JPS60257411A - Optical multiplexer/demultiplexer - Google Patents
Optical multiplexer/demultiplexerInfo
- Publication number
- JPS60257411A JPS60257411A JP11314884A JP11314884A JPS60257411A JP S60257411 A JPS60257411 A JP S60257411A JP 11314884 A JP11314884 A JP 11314884A JP 11314884 A JP11314884 A JP 11314884A JP S60257411 A JPS60257411 A JP S60257411A
- Authority
- JP
- Japan
- Prior art keywords
- diffraction grating
- slab waveguide
- fiber
- face
- light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B6/12007—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
- G02B6/28—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
- G02B6/293—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
- G02B6/29304—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating
- G02B6/29316—Light guides comprising a diffractive element, e.g. grating in or on the light guide such that diffracted light is confined in the light guide
- G02B6/29325—Light guides comprising a diffractive element, e.g. grating in or on the light guide such that diffracted light is confined in the light guide of the slab or planar or plate like form, i.e. confinement in a single transverse dimension only
- G02B6/29326—Diffractive elements having focusing properties, e.g. curved gratings
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
- G02B6/28—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
- G02B6/293—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
- G02B6/29304—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating
- G02B6/29316—Light guides comprising a diffractive element, e.g. grating in or on the light guide such that diffracted light is confined in the light guide
- G02B6/29325—Light guides comprising a diffractive element, e.g. grating in or on the light guide such that diffracted light is confined in the light guide of the slab or planar or plate like form, i.e. confinement in a single transverse dimension only
- G02B6/29328—Diffractive elements operating in reflection
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
- G02B6/28—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
- G02B6/293—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
- G02B6/29379—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
- G02B6/2938—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device for multiplexing or demultiplexing, i.e. combining or separating wavelengths, e.g. 1xN, NxM
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Optical Integrated Circuits (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明は広帯域であって構造が簡単な回折格子形光合分
波器に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a diffraction grating type optical multiplexer/demultiplexer having a wide band and a simple structure.
波長多重光ファイバ伝送システムに用いる光合分波器と
しては、従来、干渉膜形合分波器と角度分散形合分波器
とが提案されている。角度分散形合分波器は1個の角度
分散素子で多波長の分波が可能であり、使用波長数が多
い場合には干渉膜形合分波器に較べて構造が簡単になる
という利点を有している。この特長を十分活用するため
第2図に示したように、スラブ導波路と凹面回折格子と
を組合せてレンズ系を省略した構造も開発されている。Conventionally, interference film type multiplexers and demultiplexers and angle dispersive type multiplexers and demultiplexers have been proposed as optical multiplexers and demultiplexers used in wavelength multiplexing optical fiber transmission systems. Angular dispersion type multiplexer/demultiplexer is capable of demultiplexing multiple wavelengths with one angle dispersion element, and has the advantage that the structure is simpler than interference film type multiplexer/demultiplexer when a large number of wavelengths are used. have. In order to take full advantage of this feature, a structure has been developed in which a slab waveguide and a concave diffraction grating are combined and the lens system is omitted, as shown in FIG.
第2図において基板1、コア層2、クラッド層3を積層
し、上記コア層2の屈折率を基板1およびクレット層3
の屈折率よりも大きくしスラブ導波路を形成している。In FIG. 2, a substrate 1, a core layer 2, and a cladding layer 3 are laminated, and the refractive index of the core layer 2 is set to the substrate 1 and the cladding layer 3.
A slab waveguide is formed by making the refractive index larger than the refractive index of the waveguide.
なお、4は入力ファイバ、5は出力ファイバ、6は四面
回折格子であ−る。Note that 4 is an input fiber, 5 is an output fiber, and 6 is a four-sided diffraction grating.
回折格子6の逆線分散をγ、入力ファイバ4のコア径を
Dl、出力ファイバ5のコア径をり。、出力ファイバ5
8〜5dのコア中心間隔をCとすれば、通過波長帯域幅
Δλおよび通過波長中心間隔λ。The inverse linear dispersion of the diffraction grating 6 is γ, the core diameter of the input fiber 4 is Dl, and the core diameter of the output fiber 5 is R. , output fiber 5
If the core center spacing of 8 to 5d is C, then the passing wavelength bandwidth Δλ and the passing wavelength center spacing λ.
