Nothing Special   »   [go: up one dir, main page]

JPS60216030A - Internal-combustion engine equipped with turbochargers - Google Patents

Internal-combustion engine equipped with turbochargers

Info

Publication number
JPS60216030A
JPS60216030A JP59073646A JP7364684A JPS60216030A JP S60216030 A JPS60216030 A JP S60216030A JP 59073646 A JP59073646 A JP 59073646A JP 7364684 A JP7364684 A JP 7364684A JP S60216030 A JPS60216030 A JP S60216030A
Authority
JP
Japan
Prior art keywords
turbocharger
engine
exhaust
turbochargers
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59073646A
Other languages
Japanese (ja)
Inventor
Kazuo Inoue
和雄 井上
Shinkichi Miyazawa
宮沢 伸吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP59073646A priority Critical patent/JPS60216030A/en
Publication of JPS60216030A publication Critical patent/JPS60216030A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/007Engines characterised by provision of pumps driven at least for part of the time by exhaust with exhaust-driven pumps arranged in parallel, e.g. at least one pump supplying alternatively
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/08Other arrangements or adaptations of exhaust conduits
    • F01N13/10Other arrangements or adaptations of exhaust conduits of exhaust manifolds
    • F01N13/107More than one exhaust manifold or exhaust collector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)

Abstract

PURPOSE:To improve the engine performance in all the operation range by installing two turbochargers and installing the opening and closing valves having different operation range into exhaust pipes which lead from the respective turbines from the engine exhaust system of the turbochargers. CONSTITUTION:In the low-speed range of an engine, the both opening and closing valves V1 and V2 are closed, and the all amount of exhaust gas is introduced into the turbine T1 of one turbocharger A, passing through one exhaust pipe 17. Only one turbocharger A operates, and the other turbocharger B is in stop. A check valve V3 prevents the reverse flow of the fresh gas pressure-increased on the turbocharger A side to the turbocharger B side. In the high- speed range of the engine, the opening and closing valve V1 is opened, and the exhaust gas is introduced into the both turbochargers A and B. When the pressure becomes over a certain pressure, the opening and closing valve V2 is opened, and a portion of the exhaust gas which flows in the exhaust pipe is discharged, passing through a bypass pipe, not through the turbocharger A.

Description

【発明の詳細な説明】 本発明は、ターボチャージャ付内燃機関の改良に関する
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improvements in turbocharged internal combustion engines.

ターボチャージャは、既知の如くエンジンから排出され
る高温・高圧の排気ガスでタービンを回し、このタービ
ンと同軸に配されるコンプレッサを駆動して圧縮し、こ
れによりエンジンの出方向上を図るものである。
As is well known, a turbocharger uses high-temperature, high-pressure exhaust gas discharged from an engine to turn a turbine and drive a compressor placed coaxially with the turbine to compress the gas, thereby increasing the output direction of the engine. be.

ところで、斯かるターボチャージャは、エンジンの低速
域においては十分な回転が得られないためその本来の性
能を十分発揮し得す、このためこの種ターボチャージャ
を備える内燃機関においては、高速域において初めてタ
ーボチャージャのメリットが生まれるという欠点がある
By the way, such a turbocharger cannot fully demonstrate its original performance since sufficient rotation cannot be obtained in the low speed range of the engine.For this reason, internal combustion engines equipped with this type of turbocharger cannot be used for the first time in the high speed range. There are drawbacks that come with the benefits of turbocharging.

本発明は上記不都合を有効に解消すべく成されたもので
、その目的とする処は、全作動域で高性能を発揮するこ
とができるターボチャージャ付内燃機関を提供するにあ
る。
The present invention has been made to effectively eliminate the above-mentioned disadvantages, and its purpose is to provide a turbocharged internal combustion engine that can exhibit high performance over the entire operating range.

