Nothing Special   »   [go: up one dir, main page]

JPS6021432A - Apparatus for evaluating composite optical system - Google Patents

Apparatus for evaluating composite optical system

Info

Publication number
JPS6021432A
JPS6021432A JP12903483A JP12903483A JPS6021432A JP S6021432 A JPS6021432 A JP S6021432A JP 12903483 A JP12903483 A JP 12903483A JP 12903483 A JP12903483 A JP 12903483A JP S6021432 A JPS6021432 A JP S6021432A
Authority
JP
Japan
Prior art keywords
optical system
slit
disk
image
collective optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12903483A
Other languages
Japanese (ja)
Inventor
Hideharu Takei
竹井 英陽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP12903483A priority Critical patent/JPS6021432A/en
Publication of JPS6021432A publication Critical patent/JPS6021432A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To enable to measure optical transmitting functions and optical intensities in the longitudinal and lateral directions, by arranging a rotary disk, which has a plurality of lattices extending radially toward an outer periphery part at a specified position. CONSTITUTION:With regard to the measurememt in the logitudinal direction, slits on the side of a body 31 are provided at the rear stage of a diffusing plate 18. A disk 32 has a plurality of lattices extending radially toward the outer periphery, which become parallel with the slit 31 when each lattice comes to a measuring position 34, and has a rotary center Mv. The disk 32 is arranged so that it is positioned on the surface of a composite optical system 100. With respect to the measurement in the lateral direction, the disk 32 is arranged so that it is aligned with the longitudinal direction of the composite optical system 100 when the lattice comes to a measuring position 35. A slit on the side of a body 33, which is the same as the slit on the side of the body 31, are provided at the rear stage of the diffusing plate 18. In this constitution, the optical transmitting functions and the optical intensities in the longitudinal and lateral directions can be measured.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は集合光学系の縦及び横方向の光学伝達関数(M
TF)及び光強度の変化を測定できるようにした集合光
学系評価装置に関する。
Detailed Description of the Invention [Technical Field] The present invention relates to the longitudinal and lateral optical transfer functions (M
The present invention relates to a collective optical system evaluation device capable of measuring changes in light intensity (TF) and light intensity.

〔従来技術〕[Prior art]

従来の光学系評価装置として、例えば、第1図に示すも
のがある。この光学系評価装置は、光源1の光を集光す
るコンデンサレンズ2と、垂直方向に細溝が切られ、コ
ンデンサレンズ2よシの光の一部を通過させる物体側ス
リット3と、該スリット3を所定の位置に結像させるレ
ンズ4(後述する評価を受けるレンズである)と、該レ
ンズ4が結像する位置に配設され、水平方向に細溝が切
られている像側スリット5と、該スリット5に投影され
た像を所定位置に結像させるリレーレンズ6と、透明部
分と不透明部分が所定の間隔(例えば、その幅の比が1
=1)で交互に配列されて像側スリット5の焦点位置に
設けられると共に矢印方向Slに走査される光学的フー
リエ変換スリット7と、該スリット7の格子とリレーレ
ンズ6よシの像との重ね合せ像を所定位置に結像させる
コンデンサーレンズ8と、該レンズ8の結像位置に受光
面が配設され光強度信号を電気信号に変換する受光器9
と、受光器9の出力信号を基に所定の演算を行なう演算
回路10と、演算回路10による後述するMTF演算結
果を表示する表示部11とよシ構成される。
As a conventional optical system evaluation device, there is one shown in FIG. 1, for example. This optical system evaluation device includes a condenser lens 2 that condenses light from a light source 1, an object-side slit 3 that has a thin groove cut in the vertical direction and allows a part of the light from the condenser lens 2 to pass through, and the slit. 3 to form an image at a predetermined position (this is a lens to be evaluated as described later); and an image side slit 5 which is disposed at the position where the lens 4 forms an image and has a thin groove cut in the horizontal direction. , a relay lens 6 that forms the image projected onto the slit 5 at a predetermined position, and a transparent portion and an opaque portion arranged at a predetermined interval (for example, the width ratio thereof is 1).
= 1), which are arranged alternately at the focal position of the image side slit 5 and scanned in the arrow direction Sl, and the grating of the slit 7 and the image of the relay lens 6. A condenser lens 8 that forms superimposed images at a predetermined position, and a light receiver 9 that has a light receiving surface disposed at the image forming position of the lens 8 and converts a light intensity signal into an electrical signal.
, an arithmetic circuit 10 that performs predetermined arithmetic operations based on the output signal of the light receiver 9, and a display section 11 that displays the MTF calculation result, which will be described later, by the arithmetic circuit 10.

以上の構成において、MTF(Modulatton 
Tran−sfer Function :光学伝達関
数)は、周知の如く解像度を周波数特性としてカーブで
示すものであるが、第1図では白、黒の境界の明確なス
リットを用いておシ、光源1の光はコンデンサーレンズ
2を介して物体側スリット3に照射される。物体側スリ
ット3には、第2図に示すように、細溝の幅、Woより
も充分大きな幅Wsの範囲に光源の像12が形成されて
いる。物体側スリット3に形成された像は、レンズ4を
介して像側スリット5に投影される。この投影像が第3
図に示す像13であシ、この像13の幅をWi。
In the above configuration, MTF (Modulatton
As is well-known, the transfer function (optical transfer function) is a curve that shows the resolution as a frequency characteristic. is irradiated onto the object-side slit 3 via the condenser lens 2. As shown in FIG. 2, in the object side slit 3, an image 12 of the light source is formed in a range of a width Ws that is sufficiently larger than the width of the narrow groove, Wo. The image formed on the object side slit 3 is projected onto the image side slit 5 via the lens 4. This projected image is the third
The width of the image 13 shown in the figure is Wi.