は次式で与えられる。is given by the following equation.
Δλ=γ(Do−Di) (1)
λ。=γ・C(2)
ところで最小コア中心間隔は出射ファイバ58〜5dが
隣接したときのフラッド径Dcに等しl、Thから比帯
域Δλ/λ0は次式のようになる。Δλ=γ(Do−Di) (1) λ. =γ·C (2) By the way, the minimum core center spacing is equal to the flood diameter Dc when the output fibers 58 to 5d are adjacent to each other, l, and from Th, the fractional band Δλ/λ0 is given by the following equation.
例えばD(=]25/7mφ、DH=50ノ濯φ、D0
=507mφの場合はΔλ、Δλ/λ。とも零になる。For example, D(=]25/7mφ, DH=50mmφ, D0
= 507 mφ, Δλ, Δλ/λ. Both become zero.
したがって通常はり。>Diの条件が必要となる。しか
しDoをDCに近づければ分離度が劣化するため、十分
な分離度を得るにはつぎの条件が必要になる。Therefore, it is usually a beam. >Di is required. However, if Do approaches DC, the degree of separation deteriorates, so the following conditions are required to obtain a sufficient degree of separation.
・l’ (oc−o、)≧o、 (4−)D、、:12
5//IIIφ、DH=:507zn+φの場合、Do
≦75//mφとなりこのときΔλ/λ0二0.2が最
大の比帯域となり、広い通過波長帯域を得るのが困難で
あるという欠点を有していた。・l' (oc-o,)≧o, (4-)D, , :12
5//IIIφ, if DH=:507zn+φ, Do
≦75//mφ, and in this case, Δλ/λ020.2 becomes the maximum specific band, which has the disadvantage that it is difficult to obtain a wide passing wavelength band.
本発明は複数の回折格子と複数の平面反射器とをスラブ
導波路基板に設けることによって、出射ファイバ端面上
に色収差がない入射ファイバ像を結像させ、広帯域の回
折格子形光合分波器を得ることを目的とする。The present invention forms a chromatic aberration-free input fiber image on the output fiber end face by providing a plurality of diffraction gratings and a plurality of plane reflectors on a slab waveguide substrate, thereby creating a broadband diffraction grating type optical multiplexer/demultiplexer. The purpose is to obtain.
」二記の目的を達成するため、本発明による光合分波器
1j:、基板上に形成したスラブ導波路と、該スラブ導
波路の端面に設けた複数の回折格子と入力ファイバおよ
び複数の出力ファイバを有す光合分波器において、上記
スラブ導波路の他の端面に複数の平面反射器を設け、上
記入力ファイバからの入射光をスラブ導波路を経て導く
第1の回折格子のロー・ランド円上に、入力ファイバ端
面と上記複数の平面反射器とを配し、該平面反射器から
の反射光を導く各回折格子のローラン1へ円上、対応す
る平面反射器と出力ファイバの端面とをそれぞれ配設し
たことにより、広帯域の光合分波器を得るようにしたも
のである。In order to achieve the second object, an optical multiplexer/demultiplexer 1j according to the present invention: a slab waveguide formed on a substrate, a plurality of diffraction gratings and input fibers provided on the end face of the slab waveguide, and a plurality of outputs. In an optical multiplexer/demultiplexer having a fiber, a plurality of plane reflectors are provided on the other end face of the slab waveguide, and a low land of the first diffraction grating guides the incident light from the input fiber through the slab waveguide. An input fiber end face and the plurality of plane reflectors are arranged on a circle, and the corresponding plane reflector and the output fiber end face are arranged on a circle to the Loran 1 of each diffraction grating that guides the reflected light from the plane reflector. By arranging these, a broadband optical multiplexer/demultiplexer is obtained.
つぎに本発明の実施例を図面とともに説明する。 Next, embodiments of the present invention will be described with reference to the drawings.