斯かる目的を達成すべく本発明は、排気マニホルドとマ
フラを連通する各排気管にターボチャージャを並列に設
け、一方のターボチャージャのタービンを上・下流に連
通ずるバイパス管には機関の高出力時に開く開閉弁を、
排気マニホルドと他方のターボチャージャのタービンと
を連通する排気管部には機関の中出力時に開く開閉弁を
、−方のターボチャージャのコンプレッサに連通する吸
気管には他方のターボチャージャが作動した時に開く逆
止弁を夫々設けたことをその特徴とする。
In order to achieve such an object, the present invention provides a turbocharger in parallel to each exhaust pipe that communicates with the exhaust manifold and muffler, and a bypass pipe that communicates the turbine of one turbocharger with the high output of the engine. The on-off valve that opens when
The exhaust pipe that communicates with the exhaust manifold and the turbine of the other turbocharger has an on-off valve that opens when the engine is at medium output, and the intake pipe that communicates with the compressor of the negative turbocharger has an on-off valve that opens when the other turbocharger is activated. Their feature is that they each have a check valve that opens.

以下に本発明の好適一実施例を添付図面に基づいて説明
する。
A preferred embodiment of the present invention will be described below with reference to the accompanying drawings.

第1図は本発明に係るターボチャージャ付内燃機関を搭
載して成る自動二輪車の側面図、第2図は同ターボチャ
ージャ付内燃機関の回路図、第3図はターボチャージャ
の圧力特性図、第4図は同ターボチャージャ付エンジン
の斜視図である。
FIG. 1 is a side view of a motorcycle equipped with a turbocharged internal combustion engine according to the present invention, FIG. 2 is a circuit diagram of the same turbocharged internal combustion engine, and FIG. 3 is a pressure characteristic diagram of the turbocharger. FIG. 4 is a perspective view of the same turbocharged engine.

第1図に示す自動二輪車において、車体フレーム(2)
の前方に固着されたヘッドパイプ(3)には不図示のス
テムシャフトが回動自在に挿通しており、ステムシャフ
トの上・下端にはトップブリッジ(4)、ボトムブリッ
ジ(5)が夫々固着されている。そして、これらトップ
、ボトム両ブリッジ(4) 、(5)には図示の如くフ
ロントフォーク(6)の下端には前輪(7)が回動自在
に支承されている。
In the motorcycle shown in Fig. 1, the body frame (2)
A stem shaft (not shown) is rotatably inserted into the head pipe (3) fixed to the front of the head pipe, and a top bridge (4) and a bottom bridge (5) are fixed to the upper and lower ends of the stem shaft, respectively. has been done. As shown in the figure, a front wheel (7) is rotatably supported at the lower end of a front fork (6) on both the top and bottom bridges (4) and (5).

尚トップブリッジ(4)にはハンドル(8)が固設され
ている。
A handle (8) is fixedly attached to the top bridge (4).

又前記ヘッドパイプ(3)の後方には燃料タンク(9)
及びシート(10)が配設され、燃料タンク(8)の下
方にはエンジン(11)が搭載されている。
Also, behind the head pipe (3) is a fuel tank (9).
and a seat (10), and an engine (11) is mounted below the fuel tank (8).

一方、車体の略中央下部にはりャフォーク(12)の前
端がピボットシャフト(13)にて上下揺動自在に枢着
されており、該リヤフォーク(12)の後端には図示の
如く後輪(14)が回転自在に支承されている。
On the other hand, the front end of a rear fork (12) is pivotally attached to the lower central part of the vehicle body via a pivot shaft (13) so as to be able to swing up and down, and the rear end of the rear fork (12) is attached to the rear wheel as shown in the figure. (14) is rotatably supported.

