Nothing Special   »   [go: up one dir, main page]

JPS60238442A - Heat and corrosion resistant alloy - Google Patents

Heat and corrosion resistant alloy

Info

Publication number
JPS60238442A
JPS60238442A JP9471984A JP9471984A JPS60238442A JP S60238442 A JPS60238442 A JP S60238442A JP 9471984 A JP9471984 A JP 9471984A JP 9471984 A JP9471984 A JP 9471984A JP S60238442 A JPS60238442 A JP S60238442A
Authority
JP
Japan
Prior art keywords
alloy
present
corrosion
less
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9471984A
Other languages
Japanese (ja)
Inventor
Ichiro Tsuji
一郎 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP9471984A priority Critical patent/JPS60238442A/en
Publication of JPS60238442A publication Critical patent/JPS60238442A/en
Pending legal-status Critical Current

Links

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

PURPOSE:To obtain a heat and corrosion resistant alloy having improved resistance to corrosion and stress corrosion cracking at high temp. at a low cost by reducing the amount of Co in a conventional heat and corrosion resistant Cr- Ni-Co-Fe alloy and increasing the amount of Cr. CONSTITUTION:This heat and corrosion resistant alloy consists of <=0.1% C, <=1% Si, <=1% Mn, 40-48% Ni, 20-30% Cr, 6-16% Co, 2-4% Mo, >2-4% Ti, <=0.5% Al, <=0.05% Zr, <=0.01% B and the balance Fe. The alloy has improved resistance to corrosion and stress corrosion cracking at high temp. as compared with a conventional alloy. It has satisfactory strength at high temp., the forgeability and machinability are comparable to those of the conventional alloy, and the cost is reduced because of the reduced Co content.

Description

【発明の詳細な説明】 〔本発明の技術分野〕 本発明は、高温における耐食性が大で、しかも強度も高
い耐熱耐食合金に関し、主としてガスタービンや蒸気タ
ービンの高温ボルト材及び動感材等に適用するCr −
Ni −Co −Fe系の耐熱耐食合金に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a heat-resistant and corrosion-resistant alloy that has high corrosion resistance at high temperatures and high strength, and is mainly applied to high-temperature bolt materials and dynamic materials of gas turbines and steam turbines. Cr −
The present invention relates to a Ni-Co-Fe-based heat-resistant and corrosion-resistant alloy.

〔背景技術〕[Background technology]

ガスタービンや蒸気タービンにおいて、概ネ500℃以
上で使用されるボルト材や翼材には表1に示すような析
出硬化型C!r −Ni −Co −Fe 合金が使用
される場合がある。
In gas turbines and steam turbines, precipitation hardening type C! shown in Table 1 is used for bolt materials and blade materials used at temperatures of approximately 500°C or higher. r-Ni-Co-Fe alloys may be used.

表 1 0r−Ni−Co−Fe合金の組成しかし、こ
れらの合金は、■ 量が約20%含有されており、コス
ト高となり、また、Cr 量が約18チで高温における
耐食性或いは、Ct−1イオンや溶存酸素のある高温水
中における応力腐食割れ特性が十分でない。
Table 1 Composition of 0r-Ni-Co-Fe alloys However, these alloys contain approximately 20% of Cr, resulting in high costs. Stress corrosion cracking properties in high-temperature water with 1 ions and dissolved oxygen are insufficient.

〔本発明の目的〕[Object of the present invention]

そこで、本発明は、上記表jに示す従来の合金よりもC
o 量を低減させ、コスト低減を図9、Or 量を増加
させて、高温における耐食性や応力腐食割れ特性を改善
し、しかも、高温における強度も十分にあシ、鍛造性や
機械加工性も従来の合金と同程度であるOr −Ni 
−Co −Fe系の耐熱耐食合金を提供することを目的
とする。
Therefore, the present invention has a higher carbon content than the conventional alloy shown in Table j above.
o By reducing the amount, the cost can be reduced. Or By increasing the amount, the corrosion resistance and stress corrosion cracking characteristics at high temperatures are improved, and the strength at high temperatures is also sufficient, and the forgeability and machinability are also the same as before. Or -Ni is comparable to the alloy of
An object of the present invention is to provide a -Co-Fe-based heat-resistant and corrosion-resistant alloy.