第1図は本発明による光合分波器の一実施例を示す斜視
図である、第1図において基板7」二にコア層8、クラ
ッド層9を積層し、コア層8の屈折率を基板7およびク
ラッド層9の屈折率よりも大きくしスラブ導波路を形成
している。」二記スラブ導波路はカラス基板7の」二に
公知の電界イオン拡散法を用いて形成し、コア層8の厚
さを50μm、比屈折率差を1%として入力ファイバ1
0および出力ファイバ11のコア径および比屈折率差に
等しい値を得ているが、本発明はこの実施例に限定され
るものではなく、CV D rii、スパッタリング法
、電子ビーム蒸着法等の公知技術を適用することができ
る。入力ファイバ10および出力ファイバ11にはコア
径50μm、外形]25IjrnのGI形ファイバを用
い、クラッド層9、コア層8、基板7の一部を反応性イ
オンエツチング技術で加工して設けたファイバ設置溝1
2に上記ファイバを挿入し、ファイバ設id溝12の端
部に露出したコア層8の端面と入力及び出カフ7″イバ
10.11のコア端面とを結合している。FIG. 1 is a perspective view showing an embodiment of an optical multiplexer/demultiplexer according to the present invention. In FIG. 7 and the cladding layer 9 to form a slab waveguide. The slab waveguide is formed on the glass substrate 7 using a known electric field ion diffusion method, and the input fiber 1 is formed with a core layer 8 having a thickness of 50 μm and a relative refractive index difference of 1%.
0, the core diameter of the output fiber 11, and the relative refractive index difference, but the present invention is not limited to this example, and may be performed using known methods such as CV Drii, sputtering method, electron beam evaporation method, etc. technology can be applied. The input fiber 10 and the output fiber 11 are GI type fibers with a core diameter of 50 μm and an outer diameter of 25 Ijrn, and the cladding layer 9, core layer 8, and part of the substrate 7 are processed by reactive ion etching technology. Groove 1
2, and the end face of the core layer 8 exposed at the end of the fiber ID groove 12 and the core end face of the input and output cuff 7'' fibers 10.11 are coupled.
凹面回折格子13および平面反射器14は」二記ファイ
バ設置溝]2と同様に、クラッド層9、コア層8、基板
7からなる積層の一部を反応性イオンエツチング技術で
加工して四部を設け 該凹部の側壁に露出しカーコア層
8の端面にAD、を蒸着して形成している。本実施例に
おいては凹面回折格子]、3a、13b、13cは同一
格子定数にしである。入力ファイバ10の入射端面と平
面反射器14a、14bは凹面回折格子13aのローラ
ンド円上に配置しである。The concave diffraction grating 13 and the plane reflector 14 are formed by etching a part of the stacked layer consisting of the cladding layer 9, core layer 8, and substrate 7 using reactive ion etching technology in the same way as in "2 fiber installation grooves" 2. AD is formed by vapor deposition on the end face of the car core layer 8 exposed on the side wall of the recess. In this embodiment, concave diffraction gratings], 3a, 13b, and 13c have the same grating constant. The input end face of the input fiber 10 and the plane reflectors 14a, 14b are arranged on the Rowland circle of the concave diffraction grating 13a.
同様に平面反射器14aと出力ファイバllbは凹面回
折格子13bのローランド円上に配置し、平面反射器1
4bと出力ファイバ1.1cとは凹面回折格子13cの
ローランド円上に配置しである。なお」二記平面反射器
14a、1.4bは回折光の集光位置近傍の各通過波長
帯域にわたる入力ファイバ実像より犬きな反射面を有し
ている。Similarly, the plane reflector 14a and the output fiber llb are arranged on the Rowland circle of the concave diffraction grating 13b, and the plane reflector 1
4b and the output fiber 1.1c are arranged on the Rowland circle of the concave diffraction grating 13c. Note that the two planar reflectors 14a and 1.4b have reflective surfaces that are larger than the input fiber real image over each passing wavelength band near the convergence position of the diffracted light.
