとからなる能動型平面度モニターを備え
ていることを特徴とする合成開口レーダアンテナ。A composite plane mounted on a flying object such as an artificial satellite is equipped with an active flatness monitor consisting of a light-emitting element, a light-receiving element, and a mirror installed separately. A synthetic aperture radar antenna characterized by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59112210A JPS60257602A (en) | 1984-06-02 | 1984-06-02 | Synthetic aperture radar antenna |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59112210A JPS60257602A (en) | 1984-06-02 | 1984-06-02 | Synthetic aperture radar antenna |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60257602A true JPS60257602A (en) | 1985-12-19 |
JPH0212403B2 JPH0212403B2 (en) | 1990-03-20 |
Family
ID=14581006
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59112210A Granted JPS60257602A (en) | 1984-06-02 | 1984-06-02 | Synthetic aperture radar antenna |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60257602A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02216077A (en) * | 1989-02-17 | 1990-08-28 | Nec Corp | Synthetic aperture radar apparatus |
JPH0690114A (en) * | 1992-09-08 | 1994-03-29 | Natl Space Dev Agency Japan<Nasda> | Satellite mounted array antenna |
-
1984
- 1984-06-02 JP JP59112210A patent/JPS60257602A/en active Granted
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02216077A (en) * | 1989-02-17 | 1990-08-28 | Nec Corp | Synthetic aperture radar apparatus |
JPH0690114A (en) * | 1992-09-08 | 1994-03-29 | Natl Space Dev Agency Japan<Nasda> | Satellite mounted array antenna |
Also Published As
Publication number | Publication date |
---|---|
JPH0212403B2 (en) | 1990-03-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5134409A (en) | Surveillance sensor which is provided with at least one surveillance radar antenna rotatable about at least one first axis of rotation | |
US4843397A (en) | Distributed-array radar system comprising an array of interconnected elementary satellites | |
US6750822B2 (en) | Mobile system and method for characterizing radiation fields outdoors in an extensive and precise manner | |
CN103682677A (en) | Airship radar conformal thinned array antenna and its signal processing method | |
JPS59150298A (en) | Reconnaissance device | |
CA2037710C (en) | Forward looking radar | |
JP4019149B2 (en) | Radio wave arrival direction identification system | |
CA2037711C (en) | Forward looking radar | |
JPH05273333A (en) | High speed multibeam side searching sonar | |
JPS60257602A (en) | Synthetic aperture radar antenna | |
US3007155A (en) | Ground contour mapping system | |
US5821526A (en) | Star scanning method for determining the line of sight of an electro-optical instrument | |
JPH1172558A (en) | Target-locating device and landing-guiding device | |
US5486831A (en) | Multi-mode missile seeker with adjunct sensor blocking an electronically scanned radio frequency aperture using an off-boresight direction finding process | |
JPH0213481B2 (en) | ||
CN114924269B (en) | Distance ambiguity analysis method based on spaceborne F-SCAN SAR | |
JPS6122272A (en) | Synthetic aperture radar | |
JPS60170775A (en) | Synthetic aperture radar | |
JPS6122274A (en) | Method for data processing of synthetic aperture radar | |
US2891243A (en) | Alarm device for radar equipment | |
Kreitmair-Steck et al. | Heliradar-a synthetic aperture radar with rotating antennas | |
Doerry et al. | A High Resolution, Light-Weight, Synthetic Aperture Radar for UAV Application | |
Hensley et al. | A High Resolution, Light-Weight, Synthetic Aperture Radar for UAV Application | |
JPH02242114A (en) | Initial acquisition system | |
Jordan et al. | Design of shuttle radar topography mapper (SRTM) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |