Nothing Special   »   [go: up one dir, main page]

JPS6023954A - Nonaqueous electrolyte battery - Google Patents

Nonaqueous electrolyte battery

Info

Publication number
JPS6023954A
JPS6023954A JP58131552A JP13155283A JPS6023954A JP S6023954 A JPS6023954 A JP S6023954A JP 58131552 A JP58131552 A JP 58131552A JP 13155283 A JP13155283 A JP 13155283A JP S6023954 A JPS6023954 A JP S6023954A
Authority
JP
Japan
Prior art keywords
battery
separator
film
synthetic resin
resin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58131552A
Other languages
Japanese (ja)
Other versions
JPH0516140B2 (en
Inventor
Konosuke Ikeda
宏之助 池田
Satoshi Ubukawa
生川 訓
Minoru Fujimoto
実 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Sanyo Denki Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP58131552A priority Critical patent/JPS6023954A/en
Publication of JPS6023954A publication Critical patent/JPS6023954A/en
Publication of JPH0516140B2 publication Critical patent/JPH0516140B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • H01M2200/10Temperature sensitive devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cell Separators (AREA)

Abstract

PURPOSE:To improve the safety of a nonaqueous electrolyte battery still more by using synthetic resin film with fine pores as the separator. CONSTITUTION:Synthetic resin film with fine pores is used as the separator 3. For example, polypropylene film with the thickness of 0.025mm., the Metsuke weight of 11.74g/cm<2>, and the pore diameter of approximately 0.1mu is used as the separator 3 that uses a lithium negative electrode 2, a manganese dioxide positive electrode 1, and a nonaqueous electrolyte. As a result, even if a battery is externally strapped, the battery temperature is raised by Joule heat caused by jumpering current, the fine pores of film are closed by fused substances and the transfer of ions is prevented. Consequently, since current does not flow and the battery rise is also suppressed, the safety of the battery is improved.

Description

【発明の詳細な説明】 (イ) 産業上の利用分野 本発明はリチウム、ナトリウムなどの軽金属を活物質と
する負極と、金属の酸化物、硫化物或いハロゲン化物な
ど?活物質とするIIE極と、正負極間C二介挿さ」す
るセパレータと非水電解液とを具備する非水電解液電池
(=関するものである。
[Detailed description of the invention] (a) Industrial application field The present invention relates to a negative electrode using a light metal such as lithium or sodium as an active material, and a metal oxide, sulfide, or halide. A non-aqueous electrolyte battery comprising an IIE electrode as an active material, a separator inserted between positive and negative electrodes, and a non-aqueous electrolyte.

(ロ)従来技術 この種電池は高エネルギー密度を有し、且自己放電が少
ないという利点のために近年特に注目さ」1ており、事
実、負極活物質としてリチウムを用い、正極活物質とし
て二酸化マンカン、フン化炭集成いはクロム酸銀などを
用いる電池が実用化に至っている。
(b) Prior art This type of battery has attracted particular attention in recent years due to its high energy density and low self-discharge.In fact, it uses lithium as the negative electrode active material and carbon dioxide as the positive electrode active material. Batteries using mankan, fluorinated charcoal, silver chromate, etc. have been put into practical use.

そして、この種電池においてセバレ〜り部組としては耐
非水電解液性の観点からポリプロピレン不織布が一般的
(;用いられている。
In this type of battery, a polypropylene nonwoven fabric is generally used as the separation part from the viewpoint of non-aqueous electrolyte resistance.

ところでこの種電池の用途拡大に伴いその安全性(二つ
いては更(二改善が望まれ工いる。発明者等の実験(=
よると、電池を外部短絡させた場合、短絡電流(二よる
ジュール熱のために電池内温度が上昇し、セパレータ部
組としてのポリプロピレン不織布か軟化、溶融して正負
極が接触テる内部短絡を引起し電池内温度が更(−上昇
すると共に電解液の分解によるガスが発生して電池の発
火、爆発等の危険性が生じた。
However, as the uses of this type of battery expand, there is a need for further improvement in its safety.The inventors' experiments (=
According to this report, when a battery is short-circuited externally, the internal temperature of the battery rises due to Joule heat caused by the short-circuit current (2), and the polypropylene nonwoven fabric used as the separator part softens and melts, causing an internal short circuit in which the positive and negative electrodes come into contact with each other. As a result, the internal temperature of the battery further rose and gas was generated due to the decomposition of the electrolyte, creating a risk of fire or explosion of the battery.