ところで、前記エンジン(11)の前方下部には第2図
に示す2基のターボチャージャ(A)、(B)が配置さ
れている。ターボチャージャ(A)、(B)は夫々コプ
レッサ(Ct) 、(C9)、タービン(TI) 、 
(T2)を備えている。尚第2図中、(15−1)、(
+5−2)はタービン翼、(1B−1) 、(16−2
)はタービン翼(15−1)、(15−2)と同軸に配
されるコンプレッサインペラである。
By the way, two turbochargers (A) and (B) shown in FIG. 2 are arranged at the front lower part of the engine (11). Turbochargers (A) and (B) are respectively cocompressor (Ct), (C9), and turbine (TI).
(T2). In Figure 2, (15-1), (
+5-2) is a turbine blade, (1B-1), (16-2
) is a compressor impeller arranged coaxially with the turbine blades (15-1) and (15-2).

又、ターボチャージャ(B)としては、補助的に用いる
小型のもの、コストを考えてターボチャージャ(A)と
同型のもの、出力を重視して大型のもの等が考えられる
が、本実施例にてはターボチャージャ(B)は高速時に
過給量の多い大型のものとした。更に、本実施例におい
ては、第4図に示す如く1両ターボチャージャ(A) 
、 (B)をエンジン前方且つ下方に設け、タービン(
TI)、 (T2)の軸線を交差させるようにしたが、
これは両ターボチャージャ(A) 、 (B)の排気口
を対向させると排気がπいに干渉し合い、出力上昇上好
ましくないからである。
In addition, the turbocharger (B) may be a small one for auxiliary use, one of the same type as the turbocharger (A) for cost reasons, or a large one for emphasis on output. The turbocharger (B) was designed to be large enough to provide a large amount of supercharging at high speeds. Furthermore, in this embodiment, a one-car turbocharger (A) is used as shown in FIG.
, (B) is installed in front of and below the engine, and the turbine (
I made the axes of TI) and (T2) intersect, but
This is because if the exhaust ports of both turbochargers (A) and (B) are made to face each other, the exhaust gases will interfere with each other, which is not desirable in terms of increasing output.

而して、各タービン(tl) 、 (72)の入口側に
は第2図に示す如く前記エンジン(11)から導出する
排気管(+7)、He)が夫々連結されており、又出口
側には排気マフラ(19)が連結されている。又一方の
排気管(17)からはバイパス管(20)が分岐してお
り、このバイパス管(20)は前記排気マフラ(19)
に合流している。そして−、排気管(18)、バイパス
管(20)には夫々作動域の異なる開閉弁(Vl)、 
(Vll)が設けられている。
As shown in Fig. 2, exhaust pipes (+7) and He) led out from the engine (11) are connected to the inlet side of each turbine (tl) and (72), respectively, and the outlet side An exhaust muffler (19) is connected to the exhaust muffler (19). A bypass pipe (20) is branched from one exhaust pipe (17), and this bypass pipe (20) is connected to the exhaust muffler (19).
are merging with. - On-off valves (Vl) with different operating ranges are provided in the exhaust pipe (18) and the bypass pipe (20), respectively.
(Vll) is provided.

一方、各コンプレッサ(II、) 、 (C2)の吸入
側にはエンジン(11)の後方に配設されたエアクリー
ナ(21)から導出する吸気管(22) 、(23)が
連結されている。又コンプレッサ(C1) 、 (02
)の吐出側からはチャージパイプ(24)、(25)が
導出し、これらチャージパイプ(24) 、(25)は
吸気ブリチャンバ(26)に連結されている。そして、
吸気ブリチャンバ(26)は第1図に示す如くキャブレ
タ(27)に連結され、キャブレタ(27)はエンジン
(11)の吸入側に連結されている。尚、一方のチャー
ジパイプ(25)の中間にはコンプレッサ(C1)側か
らコンプレフサ(C2)側への流れのみを許容するリー
ド弁式の逆止弁(v3)が介設されている。
On the other hand, intake pipes (22) and (23) led out from an air cleaner (21) disposed at the rear of the engine (11) are connected to the intake side of each of the compressors (II,) and (C2). Also compressor (C1), (02
Charge pipes (24) and (25) are led out from the discharge side of the air pump 2, and these charge pipes (24) and (25) are connected to an intake chamber (26). and,
The intake chamber (26) is connected to a carburetor (27) as shown in FIG. 1, and the carburetor (27) is connected to the intake side of the engine (11). In addition, a reed valve type check valve (v3) that allows flow only from the compressor (C1) side to the compressor (C2) side is interposed in the middle of one of the charge pipes (25).

而して吸気ブリチャンバ(26)内の圧力P2が第3図
に示した設定圧Pqが第3図に示す設定圧P2−!未満
の低速域においては、両開閉弁(Vθ、(V2)は閉じ
ており、エンジン(11)内での混合気の燃焼によって
発生した高温・高圧の排気ガスの全量は一方の排気管(
17)を通って一方のターボチャージャ(^)のタービ
ン(T1)内に導入され、ここでタービン翼(15−1
)を回転駆動した後、排気マフラ(18)から大気中に
排出される。従って、この低速域においては、一方のタ
ーボチャージャ(A)のみが作動し、他方のターボチャ
ージャCB)は停止している。尚第3図中、横軸はエン
ジン回転数階を示す。
Therefore, the pressure P2 in the intake chamber (26) becomes the set pressure Pq shown in FIG. 3, and the set pressure P2-! shown in FIG. In the low speed range below, both on-off valves (Vθ, (V2) are closed, and the entire amount of high-temperature, high-pressure exhaust gas generated by the combustion of the air-fuel mixture in the engine (11) is transferred to one exhaust pipe (
17) into the turbine (T1) of one turbocharger (^), where the turbine blades (15-1
) is rotated and then exhausted into the atmosphere from the exhaust muffler (18). Therefore, in this low speed range, only one turbocharger (A) is in operation, and the other turbocharger (CB) is stopped. In FIG. 3, the horizontal axis indicates the engine rotational speed.

そしてL記タービン翼(+5−1)の回転によりこれと
同軸に配されるコンプレッサインペラ(1B−1)が回
転駆動せしめられ、エアクリーナ(21)及び吸気管(
22)を経てコンプレフサ((:1)内に導入される新
気は該インペラ(1B−1)によって圧縮昇圧された後
、コンプレッサ(C1)の吐出側から吐出される。
The rotation of the L turbine blade (+5-1) rotates the compressor impeller (1B-1) arranged coaxially with the turbine blade (+5-1), and the air cleaner (21) and the intake pipe (
Fresh air introduced into the compressor ((:1) through the compressor (22) is compressed and pressurized by the impeller (1B-1), and then discharged from the discharge side of the compressor (C1).

この圧縮された新気はチャージパイプ(24)及び吸気
ブリチャンバ(2B)を経てキャブレタ(27)に導入
され、ここで霧化された燃料と混合し、ここに混合気が
形成される。このチャブレタ(27)にて形成された混
合気はエンジン(11)のシリンダ内に充填され、ピス
トンにて圧縮された後、着火燃焼せしめられ、この混合
気の燃焼によって発生した熱の一部が有効に機械的エネ
ルギーに変換せしめられる。
This compressed fresh air is introduced into the carburetor (27) via the charge pipe (24) and the intake chamber (2B), where it mixes with the atomized fuel to form an air-fuel mixture. The air-fuel mixture formed in the carburetor (27) is filled into the cylinder of the engine (11), compressed by the piston, and then ignited and combusted, and part of the heat generated by the combustion of this air-fuel mixture is It can be effectively converted into mechanical energy.

而してこの低速域においては、エンジン回転数階の増加
に伴って新気の圧力、即ちチャンバ(26)内の圧力P
2は第3図の曲線(C1)に添って上昇する。ここで第
3図中aは高速側ターボチャージャの動特性、bは低速
側ターボチャージャの動特性を示す。そして、エンジン
回転数■が翫1に到した時点では圧力P2は設定圧P2
−1以上には上昇しない。尚逆止弁(v3)はターボチ
ャージャ(A)側で昇圧された新気がターボチャージャ
(B)側へ逆流するのを防ぐ役目を果たす。また、逆止
弁(v4)を吸気管に設けてもよい。このようにすれば
タービン軸に加圧されたオイルが導かれているのでコン
プレッサを高圧状態にすればオイルが吸気ににじみ出る
おそれがあるが、これを抑制することができる。
In this low speed range, as the engine speed increases, the pressure of fresh air, that is, the pressure P in the chamber (26) increases.
2 increases along the curve (C1) in FIG. Here, in FIG. 3, a shows the dynamic characteristics of the high-speed side turbocharger, and b shows the dynamic characteristics of the low-speed side turbocharger. Then, when the engine speed ■ reaches 1, the pressure P2 becomes the set pressure P2.
It does not rise above -1. Note that the check valve (v3) serves to prevent fresh air pressurized on the turbocharger (A) side from flowing back to the turbocharger (B) side. Further, a check valve (v4) may be provided in the intake pipe. In this way, pressurized oil is guided to the turbine shaft, so if the compressor is brought to a high pressure state, there is a risk that the oil will leak into the intake air, but this can be suppressed.

次にエンジン回転数歯が図示のNEIを越えて増大する
高速域においては、開閉弁(vl)が開き、排気ガスは
両排気管(17)、(18)を通って両ターボチャージ
ャ(A)、(B)のタービン(T1) 、 (T2)内
に導入され、ターボチャージャ(B)の作動が開始され
る。
Next, in a high-speed range where the engine speed increases beyond the NEI shown in the figure, the on-off valve (vl) opens and the exhaust gas passes through both exhaust pipes (17) and (18) to both turbochargers (A). , (B) into the turbines (T1) and (T2), and the operation of the turbocharger (B) is started.

そして、エンジン回転数階が地2を超える高速域におい
ては、両ターボチャージャ(A)、(B)が十分作動す
るため、圧力P2はエンジン回転数庫の上Aとともに、
第3図中、曲線(C2)に沿って上昇する。ここで、タ
ーボチャージャ(A)の過給圧上昇かにぶくなる前後の
回転域(1)において、弁(vl)を徐々に開にすれば
、ターボチャージャ(A)、(B)のつながりをスムー
ズになすことができる。
In the high-speed range where the engine speed exceeds ground 2, both turbochargers (A) and (B) operate sufficiently, so the pressure P2 is as high as A above the engine speed range.
In FIG. 3, it rises along the curve (C2). Here, if the valve (vl) is gradually opened in the rotation range (1) before and after the boost pressure of the turbocharger (A) increases, the connection between the turbochargers (A) and (B) will be smooth. can be done.

そして、圧力P2が設定値P2−2に到すると、開閉弁
(v2)を開き、排気管(17)内を流れる排気ガスの
一部はターボチャージャ(A)を経ないでバイパス管(
20)を通って直接排気マフラ(18)側へ流れる。
When the pressure P2 reaches the set value P2-2, the on-off valve (v2) is opened and a part of the exhaust gas flowing through the exhaust pipe (17) is routed through the bypass pipe (without passing through the turbocharger (A)).
20) and directly flows to the exhaust muffler (18) side.

この開閉弁(v2)は、圧力P7が設定P2−2を超え
ないようその開度がコントロールされている。
The opening degree of this on-off valve (v2) is controlled so that the pressure P7 does not exceed the setting P2-2.

以」−において、エンジン(11)の作動速度域に応じ
てターボチャージャ(A)、(B)の作動を制御し、特
に低速域においては一方のターボチャージャ(A)のみ
を作動して必要な過給圧を得るようにしたため、エンジ
ン(11)は全作動速度域において高性能を発揮するこ
とができる。
Hereinafter, the operation of the turbochargers (A) and (B) is controlled according to the operating speed range of the engine (11), and especially in the low speed range, only one turbocharger (A) is operated to perform necessary operations. Since supercharging pressure is obtained, the engine (11) can exhibit high performance over the entire operating speed range.

以上の説明で明らかな如く本発明によれば、ターボチャ
ージャを2基とし、これらターボチャージャのエンジン
排気系から各タービンに至る排気管に作動域の異なる開
閉弁を設けたため、全作動域においてエンジン性能を高
めることができる。
As is clear from the above description, according to the present invention, there are two turbochargers, and the exhaust pipes from the engine exhaust system of these turbochargers to each turbine are provided with on-off valves with different operating ranges. Performance can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の一実施例を示すものであり、第1図は本
発明に係るターボチャージャ付内燃機関を搭載して成る
自動二輪車の側面図、第2図は同ターボチャージャ付内
燃機関の回路図、第3図はターボチャジャの圧力特性図
、第4図は同ターボチャージャ付エンジンの斜視図であ
る。 尚図面中、(1)は自動二輪車、(11)はエンジン、
 (17)、(1B)は排気管、(20)はバイパス管
(21)はエアクリーナ、(22) 、 (23)は吸
気管、(24) 。 (25)はチャージパイプ、(26)は吸気プリチャン
バ、(27)はキャブレタ、(A)、(B)はターボチ
ャージャ、(CI) 、 (C2)はコンプレッサ、(
Tl)、 (T2)はタービン、(Vz) 、 (V2
)は開閉弁、(v3)は逆止弁である。 第2図 9a →エンシ“ソ回転服N+: 第4図
The drawings show one embodiment of the present invention, and FIG. 1 is a side view of a motorcycle equipped with a turbocharged internal combustion engine according to the present invention, and FIG. 2 is a circuit diagram of the turbocharged internal combustion engine. FIG. 3 is a pressure characteristic diagram of the turbocharger, and FIG. 4 is a perspective view of the turbocharged engine. In the drawings, (1) is a motorcycle, (11) is an engine,
(17) and (1B) are exhaust pipes, (20) is a bypass pipe (21) is an air cleaner, (22) and (23) are intake pipes, and (24). (25) is a charge pipe, (26) is an intake prechamber, (27) is a carburetor, (A), (B) are turbochargers, (CI), (C2) are compressors, (
Tl), (T2) are turbines, (Vz), (V2
) is an on-off valve, and (v3) is a check valve. Fig. 2 9a → Enshi's rotary clothes N+: Fig. 4

Claims (1)

【特許請求の範囲】[Claims] 横置多気筒型機関であって、これの排気マニホルドとマ
フラを連通ずる各排気管にターボチャージャを並列に設
け、一方のターボチャージャのタービンの七醗下流を連
通ずるバイパス管には機関の高出力時に開く開閉弁を、
排気マニホルドと他方のターボチャージャのタービンと
を連通する排気管部には機関の中出力時に開く開閉弁を
、他方のターボチャージャのコンプレッサに連通する吸
気管には他方のターボチャージャが作動した時に開く逆
1ト弁を夫々設けたことを特徴とするターボチャージャ
付内燃機関。
It is a horizontal multi-cylinder engine, and a turbocharger is installed in parallel in each exhaust pipe that communicates with the exhaust manifold and the muffler, and a bypass pipe that communicates with the downstream side of the turbine of one turbocharger has a turbocharger connected to the engine. The on-off valve that opens when output is
The exhaust pipe that communicates with the exhaust manifold and the turbine of the other turbocharger is equipped with an on-off valve that opens when the engine is at medium output, and the intake pipe that communicates with the compressor of the other turbocharger is equipped with an on-off valve that opens when the other turbocharger operates. An internal combustion engine with a turbocharger, which is characterized by being equipped with a reverse single-turn valve.
JP59073646A 1984-04-12 1984-04-12 Internal-combustion engine equipped with turbochargers Pending JPS60216030A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59073646A JPS60216030A (en) 1984-04-12 1984-04-12 Internal-combustion engine equipped with turbochargers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59073646A JPS60216030A (en) 1984-04-12 1984-04-12 Internal-combustion engine equipped with turbochargers