〔本発明の構成〕[Configuration of the present invention]

そして、本発明は、上記目的を達成する手段として、従
来の上記合金において、co 量を約%とし、また、C
r 量を20〜30%とする点にある。すなわち、本発
明は、co、1%以下、811%以下、Mn 1%以下
、Ni40〜4B係、Or 20〜50 %、co 6
〜16q6、M。
The present invention, as a means to achieve the above object, sets the amount of Co to about % in the conventional alloy mentioned above, and also
The point is to set the amount of r to 20 to 30%. That is, the present invention provides CO 1% or less, 811% or less, Mn 1% or less, Ni 40-4B, Or 20-50%, CO 6
~16q6, M.

2〜4%、Ti 2゜0%を越え4チ以下、AtO,5
係以下、ZrO,05%以下、BQ、01%以下、及び
残部Fe 及び不可壁的不純物を含有してなる耐熱耐食
合金 である。
2-4%, Ti more than 2°0% and less than 4%, AtO, 5
This is a heat-resistant and corrosion-resistant alloy containing ZrO, 0.5% or less, BQ, 0.1% or less, and the remainder Fe and non-wallable impurities.

以下本発明における合金の各元素の範囲限定並びにその
理由を詳細に説明する。
The range limitation of each element of the alloy in the present invention and the reason therefor will be explained in detail below.

Cは高温強度の改善に必要であるが、本発明ではCD、
1%以下含むものであシ、好ましくはも少ないと、高温
強度の改善効果が少なく、また、0.1%を越えると、
結晶粒界にクロム炭化物CM230s型のもの(MはO
r やMOなどを示す。)〕が過剰に析出し、その結果
、耐食性や耐応力腐食割れを阻害し、また、延性も低下
することとなるので、本発明では、(!0.1%以下、
好ましくは0.01〜(L1%含むものとする。
C is necessary for improving high temperature strength, but in the present invention, CD,
It should contain 1% or less, but if it is too small, the effect of improving high temperature strength will be small, and if it exceeds 0.1%,
Chromium carbide CM230s type (M is O
Indicates r, MO, etc. )] is precipitated in excess, which impedes corrosion resistance and stress corrosion cracking resistance, and also reduces ductility, so in the present invention, (!0.1% or less,
Preferably it contains 0.01 to (L1%).

Sl 及びMn は脱酸作用があシ、この種合金を清浄
にするのに有効である。しかし、本発明では、真空溶解
法を採用する場合があシ、必ずしも必要な元素ではなく
、また、あまシ多くなると、高温強度(クリープ破断強
度)及び延性(クリープ破断伸び)を低下させ、熱間加
工性も、低下する。従って、本発明では、−81及びM
n の両元素共その含有量を1チ以下とするものである
Sl and Mn have a deoxidizing effect and are effective in cleaning this type of alloy. However, in the present invention, the vacuum melting method may be adopted, and the elements are not necessarily necessary, and if the amount is too large, the high temperature strength (creep rupture strength) and ductility (creep rupture elongation) will decrease, and the Machinability also decreases. Therefore, in the present invention, −81 and M
The content of both elements n is 1 or less.

N1 は合金の析出硬化相N15(At、 TI )〔
γ′相といわれる。〕を析出させるために必要であシ、
また、Cr 量を20係以上含有させた場合、強度や延
性を阻害する金属間化合物であるσ)11]を生じやす
くなるが、このσ相の析出を抑制するために40%以上
必要である。また、Ni はOr と共存の下に、耐食
性や応力腐食割れ性を改善させる。しかし、Ni を4
8チよシも多く含有させても、その効果の顕著な向上が
昭められず、経済性も考慮して、本発明ではN1含有量
を40〜48%とするものである。
N1 is the precipitation hardening phase of the alloy N15 (At, TI) [
It is called the γ′ phase. ] is necessary to precipitate
Furthermore, if the Cr content is 20% or more, σ)11], an intermetallic compound that inhibits strength and ductility, is likely to occur, but 40% or more is required to suppress the precipitation of this σ phase. . Further, Ni improves corrosion resistance and stress corrosion cracking resistance in coexistence with Or. However, Ni 4
Even if a large amount of N1 is contained, the effect is not significantly improved, and in consideration of economic efficiency, the N1 content is set to 40 to 48% in the present invention.

Cr はN1 と共存の下に、多くなるほど耐食性や応
力腐食割れを改善させるが゛、20%以上になると、そ
の効果は顕著になる。しかし、30係を越えると、熱間
加工性(鍛造性)が悪くなり、また、高温で長時間使用
中に、金属間化合物であるσ相を析出しやすくなり、ク
リープ破断強度や延性が低下する。そこで本発明では、
Or 含有量を20〜30%とするものである。
Coexisting with N1, Cr improves corrosion resistance and stress corrosion cracking as the amount increases, but when the amount exceeds 20%, the effect becomes significant. However, when it exceeds 30, hot workability (forgeability) deteriorates, and during long-term use at high temperatures, the σ phase, which is an intermetallic compound, tends to precipitate, resulting in a decrease in creep rupture strength and ductility. do. Therefore, in the present invention,
The Or content is 20 to 30%.

Co は、基質のオーステナイト相を安定させ、合金の
固溶化処理において、析出相であるγ′相(Ni、3 
(At、 Ti) 〕を固溶しやすく、時効処理におい
て、このγ′相を均一に析出させ、クリープ破断強度を
向上させる1、また、COはCr。
Co stabilizes the austenite phase of the matrix, and in the solid solution treatment of the alloy, the precipitated phase γ' phase (Ni, 3
(At, Ti)] is easily dissolved in solid solution, and during aging treatment, this γ' phase is uniformly precipitated to improve creep rupture strength1.Also, CO is Cr.

N1 と共存の下に耐食性も向上させる。本発明では、
このCo 含有量を6〜16チとするものであるが、こ
れ杜6%以上で上記効果が顕著になるが、あまシ多く添
加すると、その効果が一段と向上することがなく、経済
的にも不利になるので、この上限′(il−16%とす
るものである。
Coexistence with N1 also improves corrosion resistance. In the present invention,
The Co content is set to 6 to 16%, and the above effect becomes noticeable when the Co content is 6% or more, but if a large amount is added, the effect does not improve further, and it is not economically viable. Since this is disadvantageous, the upper limit is set at il-16%.

Mo は、固溶体強化元素として、高温強度を改善する
が、2%よシ小量ではその効果は十分で々い。一方、4
%よシも多量に添加してもその効果は顕著にならず、返
って、有害な金属間化合物であるσ相の析出を助長させ
るので、本発明では、MO含有量を2〜4%とするもの
である。
Mo2, as a solid solution strengthening element, improves high temperature strength, but the effect is insufficient in small amounts such as 2%. On the other hand, 4
Even if a large amount of MO is added, the effect will not become significant, and on the contrary, it will promote the precipitation of the σ phase, which is a harmful intermetallic compound. It is something to do.

T1 はこの種合金では高温強度を向上させるのに是非
とも必要な析出相であるγ′相(Ni3(At。
T1 is the γ' phase (Ni3 (At), which is a precipitated phase that is absolutely necessary for improving high-temperature strength in this type of alloy.

T1)〕を生成させるために必要である。T1 量は2
%以下では、高温強度の向上は十分でなく、また、あま
り多く添加すると、熱間加工性が難しくなるので、4チ
以下とする。すなわち、本発明では、Ti 含有量を2
.0%を越え4%以下とするものである。
T1)]. T1 amount is 2
If it is less than 4%, the high temperature strength will not be improved sufficiently, and if too much is added, hot workability will become difficult, so the content should be 4 or less. That is, in the present invention, the Ti content is reduced to 2
.. It shall be more than 0% and less than 4%.

At はγ′相(Ni3 (At、 Ti) :lを形
成し、高温で長時間使用中における粗大化の傾向を阻止
し、すなわち、γ′相の安定性を向上させ、高温強度の
向上に有効であるが、本発明では、0.5%以下含むも
のであシ、好ましく 6−1 o、 i〜0.5係含む
ものである。これは01チ以上で上記効果が顕著になる
が、あまシ多く添加してもその効果が顕著でなく、また
、熱間加工性を阻害するので、その上世を0.5%以下
とするものである。
At forms a γ' phase (Ni3(At, Ti):l, which prevents the tendency of coarsening during long-term use at high temperatures, that is, improves the stability of the γ' phase and improves high-temperature strength. Although it is effective, in the present invention, it contains 0.5% or less, preferably 6-1 o, i to 0.5%. Even if a large amount is added, the effect is not significant and hot workability is inhibited, so the upper limit is set at 0.5% or less.

Zr は結晶粒界を強化し、高温強度(クリープ破断強
さ)や延性(クリープ破断伸び)を向上させるものであ
るが、本発明では、このZr含有量を0.05 %以下
、好ましくは0.005〜005%とするものである。
Zr strengthens grain boundaries and improves high temperature strength (creep rupture strength) and ductility (creep rupture elongation), but in the present invention, the Zr content is set to 0.05% or less, preferably 0. The content should be between .005% and .005%.

これは0.005 %未満では上記効果が十分でなく、
また、あまり多く添加しても、その効果は顕著でなく、
返って、窒化ジルコンなど非金属介在物を生成し、゛延
性を低下させるので、その上限を0.05 %とするも
のでちる。
This is because the above effects are not sufficient if it is less than 0.005%.
Also, even if too much is added, the effect will not be noticeable,
On the other hand, non-metallic inclusions such as zirconium nitride are formed and the ductility is reduced, so the upper limit is set at 0.05%.

BもZr と同様に、結晶粒界を強化させて、高温強度
(クリープ破断強さ)を改善するのに有効な元素である
が、本発明では、このB含有量を0.01%以下、好ま
しくはo、 o o i〜0.01チとするものである
。これは、o、oo1%以上で上記効果が顕著になるが
、あまり多く添加すると、熱間加工性を阻害し、また、
硼化物を形成し、延性を低下させるので、その上限を0
.01チとするものである。
Like Zr, B is also an effective element for strengthening grain boundaries and improving high temperature strength (creep rupture strength), but in the present invention, this B content is set to 0.01% or less, Preferably it is o, o o i to 0.01 h. The above effect becomes noticeable when o, oo is 1% or more, but if too much is added, hot workability is inhibited, and
Since it forms borides and reduces ductility, the upper limit should be set to 0.
.. 01ch.

以上本発明における合金の各成分元素の範囲限定並びに
その理由を詳細に説明したが、本発明における合金には
、不可壁的不純物、すなわち、この種合金に避けること
ができない不純物元素、例えばP 、 S 、 Ag 
、 Pb 、 Ou 、 8n 。
The range limitations of each component element of the alloy in the present invention and the reasons therefor have been explained in detail above. However, the alloy in the present invention contains non-wallable impurities, that is, impurity elements that cannot be avoided in this type of alloy, such as P, S, Ag
, Pb, Ou, 8n.

Sb なども極微量含んでいるものである。It also contains a very small amount of Sb.

以下、本発明の実施例をあげて、本発明の詳細な説明す
る。
Hereinafter, the present invention will be explained in detail by giving examples of the present invention.

〔実施例〕〔Example〕

表2に示す合金組成のものを真空高周波溶解にて20k
gインゴットを溶製し、これを熱間調造により、約65
φmmx1500tmmの棒材に鍛伸した。
The alloy composition shown in Table 2 was melted by vacuum high frequency melting to 20K.
g ingot is melted and hot-prepared to about 65 g ingot.
It was forged into a bar with dimensions of φmm x 1500tmm.

次に、これらの棒材に表6に示す熱処理を施し、常温及
び570℃における引張試験、温度570℃応カフ 0
 kg7m−でクリープ破断試験、応力腐食割れ特性試
験(沸騰42チ塩化マグネシウム水中で、その材料の常
温耐力の1,2倍の引張応力を負荷し、破断時間で評価
した。)、高温腐食試験(90% Na25o4 + 
10%kJact の腐食媒体中で、800℃で20 
hr 保持し、最大の腐食侵食深さで評価した。)を行
なった。
Next, these bars were subjected to the heat treatment shown in Table 6, tensile tests were carried out at room temperature and 570°C, and cuff tests were conducted at a temperature of 570°C.
kg7m-, creep rupture test, stress corrosion cracking property test (a tensile stress of 1 to 2 times the normal temperature proof stress of the material was applied in boiling 42% magnesium chloride water, and evaluated by the rupture time), high temperature corrosion test ( 90% Na25o4 +
20 at 800°C in a corrosive medium of 10% kJact
hr and evaluated based on the maximum corrosion depth. ) was carried out.

表3 試験材の熱処理 その結果を表4に示す。Table 3 Heat treatment of test materials The results are shown in Table 4.

表4から明らかなように、本発明合金組成は、比較材(
従来合金)に比して、Cr 量を増加しCO量を低減し
ているが、いずれの試験においても、そん色なく、特に
、応力腐食割れ特性試験や高温腐食試験では、優れた合
金であることが明らかとなった。
As is clear from Table 4, the alloy composition of the present invention has a comparative material (
Compared to conventional alloys, the Cr content has been increased and the CO content has been reduced, but in all tests it was found to be an excellent alloy, especially in stress corrosion cracking property tests and high temperature corrosion tests. It became clear that

〔本発明の効果〕[Effects of the present invention]

本発明は、以上詳記したように、従来のOr −Ni 
−Co −Fe 系合金よりもco 量を低減させ、C
r量を増加させたものであるから、高温における耐食性
や応力腐食割れ特性が改善される効果が生ずるものであ
り、しかも、高温における強度も十分にあり、鍛造性や
機械加工性も従来のこの種合金と同程度のものである効
果が生へさらに、co tftを低減させたことによシ
、コスト低減等の顕著な効果が生ずるものである。
As detailed above, the present invention is based on the conventional Or-Ni
-Co -Fe-based alloys with lower co content,
Since it has an increased amount of r, it has the effect of improving corrosion resistance and stress corrosion cracking characteristics at high temperatures.Moreover, it has sufficient strength at high temperatures, and has better forgeability and machinability than conventional products. The effect is comparable to that of the seed alloy.Furthermore, by reducing the cotft, remarkable effects such as cost reduction are produced.

復代理人 内 1) 明 復代理人 萩 原 亮 −Among the sub-agents: 1) Akira Sub-agent Ryo Hagi Hara -

Claims (1)

【特許請求の範囲】[Claims] c o1%以下、sl 1%以下、Mn 1%以下、N
i40〜48%、Cr 20〜30チ、006〜16%
、Mo 2〜4%、T12.0%を越え4チ以下、At
O,5%以下、ZrO,05%以下、B O,01%以
下、及び残部Fe 及び不可壁的不純物を含有してなる
耐熱耐食合金。
co 1% or less, sl 1% or less, Mn 1% or less, N
i40~48%, Cr 20~30chi, 006~16%
, Mo 2-4%, T greater than 12.0% and less than 4%, At
A heat-resistant and corrosion-resistant alloy containing O, 5% or less, ZrO, 05% or less, B O, 01% or less, and the balance Fe and non-wallable impurities.
JP9471984A 1984-05-14 1984-05-14 Heat and corrosion resistant alloy Pending JPS60238442A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9471984A JPS60238442A (en) 1984-05-14 1984-05-14 Heat and corrosion resistant alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9471984A JPS60238442A (en) 1984-05-14 1984-05-14 Heat and corrosion resistant alloy

Publications (1)

Publication Number Publication Date
JPS60238442A true JPS60238442A (en) 1985-11-27

Family

ID=14117936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9471984A Pending JPS60238442A (en) 1984-05-14 1984-05-14 Heat and corrosion resistant alloy

Country Status (1)

Country Link
JP (1) JPS60238442A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6302649B1 (en) * 1999-10-04 2001-10-16 General Electric Company Superalloy weld composition and repaired turbine engine component
CN115261700A (en) * 2022-08-11 2022-11-01 华能国际电力股份有限公司 Corrosion-resistant alloy and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6302649B1 (en) * 1999-10-04 2001-10-16 General Electric Company Superalloy weld composition and repaired turbine engine component
CN115261700A (en) * 2022-08-11 2022-11-01 华能国际电力股份有限公司 Corrosion-resistant alloy and preparation method thereof

Similar Documents

Publication Publication Date Title
JP2778705B2 (en) Ni-based super heat-resistant alloy and method for producing the same
JP4037929B2 (en) Low thermal expansion Ni-base superalloy and process for producing the same
US6860948B1 (en) Age-hardenable, corrosion resistant Ni—Cr—Mo alloys
JP5657523B2 (en) Ultra-supercritical boiler header alloy and manufacturing method
US2562854A (en) Method of improving the high-temperature strength of austenitic steels
JP3781402B2 (en) Low thermal expansion Ni-base superalloy
US3811960A (en) Process of producing nickel chromium alloy products
JP2955778B2 (en) Controlled thermal expansion alloys and products made thereby
JPS6179742A (en) Heat resistant alloy
JP2004107777A (en) Austenitic heat resistant alloy, production method therefor and steam turbine parts
JP3424314B2 (en) Heat resistant steel
JPS60238442A (en) Heat and corrosion resistant alloy
JPS61238942A (en) Heat resisting alloy
JPH06287667A (en) Heat resistant cast co-base alloy
JPH07300643A (en) Heat resistant cast cobalt-base alloy
JPH0114991B2 (en)
JP3279949B2 (en) Precipitation strengthened superalloy
JPS6046353A (en) Heat resistant steel
JPS62170444A (en) Precipitation strengthening cast ni alloy having superior resistance to stress corrosion cracking
JPS6353234A (en) Structural member having heat resistance and high strength
JP3556701B2 (en) Heat treatment method of precipitation strengthened nickel base superalloy material
JPH06172901A (en) Ni-base alloy excellent in stress corrosion cracking resistance
JPS6293353A (en) Austenitic heat resisting alloy
JPS61217555A (en) Heat resistant austenitic steel
JPS61153251A (en) Nickel alloy having high hot workability