し場 発明の目1′づ 本発明の目的とするところは改良されたセパレータ部材
を用いることにより非水′電解液電池の安全性ン更に高
めること(二ある。
OBJECTS OF THE INVENTION (1) It is an object of the present invention to further enhance the safety of non-aqueous electrolyte batteries by using an improved separator member.

に)発明の構成 本発明は上記目的を達成−「べくなされたものにしてそ
の要旨とするところは、リチウム、ナトリウムなどの軽
蛍属を品物貿と1〜る負極と、金属の酸化物、硫1ヒ物
或いはハロゲン1ヒ物などを活物質とする正極と、正負
相る間に介挿さAするセパレータと、非水電解液と2具
備するものであって、前記セパレータとじで微細孔なイ
]Tる合成樹脂フィルム2用いたことを特徴とする非水
電解液゛電池にある。
B) Structure of the Invention The present invention has achieved the above-mentioned object. The device is equipped with a positive electrode containing sulfur-1 arsenic or halogen-1 arsenic as an active material, a separator A inserted between the positive and negative phases, and a non-aqueous electrolyte. B) A non-aqueous electrolyte battery characterized by using a synthetic resin film 2.

ここで微細孔を有する合成4ffl脂フイルムの代表例
としてはポリプロピレンフィルム、ポリエチレンフィル
ムが挙げられる。
Typical examples of synthetic 4ffl resin films having micropores include polypropylene films and polyethylene films.

咋)実施例 以下本発明の実施例につきg′l−述する。Kui) Example Examples of the present invention will be described below.

実施例1 正極は活物質としての二酸化マンガンに導電剤としての
アセチレンブラック及び結着剤としてのフッ素樹脂を8
5:10:5の重l比で混合した混合物を集電網に塗着
し、熱処理したるものを用いた。
Example 1 The positive electrode consisted of manganese dioxide as an active material, acetylene black as a conductive agent, and fluororesin as a binder.
A mixture mixed at a weight ratio of 5:10:5 was applied to a current collecting grid and heat-treated.

負極はリチウム圧延板を所定月決に打抜いたものであり
、又電解液はプロピレンカーボネートとジメチルエチレ
ングリコールエーテルの混合溶媒に過塩素酸リチウムを
溶解したるもの?用いた。
The negative electrode is a rolled lithium plate punched out at a specified monthly rate, and the electrolyte is lithium perchlorate dissolved in a mixed solvent of propylene carbonate and dimethyl ethylene glycol ether. Using.

そしてセパレータ部材として厚み0.025sa、目付
mfm 11.74 g/ i 、孔径約0.1μのポ
リプロピレンフィルム(ポリプラスチ7グ社製、商品名
ジュラガード)を用いた。
As a separator member, a polypropylene film (manufactured by Polyplastig Co., Ltd., trade name: Duraguard) having a thickness of 0.025 sa, a basis weight of mfm of 11.74 g/i, and a pore diameter of about 0.1 μm was used.