本発明の動作原理についてつぎに説明する。入力ファイ
バ]0から入射した入射光は上記のスラブ導波路内を拡
散光として伝搬し、凹面回折格子1.3aに導かれて回
折光となる。これらの回折光のうち波長範囲がλ1〜2
.2の回折光は平面反射器1.4aの反射面内に収束し
て反射し、スラブ導波路内を拡散光として伝搬し凹面回
折格子13bに導かれる。」二記凹面回折格子13bで
再び回折した光は再度スラブ導波路内を伝搬して出力フ
ァイバ]、1bに収束する。また」二記凹面回折格子1
3aの回折光のうち波長範囲がλ3〜2.4の光は、ス
ラブ導波路内を伝搬して平面反射器]、4bの反射面内
に収束して反射し、凹面回折格子]、3cで再度回折し
て出力ファイバ]、1.cに収束する。The operating principle of the present invention will now be explained. Input fiber] 0 propagates in the slab waveguide as diffused light, and is guided to the concave diffraction grating 1.3a to become diffracted light. Among these diffracted lights, the wavelength range is λ1~2
.. The second diffracted light is converged and reflected within the reflective surface of the plane reflector 1.4a, propagates in the slab waveguide as diffused light, and is guided to the concave diffraction grating 13b. The light diffracted again by the second concave diffraction grating 13b propagates within the slab waveguide and converges on the output fiber 1b. Also, concave diffraction grating 1
Among the diffracted lights of 3a, the light with a wavelength range of λ3 to 2.4 propagates in the slab waveguide and is converged and reflected within the reflective surface of 4b, concave diffraction grating], 3c. Diffraction again and output fiber], 1. converges to c.
入力ファイバ10から凹面回折格子1.3aの法線に対
してαの角度で入射した光が回折して角度βで出射し、
平面反射器14aに達するときには次の関係式が近似的
に成立する。Light incident from the input fiber 10 at an angle α with respect to the normal to the concave diffraction grating 1.3a is diffracted and output at an angle β,
When reaching the plane reflector 14a, the following relational expression approximately holds true.
d (sj−n a□+sinβ1)二mλ。 (5)
ここでdば格子定数、λ。は通過帯域中心波長、mは回
折次数であり本実施例ではm=1に選んである。平面反
射器の法線に対しそ角度Oで入射した回折光は平面反射
器の法線に対して角度−〇で反射し、凹面回折格子13
bの法線に対して角度α2で入射して再回折光となり角
度β2で出射して出力ファイバllbに至る。上記再回
折光に対しても(1)式と同様につぎの関係が成立する
。d (sj−n a□+sinβ1)2mλ. (5)
where d is the lattice constant, λ. is the center wavelength of the passband, m is the diffraction order, and in this embodiment, m is selected to be 1. The diffracted light incident at an angle O with respect to the normal line of the plane reflector is reflected at an angle -0 with respect to the normal line of the plane reflector, and is reflected by the concave diffraction grating 13.
The light enters at an angle α2 with respect to the normal line of b, becomes re-diffracted light, and exits at an angle β2, reaching the output fiber llb. Similarly to equation (1), the following relationship holds true for the re-diffracted light.
d (sin a2+sjnβ2 )= mλo(6)
ここで02−α1となるように平面反射器1.4aの法
線方向を設定すれば、(1)、(2)よりβ、=βユと
なる。波長がλ。十δλに変化した場合、凹面回折格子
13aの回折光出射角度はδβ、たけ増加する。d (sin a2+sjnβ2)=mλo(6)
Here, if the normal direction of the plane reflector 1.4a is set so that it becomes 02-α1, then β, = βu from (1) and (2). The wavelength is λ. When the angle changes to ten δλ, the diffraction light emission angle of the concave diffraction grating 13a increases by δβ.
ス プ
これに伴って平面反射器の入射角θ、反射角−〇は、−
δβ1、十δβ1だけ変化するため、凹面回折格子13
bの入射角はδβ1だけ増加する。このとき凹面回折格
子13bによる再回゛折光の出射角変化δβ2は(])
(2)(3)式より次式で与えられる。Along with this, the incident angle θ and reflection angle −〇 of the plane reflector are −
Since the concave diffraction grating 13 changes by δβ1 and 10δβ1,
The angle of incidence of b increases by δβ1. At this time, the change in the output angle δβ2 of the re-diffracted light by the concave diffraction grating 13b is (])
From equations (2) and (3), it is given by the following equation.