Publications (1)

Publication Number Publication Date
JPS60216030A true JPS60216030A (en) 1985-10-29

Family

ID=13524258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59073646A Pending JPS60216030A (en) 1984-04-12 1984-04-12 Internal-combustion engine equipped with turbochargers

Country Status (1)

Country Link
JP (1) JPS60216030A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0334228A2 (en) * 1988-03-19 1989-09-27 Mazda Motor Corporation Air supply control systems for internal combustion engines
DE102004057130A1 (en) * 2004-11-26 2006-06-08 Bayerische Motoren Werke Ag Method for operating a lean operable internal combustion engine
GB2472830A (en) * 2009-08-20 2011-02-23 Gm Global Tech Operations Inc Automotive twin turbo system with bypassable compressor(s)
WO2018099702A1 (en) * 2016-11-30 2018-06-07 Bayerische Motoren Werke Aktiengesellschaft Drive system for a motor vehicle, and motor vehicle having the drive system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0334228A2 (en) * 1988-03-19 1989-09-27 Mazda Motor Corporation Air supply control systems for internal combustion engines
DE102004057130A1 (en) * 2004-11-26 2006-06-08 Bayerische Motoren Werke Ag Method for operating a lean operable internal combustion engine
GB2472830A (en) * 2009-08-20 2011-02-23 Gm Global Tech Operations Inc Automotive twin turbo system with bypassable compressor(s)
US8615999B2 (en) 2009-08-20 2013-12-31 GM Global Technology Operations LLC Twin turbo assembly and method for operating a twin turbo assembly
GB2472830B (en) * 2009-08-20 2014-12-17 Gm Global Tech Operations Inc Twin turbo assembly and method for operating a twin turbo assembly
WO2018099702A1 (en) * 2016-11-30 2018-06-07 Bayerische Motoren Werke Aktiengesellschaft Drive system for a motor vehicle, and motor vehicle having the drive system
US10808604B2 (en) 2016-11-30 2020-10-20 Bayerische Motoren Werke Aktiengesellschaft Drive system for a motor vehicle, and motor vehicle having the drive system

Similar Documents

Publication Publication Date Title
JPS61164039A (en) Multistage turbo supercharged engine
JPH01318720A (en) Supercharging internal combustion engine
JP4177961B2 (en) Method of operating an internal combustion engine and internal combustion engine
JPS639616A (en) Turbo-compound engine
CN107060989B (en) Three stage of the three turbocharger sequential turbocharging device and its control method of function are realized with EGR
CN209990540U (en) Turbocharger with adjustable flow
JP6641206B2 (en) Engine control device
JPS60216030A (en) Internal-combustion engine equipped with turbochargers
JPH01190920A (en) Twin turbo type internal combustion engine
JP5974805B2 (en) Multi-cylinder engine with turbocharger
JPH03117624A (en) Turbosupercharge engine
JPH0232827Y2 (en)
KR20110129130A (en) Internal combustion engine
JPS5925100B2 (en) supercharged internal combustion engine
JP2004060499A (en) Exhaust gas recirculation device of diesel engine
JPS5999025A (en) Supercharged internal-combustion engine
JPH01187320A (en) Exhaust for engine with turbo supercharger
JPS58172422A (en) Combustion improving device in internal combustion engine with turbo supercharger
JPH08246889A (en) Engine having supercharger
JP3397902B2 (en) Engine with turbocharger
JPS5843568B2 (en) Internal combustion engine exhaust turbocharger
JPS5836824Y2 (en) Exhaust turbo supercharging device
JPS6038027Y2 (en) multi-cylinder internal combustion engine
JPH0413521B2 (en)
JP2020097914A (en) Exhaust device of engine with turbocharger