第1図は電池の縦断面図を示し、電池組立に際しては正
負極(1)(2)をセパレータ(3)ヲ介し″′C巻回
してなる渦巻電極体を正極端子兼用の電池容器(4)内
に収納し、ついでリチウム負極(2)より尋出せる負極
リード板(2うの一端が固着された負極端子兼用の封口
蓋(5)を絶縁バンキング(6)¥介して電池容器(4
)の開口部(二装着したのち電池容器(4)の開口縁(
4f乞絶縁バソギング(6)に締着して完成耐油を得る
。尚(71(8)は渦巻゛電極体の上下面に配設された
絶縁777丁である。電池寸法は高さ約55wa、直径
約2[Jmであった。本実施例による電池’&(A)と
Tる。
Fig. 1 shows a vertical cross-sectional view of the battery. When assembling the battery, the spiral electrode body, which is formed by winding the positive and negative electrodes (1) and (2) through the separator (3), is attached to the battery container (4) which also serves as the positive terminal. ), and then insert the negative electrode lead plate (2), which can be exposed from the lithium negative electrode (2) into the battery container (4
) opening (2) After installing the battery container (4), open the opening edge (
Tighten to the 4F insulation bassogging (6) to obtain complete oil resistance. Note that (71(8) is an insulator 777 arranged on the upper and lower surfaces of the spiral electrode body.The battery dimensions were approximately 55 wa in height and approximately 2 Jm in diameter. A) and T.

実施例2 セパレータ部材として厚み0.040鰭、目付型iit
 8−45 g/wt、孔径約0.6−0.’7 pノ
ボリエテレンフィルム(旭化成社製、商品名ハイボアー
)を用いりことを除いて他は実施例1と同様の電池を作
成した。この電i’l!J ”x fBlとする。
Example 2 As a separator member, thickness 0.040 fin, basis weight type IIT
8-45 g/wt, pore size approximately 0.6-0. A battery was prepared in the same manner as in Example 1, except that a '7 p noboriethelene film (manufactured by Asahi Kasei Co., Ltd., trade name: Hibore) was used. This electric i'l! Let J ”x fBl.

比較例 セパレータ部材としてに、み0.120 、m、目イー
j点’xM 40. OOg、/、t、fil、翁1ノ
太さ約1.5−2.170)ポリプロピレン不織布(東
俤石油社製)ヲ用いること7除いて他は実施例1と同様
の電池全作成した。
As a comparative example separator member, 0.120, m, point E, j' x M 40. A battery was prepared in the same manner as in Example 1, except that a polypropylene nonwoven fabric (manufactured by Toto Oil Co., Ltd.) was used.

この電池ビ[01とする。Let this battery be [01].

第2図及び第6図は上記各電池の短絡試験特性を比較し
たものである。
FIG. 2 and FIG. 6 compare the short circuit test characteristics of each of the above batteries.

先づ、第2図は上記電池fAl[Bl及び(C1を夫々
2個ずつ直列に接続し、これらを25℃の恒温恰内に長
時間保持し℃電池を25℃の温度雰囲気下(二(Rらし
たのち、夫々2個ずつ直列接続セる各7(f、油化−を
短絡さセて測定した特性を示し、第2図(イ)は電流イ
11−測定時間との関係、第2図to+は電池容器温度
−測定時間との関係を夫々示す。尚、第2図における曲
線は同一電池2個のうち電流値及び淘j−リの高い方の
電池の値を採用したものである。
First, Fig. 2 shows two batteries fAl[Bl and (C1) each connected in series and kept at a constant temperature of 25°C for a long time. Figure 2 (A) shows the relationship between the current A11 and the measurement time. Figure 2 to+ shows the relationship between battery container temperature and measurement time.The curves in Figure 2 are based on the values of the battery with the higher current value and discharge of two identical batteries. be.

この第2は1から次のことがわかる。The following can be seen from 1 in this second case.

即ち、本発明電池囚)(B1では短絡後約5分の時点で
電流値は急激に減少してい2.〕oこQJp;′J0′
)電池容器l都度は電池[Alの時約105℃、′電池
fBlの時約90℃を示している。そして、その後は時
間の経過C二伴ない電流値はほとんど上昇せず、又電池
容器温度は下降する。
In other words, the battery of the present invention) (In B1, the current value decreased rapidly about 5 minutes after the short circuit2.)QJp;'J0'
) The temperature of the battery container is approximately 105°C when the battery is Al, and approximately 90°C when the battery is fBl. Thereafter, as time passes, the current value hardly increases and the battery container temperature decreases.

これ(二対し電池to+では短絡後約5)fの時点で一
旦′屯流値が減少するか、又直ぐく二重流値が増大して
いるため電池容器温度は上昇しつづけている。そして約
7分後に電池内圧が上昇して封口蓋が飛びそれ以上の訓
輩は不1」能であった。
At the point f (approximately 5 minutes after the short circuit for the two-pair battery to+), the double current value once decreases, and the double current value immediately increases, so the battery container temperature continues to rise. After about 7 minutes, the battery's internal pressure rose and the lid flew off, making further training impossible.

この理由を考察する(二、″電池(A、l (Blの場
合)二おいてセパレータ部材とし℃用いた微細孔を有す
る合成な1脂フイルムは短絡電流(二よるジュール熱で
電池温度か上昇して各フィルム素材の有する溶融点(二
Al’J−ると微X用孔が溶融物で塞がれ、イオンの移
動が阻止されることになる。即ちセパレータ部材は電気
的絶縁は勿HMIChことイオンの移動も阻止する絶縁
体となるため電流は流れなくなるのである。
Let's consider the reason for this (2. In batteries (A, l (in the case of Bl)), a synthetic resin film with micropores used as a separator member at °C will cause a short circuit current (2). When the melting point of each film material (2Al'J-) is reached, the holes for micro-X are blocked by the melt, and the movement of ions is blocked.In other words, the separator member is not only electrically insulated but also Since it becomes an insulator that also blocks the movement of ions, current no longer flows.

その結果として電池温度もそれ以上上昇することなく発
火や爆発と云った不都合は抑制されること(二なる。
As a result, the battery temperature does not rise any further and inconveniences such as ignition and explosion are suppressed (Second).

これ(二対してセパレータ部材としてポリプロピレン不
織布7用いた電池(0)では短絡電流(=よるジュール
熱で′・1油温度が上昇すると、ポリプロピレン不織布
が若干14y、縮するためイオン移動量が減少し電流値
が低下するか、根本的にポリプロピレン不織布はフィル
ムC−比べて大きな孔部を有しているためイオンの移動
を151止することはできず、電流値は又増加しそれに
伴い電池温度も上昇しくポリプロピレン不織布自身が軟
化・溶融し電、池内短絡(1至ること(二なる。
On the other hand, in battery (0) using polypropylene nonwoven fabric 7 as a separator member, when the oil temperature rises, the amount of ion transfer decreases because the polypropylene nonwoven fabric shrinks slightly by 14y. Either the current value decreases, or fundamentally the polypropylene nonwoven fabric has larger pores than Film C, so it is impossible to stop the movement of ions, and the current value increases again and the battery temperature increases accordingly. As the temperature rises, the polypropylene nonwoven fabric itself softens and melts, causing a short circuit within the battery (1).

尚、微細孔を有1−る合成樹脂フィルムとしては実施例
で挙げたポリプロピレンフィルム、ポリエチレンフィル
ムに限定されず、例えばポリプロピレンとポリエチレン
の共重合体フィルトでも適用することができる。
The synthetic resin film having micropores is not limited to the polypropylene film and polyethylene film mentioned in the examples, and for example, a copolymer filter of polypropylene and polyethylene can also be used.

次(−1例え合成樹脂フィルムをセパレータ部材として
用いてもフィルムの素材(二よって若干特性(−差具が
ある。
Next (-1) Even if a synthetic resin film is used as a separator member, there are some differences depending on the material of the film (2).

第6図は電池(Al及び(Ellを夫々2個ずつ直列f
二接続し、これらを70℃の恒温槽内(−長時間保持し
て電池を70℃の温度雰囲気下(=慣らしたのち、夫々
2個ずつ直列接続せる各電池群を短絡させて測定した特
性を示し、第3図(イ)は電流値−世11定肋間との関
係、第6図(ロ)は電池容器温度−測定時開との関係を
夫々示す。面、第3図(二おける曲線は同一電池2個の
うち電流値及び温度の高い方の電池の値を採用したもの
である。
Figure 6 shows two batteries (Al and (Ell) connected in series f.
Characteristics measured by short-circuiting each group of batteries, which are connected in series (two batteries each), after being acclimatized and held in a constant temperature oven at 70℃ (-). Figure 3 (a) shows the relationship between the current value and the 11th regular intercostal space, and Figure 6 (b) shows the relationship between the battery container temperature and the opening during measurement. The curve adopts the value of the battery with higher current value and temperature among two identical batteries.

α53 tgから明らかなよう(−ポリエチレンフィル
ムZセパレータ部組として用いた電池+Blの方かポリ
プロピレンフィルムをセパレータ部材として用いた電?
也+AIに比して、第3図(イ)の如く電流値は激減後
はとんど上昇せず、又第3図(ロ)の如く電池温度の最
高温度は低く特性的C1優れていることがわかる。
As is clear from α53 tg (-polyethylene film Z battery used as separator assembly + Bl or battery using polypropylene film as separator member?
Compared to +AI, as shown in Figure 3 (a), the current value hardly increases after being drastically reduced, and as shown in Figure 3 (b), the maximum battery temperature is lower and the characteristic C1 is superior. I understand that.

この理由は次のようC1考えられる。即ち短絡試験特性
池を解体したところポリエチレンフィルムは以前として
フィルム状!保っていたの(二対しポリプロピレンフィ
ルムは若干の衝1;白二よってすぐ(ユ崩れた。このよ
うにポリプロピレンフィルムの場合は機械的強度の面で
問題が有り崩れ(二よる空隙を介して若干イオンが移動
し電流が流れると推測される。又溶融点について云えは
ポリエチレンの方か低いため電池温度の上昇を低く押え
られる。
The reason for this is thought to be C1 as follows. In other words, when we dismantled the short-circuit test characteristics, the polyethylene film was still film-like! However, the polypropylene film had a slight impact (2); It is presumed that ions move and current flows.Also, since polyethylene has a lower melting point, the rise in battery temperature can be suppressed.

このよう(ニボリブロビレンフイルムとポリエチレンフ
ィルムを比較した場合、ポリエチレンフィルムの方か優
位であると云える。
In this way, when comparing niboribrobylene film and polyethylene film, it can be said that polyethylene film is superior.

(へ)発明の効果 上述した如く、本発明(二よる非水電解液電池によれば
セパレータ部材として微細孔を有する合成樹脂フィルム
を用いたので、外部短絡させたとしても短絡電流による
ジュール熱で電池温度が上昇すると上記フィルムの微細
孔が溶融物で閉塞されてイオンの移動を阻止するため電
流が流れなくなりそれ(二伴い電池温度の上昇も抑制さ
れるものであり、この種電池の安全性全向上できその工
業的価値は極めて大である。
(f) Effects of the Invention As mentioned above, according to the non-aqueous electrolyte battery according to the present invention (second aspect), a synthetic resin film having micropores is used as a separator member, so even if an external short circuit is caused, Joule heat due to the short circuit current is generated. When the battery temperature rises, the fine pores of the film are blocked by the molten material, preventing the movement of ions, which prevents current from flowing. It can be completely improved and its industrial value is extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は一実施例C二よる本発明電池の縦断面図、第2
図及び第6図は本発明電池の短絡試験特性であり、夫々
(イ)は電流値−測定時間との関係、吋)は電池容器温
度−測定時間との関係を示す図である。 (1)・・・正極、(2)・・・負極、(3)・・・微
細孔!有する合成樹脂フィルムよりなるセパレータ、(
4)・・・電池容器、(5)・・・封口蓋、(6)・・
−絶縁パッキング、(7)(8)・−・絶縁ワ7ンヤ策
、囚+Bl−・一本発明電池、(C1・・・比較電池。 −278− 辺り停と:ti 間(ltT)
FIG. 1 is a longitudinal sectional view of a battery of the present invention according to Example C2, and FIG.
6 and 6 show the short-circuit test characteristics of the battery of the present invention, respectively (a) shows the relationship between current value and measurement time, and (x) shows the relationship between battery container temperature and measurement time. (1)... Positive electrode, (2)... Negative electrode, (3)... Fine pores! A separator made of a synthetic resin film with (
4)...Battery container, (5)...Sealing lid, (6)...
- Insulating packing, (7) (8) - Insulating wire, prisoner + Bl -, one invention battery, (C1... comparison battery. -278- Between the stop and :ti (ltT)