1α1)≦10°、1β、1≦10°に選べばδβ2≦
0.02δβ、となるため、1個の回折格子に較べて逆
線分数γは50倍以」−となり第1式の定義による通過
波長帯域幅は極めて大きくなるが、実効的な通過波長帯
域幅Δλ、通過波長中心間隔λ。は平面反射器1.4a
の反射面幅Wと平面反射器14a、14bの中心間隔S
および凹面回折格子13aの逆線分数によって次式で近
似的に与えられる。If you choose 1α1)≦10°, 1β, 1≦10°, δβ2≦
0.02δβ, so the inverse line fraction γ is more than 50 times that of a single diffraction grating, and the passing wavelength bandwidth as defined by the first equation becomes extremely large, but the effective passing wavelength bandwidth Δλ, passing wavelength center spacing λ. is a flat reflector 1.4a
The reflecting surface width W and the center distance S of the planar reflectors 14a and 14b
and the inverse line fraction of the concave diffraction grating 13a are approximately given by the following equation.
△λ#−(W−Di) (9)
λC斗−8(] 0)
ここでRは凹面回折格子1.3aの曲率半径、Dlは入
力ファイバー0のコア径である。また(9)、(10)
は1α1≦10°、Iβ1≦10°、11111≦10
°の制限下での近似式である。十分な分離度を得るには
(S−W)≧D1の条件が必要であるから、最大比帯域
は次式で与えられる。Δλ#-(W-Di) (9) λCdou-8(] 0) Here, R is the radius of curvature of the concave diffraction grating 1.3a, and Dl is the core diameter of the input fiber 0. Also (9), (10)
is 1α1≦10°, Iβ1≦10°, 11111≦10
This is an approximate expression under the limit of °. Since the condition (S-W)≧D1 is required to obtain a sufficient degree of separation, the maximum fractional band is given by the following equation.
本実施例ではD H= 507/In、W = 200
71m、 S = 250Itm 、 d == 57
1m 、 R:= ]、OmmとしているのでΔλ=7
5nm、Δλ/λ。=0.6となり、従来技術に較べて
極めて広イ(シ域、高比帯域の分波器が達成できた。In this example, DH=507/In, W=200
71m, S = 250Itm, d = = 57
1m, R:= ], Omm, so Δλ=7
5 nm, Δλ/λ. = 0.6, making it possible to achieve a duplexer with an extremely wide range and high ratio band compared to the conventional technology.
上記にように本発明による光合分波器は、基板上に形成
したスラブ導波路と、該スラブ導波路の端面に設けた複
数の回折格子と人力ファイバおよび複数の出力ファイバ
を有する光合分波器において、」二記スラブ導波路の他
の端面に複数の甲面反射器を設け、上記入力ファイバか
らの入射光をスラブ導波路を経て導く第」の回折格子の
ローラン1−円」二に入力ファイバ端面と」−2複数の
平面反射器を配シフ、該平面反射器からの反射光を導く
各回折格子のローランド円上に、対応する平面反射器と
出力−7アイバの端面とをそれぞれ配設したことにより
、レンズ系を用いることなく、入力ファイバから入射し
た光は再度回折格子を経て出力ファイハに導かれるため
、出力ファイバ端面に色収差がない入力ファイバ像を結
像し、従来技術に比して極めて広帯域でしかも高比帯域
の分波器が得られ、さらに分波特性が入出力ファイバの
パラメータにほとんど制約されないため、合波器を構成
することも可能であるという利点を有している。また合
波器全体がスラブ導波路として構成されているので量産
に適し、かつファイバとの接続が安定で、組立て時に調
整を必要としない回折格子形光合分波器を得ることがで
きる。As described above, the optical multiplexer/demultiplexer according to the present invention includes a slab waveguide formed on a substrate, a plurality of diffraction gratings provided on the end face of the slab waveguide, a human power fiber, and a plurality of output fibers. In this step, a plurality of backside reflectors are provided on the other end face of the slab waveguide, and the incident light from the input fiber is guided to the Laurent 1-circle 2 of the second diffraction grating. A plurality of plane reflectors are arranged on the fiber end face and the output -2 eyeglass end face, and the corresponding plane reflector and the end face of the output eyeglass are arranged on the Rowland circle of each diffraction grating that guides the reflected light from the plane reflector. As a result, the light incident from the input fiber is guided to the output fiber through the diffraction grating again without using a lens system, so an input fiber image with no chromatic aberration is formed on the end face of the output fiber, which is superior to conventional technology. As a result, a demultiplexer with an extremely wide band and high ratio band can be obtained, and furthermore, since the demultiplexing characteristics are hardly restricted by the parameters of the input and output fibers, it has the advantage that it is also possible to configure a multiplexer. ing. Furthermore, since the entire multiplexer is constructed as a slab waveguide, it is possible to obtain a diffraction grating type optical multiplexer/demultiplexer that is suitable for mass production, has a stable connection to the fiber, and does not require adjustment during assembly.