Claims (1)

【特許請求の範囲】 ■ リチウム、ナトリウムなどの軽金属を活物質とする
負極と、9属の酸化物、硫化物或いはへロゲン化物など
を活物質とする王様と、正負極間に介fillされるセ
パレータと、非水電解液とを具備するものであって5前
記セパレータとして微細孔を有する合成樹脂フィルムを
用いたことを特徴とする非水電解液電池。 ■ 前記合成樹脂フィルムがポリプロピレンフィルムで
あることを特徴とする特fF請求の範囲第0項記載の非
水電解液電池。 ■ 前記合成樹脂フィルムがポリエチレンフィルムであ
ることを特徴とする特許請求の範囲第0項記載の非水電
解液電池。
[Claims] ■ A negative electrode whose active material is a light metal such as lithium or sodium, a king whose active material is an oxide, sulfide, or halide of group 9, and a fill material between the positive and negative electrodes. 5. A non-aqueous electrolyte battery comprising a separator and a non-aqueous electrolyte, wherein a synthetic resin film having micropores is used as the separator. (2) The non-aqueous electrolyte battery according to claim 0, wherein the synthetic resin film is a polypropylene film. (2) The non-aqueous electrolyte battery according to claim 0, wherein the synthetic resin film is a polyethylene film.
JP58131552A 1983-07-18 1983-07-18 Nonaqueous electrolyte battery Granted JPS6023954A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58131552A JPS6023954A (en) 1983-07-18 1983-07-18 Nonaqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58131552A JPS6023954A (en) 1983-07-18 1983-07-18 Nonaqueous electrolyte battery

Publications (2)

Publication Number Publication Date
JPS6023954A true JPS6023954A (en) 1985-02-06
JPH0516140B2 JPH0516140B2 (en) 1993-03-03

Family

ID=15060739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58131552A Granted JPS6023954A (en) 1983-07-18 1983-07-18 Nonaqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JPS6023954A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0201875A2 (en) * 1985-05-16 1986-11-20 W.R. Grace & Co.-Conn. Battery separator
FR2618259A1 (en) * 1987-07-17 1989-01-20 Duracell Int SEPARATOR FOR ELECTROCHEMICAL CELLS.
JPH01213963A (en) * 1988-02-22 1989-08-28 Fuji Elelctrochem Co Ltd Battery
US4973532A (en) * 1989-04-05 1990-11-27 Hoechst Celanese Corporation Battery separator with integral thermal fuse
US5385777A (en) * 1992-03-30 1995-01-31 Nitto Denko Corporation Porous film, process for producing the same, and use of the same
US5922492A (en) * 1996-06-04 1999-07-13 Tonen Chemical Corporation Microporous polyolefin battery separator
EP1022798A3 (en) * 1999-01-22 2001-09-12 Kabushiki Kaisha Toshiba Nonaqueous electrolyte secondary battery
US6521376B1 (en) 1999-11-26 2003-02-18 Hitachi Maxell, Ltd. Non-aqueous liquid electrolyte cell
WO2010114674A1 (en) 2009-03-30 2010-10-07 Tonen Chemical Corporation Microporous membranes and methods for making and using such membranes
WO2013168755A1 (en) 2012-05-09 2013-11-14 日立化成株式会社 Separator for electrochemical element and fabrication method for same
US9502705B2 (en) 2010-12-22 2016-11-22 Toray Battery Separator Film Co., Ltd. Microporous film, methods for making such film, and use for such film as battery separator film

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4983834A (en) * 1972-12-20 1974-08-12

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4983834A (en) * 1972-12-20 1974-08-12