第1図は本発明による光合分波器の一実施例を示す斜視
図、第2図は従来の回折格子形分波器を示す説明図であ
る。
7・・基板 8・・コア層
10・・・入力ファイバ Ilb、Ilc・・・出力フ
ァイバ13a、13b、+3cm回折格子
14a、14b・・平面反射器
゛特許出願人 日本電信電話公社
代理人弁理士 中 村 純之助
5jP1 図FIG. 1 is a perspective view showing an embodiment of an optical multiplexer/demultiplexer according to the present invention, and FIG. 2 is an explanatory diagram showing a conventional diffraction grating type demultiplexer. 7... Substrate 8... Core layer 10... Input fiber Ilb, Ilc... Output fiber 13a, 13b, +3cm diffraction grating 14a, 14b... Planar reflector ゛Patent applicant Nippon Telegraph and Telephone Public Corporation representative patent attorney Junnosuke Nakamura 5jP1 Figure
Claims (2)
路の端面に設けた複数の回折格子と入力ファイバおよび
複数の出力ファイバを有する光合分波器において、上記
スラブ導波路の他の端面に複数の平面反射器を設け、上
記入力ファイバからの入射光をスラブ導波路を経て導く
第1の回折格子のローランド円上に入力ファイバ端面と
上記複数の平面反射器を配し、該平面反射器からの反射
光を導く各回折格子のローランド円上に、対応する平面
反射器と出力ファイバの端面とをそれぞれ配設したこと
を特徴とする光合分波器。(1) In an optical multiplexer/demultiplexer having a slab waveguide formed on a substrate, a plurality of diffraction gratings provided on the end face of the slab waveguide, an input fiber, and a plurality of output fibers, the other end face of the slab waveguide A plurality of plane reflectors are provided in the input fiber, and the input fiber end face and the plurality of plane reflectors are arranged on the Rowland circle of the first diffraction grating that guides the incident light from the input fiber through the slab waveguide, and the plane reflection An optical multiplexer/demultiplexer characterized in that a corresponding plane reflector and an end face of an output fiber are respectively arranged on the Rowland circle of each diffraction grating that guides reflected light from the device.
を形成した基板表面を加工して凹部を設け、該凹部の側
壁に露出したスラブ導波路面に形成するとともに、上記
入力ファイバおよび出力ファイバは上記基板に形成した
他の凹部に挿入して、各ファイバ端面と上記凹部のスラ
ブ導波路端面とを結合したことを特徴とする特許請求の
範囲第1項に記載し・た光合分波器。(2) The diffraction grating and the plane reflector are formed by processing the surface of the substrate on which the slab waveguide is formed to provide a recess, and forming the surface of the slab waveguide exposed on the side wall of the recess. The optical multiplexer/demultiplexer as claimed in claim 1, wherein the optical multiplexer/demultiplexer is inserted into another recess formed in the substrate to couple each fiber end face with the slab waveguide end face of the recess. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11314884A JPS60257411A (en) | 1984-06-04 | 1984-06-04 | Optical multiplexer/demultiplexer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11314884A JPS60257411A (en) | 1984-06-04 | 1984-06-04 | Optical multiplexer/demultiplexer |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60257411A true JPS60257411A (en) | 1985-12-19 |
Family
ID=14604779
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11314884A Pending JPS60257411A (en) | 1984-06-04 | 1984-06-04 | Optical multiplexer/demultiplexer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60257411A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01180504A (en) * | 1988-01-13 | 1989-07-18 | Hitachi Ltd | Optical integrated circuit |
EP0359166A2 (en) * | 1988-09-15 | 1990-03-21 | Firma Carl Zeiss | Method of producing image-forming optical elements in planar waveguides |
JPH03171115A (en) * | 1989-11-30 | 1991-07-24 | Oki Electric Ind Co Ltd | Optical multiplexer/demultiplexer |
JP2003050333A (en) * | 2001-08-08 | 2003-02-21 | Fujitsu Ltd | Optical wiring substrate and optical cross connect device |