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0201875A2 (en) * 1985-05-16 1986-11-20 W.R. Grace & Co.-Conn. Battery separator
JPS6210857A (en) * 1985-05-16 1987-01-19 ダブリユー・アール・グレイス・アンド・カンパニー−コネチカツト Separator for battery
JPH0438101B2 (en) * 1985-05-16 1992-06-23 Grace W R & Co
FR2618259A1 (en) * 1987-07-17 1989-01-20 Duracell Int SEPARATOR FOR ELECTROCHEMICAL CELLS.
BE1001677A3 (en) * 1987-07-17 1990-02-06 Duracell Int Separator for electrochemical cells.
JPH01213963A (en) * 1988-02-22 1989-08-28 Fuji Elelctrochem Co Ltd Battery
JPH0576135B2 (en) * 1988-02-22 1993-10-22 Fuji Electrochemical Co Ltd
US4973532A (en) * 1989-04-05 1990-11-27 Hoechst Celanese Corporation Battery separator with integral thermal fuse
US5385777A (en) * 1992-03-30 1995-01-31 Nitto Denko Corporation Porous film, process for producing the same, and use of the same
US5922492A (en) * 1996-06-04 1999-07-13 Tonen Chemical Corporation Microporous polyolefin battery separator
EP1022798A3 (en) * 1999-01-22 2001-09-12 Kabushiki Kaisha Toshiba Nonaqueous electrolyte secondary battery
US6521376B1 (en) 1999-11-26 2003-02-18 Hitachi Maxell, Ltd. Non-aqueous liquid electrolyte cell
WO2010114674A1 (en) 2009-03-30 2010-10-07 Tonen Chemical Corporation Microporous membranes and methods for making and using such membranes
US9295950B2 (en) 2009-03-30 2016-03-29 Toray Battery Separator Film Co., Ltd. Microporous membranes, methods for making such membranes, and the use of such membranes as battery separator film
US9502705B2 (en) 2010-12-22 2016-11-22 Toray Battery Separator Film Co., Ltd. Microporous film, methods for making such film, and use for such film as battery separator film
WO2013168755A1 (en) 2012-05-09 2013-11-14 日立化成株式会社 Separator for electrochemical element and fabrication method for same

Also Published As

Publication number Publication date
JPH0516140B2 (en) 1993-03-03

Similar Documents

Publication Publication Date Title
US7981541B2 (en) Nonaqueous electrolyte secondary battery
US7060388B2 (en) Nonaqueous electrolyte secondary battery
JP2824666B2 (en) Electrochemical battery with internal circuit breaker
US5506068A (en) Non-aqueous safe secondary cell
KR100646535B1 (en) Electrode Assembly for Lithium Ion Second Battery and Lithium Ion Secondary Battery using the Same
JPH0516139B2 (en)
JPS6023954A (en) Nonaqueous electrolyte battery
JPS63308866A (en) Nonaqueous electrolytic solution battery
JPH0562662A (en) Nonaqueous electrolyte secondary battery
JP2955323B2 (en) Battery
JPH06203827A (en) Nonaqueous electrolyte battery
JPH0770308B2 (en) Non-aqueous electrolyte battery
JPH0548209U (en) Non-aqueous electrolyte battery
JPH0887995A (en) Organic electrolyte battery
JP3310708B2 (en) Non-aqueous electrolyte battery
JPS63205048A (en) Nonaqueous electrolyte battery
JPH01161671A (en) Nonaqueous electrolyte battery
JP3409861B2 (en) Non-aqueous electrolyte secondary battery
WO2024225069A1 (en) Non-aqueous electrolyte battery
JPH067483B2 (en) Non-aqueous electrolyte battery
JPH05205721A (en) Nonaqueous electrolytic secondary battery
JP3047921B2 (en) Lithium secondary battery
JPH02304863A (en) Nonaqueous electrolyte battery
JPH05266877A (en) Cylindrical nonaqueous electrolyte secondary battery
JP2003338315A (en) Battery