WO2005006044A1 (en) * | 2003-07-09 | 2005-01-20 | Sinvent As | Optical multiplexer/demultiplexer and channel equaliser |
CN112180507A (en) * | 2020-09-25 | 2021-01-05 | 联合微电子中心有限责任公司 | Multi-waveguide cross device, waveguide chip and forming method thereof |
-
1984
- 1984-06-04 JP JP11314884A patent/JPS60257411A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01180504A (en) * | 1988-01-13 | 1989-07-18 | Hitachi Ltd | Optical integrated circuit |
EP0359166A2 (en) * | 1988-09-15 | 1990-03-21 | Firma Carl Zeiss | Method of producing image-forming optical elements in planar waveguides |
EP0359166A3 (en) * | 1988-09-15 | 1991-02-06 | Firma Carl Zeiss | Method of producing image-forming optical elements in planar waveguides |
JPH03171115A (en) * | 1989-11-30 | 1991-07-24 | Oki Electric Ind Co Ltd | Optical multiplexer/demultiplexer |
JP2003050333A (en) * | 2001-08-08 | 2003-02-21 | Fujitsu Ltd | Optical wiring substrate and optical cross connect device |
WO2005006044A1 (en) * | 2003-07-09 | 2005-01-20 | Sinvent As | Optical multiplexer/demultiplexer and channel equaliser |
CN112180507A (en) * | 2020-09-25 | 2021-01-05 | 联合微电子中心有限责任公司 | Multi-waveguide cross device, waveguide chip and forming method thereof |
CN112180507B (en) * | 2020-09-25 | 2023-06-20 | 联合微电子中心有限责任公司 | Multi-waveguide crossover device, waveguide chip and forming method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4786133A (en) | Multiplexer-demultiplexer using an elliptical concave grating and produced in integrated optics | |
JP2889608B2 (en) | Diffraction grating | |
JP3338356B2 (en) | Optical device | |
US20050141808A1 (en) | Optical off-chip interconnects in multichannel planar waveguide devices | |
JPS61212805A (en) | Reverser for separating a plurality of light signals in optical integration | |
US6434303B1 (en) | Optical waveguide slab structures | |
CN110673265B (en) | Design method of polarization-wavelength hybrid multiplexer | |
US7587112B2 (en) | Optical device and light control method | |
JPS60257411A (en) | Optical multiplexer/demultiplexer | |
JP2733116B2 (en) | Optical multiplexer / demultiplexer | |
US6813080B2 (en) | Metal-free gratings for wavelength-multiplexed optical communications | |
JPH11101923A (en) | Optical fiber wavelength multiplexer-demultiplexer | |
US6396977B1 (en) | Wavelength router with a wide passband realized using two gratings of opposite angular dispersions | |
CN110703386B (en) | Bragg concave diffraction grating type polarization-wavelength hybrid multiplexer | |
US6636660B2 (en) | Monochrometer and wavelength division multiplexer comprising said monochrometer | |
CN115793148A (en) | Polarization diversity demultiplexer | |
US6104847A (en) | Optical device having an optical waveguide structure | |
US20030031412A1 (en) | Optical arrayed waveguide grating devices | |
JPH06317705A (en) | Diffraction element and optical multiplxing/ demultiplxing device using the same | |
CN1387059A (en) | Wave division multiplexer based on more sub-rasters for flat-top etching and diffracting raster | |
US6701045B2 (en) | Planar optical waveguide dense wavelength division multiplexer | |
US6650796B2 (en) | Waveguide optical frequency router | |
JP3643058B2 (en) | Waveguide grating | |
CN2552259Y (en) | Etching diffraction grating wave dividing multiplex device using two-point focusing to realize pass-band evenness | |
JP3306738B2 (en) | Array waveguide type optical multiplexer / demultiplexer |