細溝の幅をΔW及び像13の長さをL賭すれば、Li)
 WりΔWの関係であシ、影像の情報は像側スリy、□
)i5においてX軸(第1図)方向に広がる一次元情報
とし扱われる。こめ−次元情報はコンデンサレンズ6に
よシフーリエ弯換スリット7の格子部に投影される。ス
リット7は図の矢印方向S1に走査され、光学的なフー
リエ変換が行なわれる(該スリット7の格子は、正弦波
格子が使用される)。変換された光強度情報は、受光器
9に依シ電気信号に変換され演算回路10に送出される
If the width of the narrow groove is ΔW and the length of the image 13 is L, then Li)
Due to the relationship between W and ΔW, the image information is on the image side, □
) i5, it is treated as one-dimensional information that spreads in the X-axis (Fig. 1) direction. The dimensional information is projected by a condenser lens 6 onto the lattice portion of the Schiffurier deflection slit 7. The slit 7 is scanned in the arrow direction S1 in the figure, and optical Fourier transformation is performed (a sine wave grating is used as the grating of the slit 7). The converted light intensity information is converted into an electrical signal by the light receiver 9 and sent to the arithmetic circuit 10.

レンズ4による像面は、第4図に示すように、連続した
曲面像14となシ、これは大略4次の偶関数で示すこと
ができるため、測定点は7乃至5ケ所(第4図ではPo
、Pa、Pb、Pc、Pd)を定めることによυ、その
特性を知ることができる。
The image plane formed by the lens 4 is a continuous curved image 14, as shown in FIG. So Po
, Pa, Pb, Pc, Pd), its characteristics can be known.

しかし、レンズ4が通常のレンズに代って集合光学系が
使用されると、第5図に示すようになる。即ち、個々の
レンズ100の画像範囲をQI Q2とし、その走査方
向(例えば、複写機に適用した場合を考える)をSdl
とすると、一点Q(図示せず)はQ’r + Qo +
 QIBの如くに連続して感材上(感光体面)に投影さ
れて一点Q′を形成する。このときQ’l * Qlo
r QSは直線的に投影されず、伺等かの曲線として投
影されるため、点Q′は異なりたMTFの平均的な値で
形成されることになる。従って、集合光学系の場合、S
d1方向の変化は無視できない。これは通常レンズのT
c 1が700m+程度なのに対し1/1o程度と小さ
いことに起因する。
However, if the lens 4 is replaced by a normal lens and a collective optical system is used, the result will be as shown in FIG. That is, the image range of each lens 100 is QI Q2, and its scanning direction (for example, when applied to a copying machine) is Sdl.
Then, one point Q (not shown) is Q'r + Qo +
Like QIB, the light is continuously projected onto the photosensitive material (photosensitive member surface) to form a single point Q'. At this time, Q'l * Qlo
Since rQS is not projected linearly but as a curved line, the point Q' is formed by the average value of different MTFs. Therefore, in the case of a collective optical system, S
Changes in the d1 direction cannot be ignored. This is the T of a normal lens.
This is due to the fact that c1 is about 700m+, whereas it is small at about 1/1o.

つぎに投影誤差について説明する。第6図に示すように
、レンズ4による原稿15の情報16(正弦波の2周期
が描かれている)は位置ZOK畏さxoの像17が投影
されている。何らかの理由によって投影面がZoよシΔ
Zだけ離れた位置2に投影されたときの像17′の長さ
をXとすれば、倍率の変動は(xX、)/、、で与えら
れ、この値が結果として感材と像の速度差を生じ、画像
のコントラストを劣化させ石。この倍率変、動(Am)
は概略ΔZ / Tc / 2と与えることもできる。
Next, projection errors will be explained. As shown in FIG. 6, an image 17 at a position ZOK is projected onto the information 16 (on which two periods of a sine wave are drawn) of the original 15 by the lens 4. For some reason, the projection surface is different from Zo.
If the length of the image 17' when projected at position 2, which is separated by Z, is X, then the variation in magnification is given by (xX, )/,, and this value results in the velocity of the photosensitive material and image stones that cause differences and degrade the contrast of the image. This magnification change, dynamic (Am)
can also be approximately given as ΔZ/Tc/2.

ΔZを一定とすればTcに逆比例して倍率変動が増加す
る。即ち、Tcが小さいほど倍率変動が大きく、像のコ
ントラスト劣化はよシ大きくなる。従って、共役長の差
から集合光学系では通常のレンズに比べ焦点ずれによる
像のコントラストの劣化を受けることになる。
If ΔZ is constant, the magnification fluctuation increases in inverse proportion to Tc. That is, the smaller Tc is, the larger the magnification fluctuation is, and the more the contrast deterioration of the image is. Therefore, due to the difference in conjugate length, the collective optical system suffers from deterioration of image contrast due to defocus compared to a normal lens.

以上述べたように、集合光学系のMTF測定は、通常レ
ンズに比べて大きく異なるのは次の3点である。
As described above, MTF measurement of a collective optical system differs greatly from that of a normal lens in the following three points.

(1)露光スリットの幅において、複写機の走査方向の
MTFが大きく変化する。
(1) The MTF in the scanning direction of the copying machine changes greatly depending on the width of the exposure slit.

(2)焦点ずれに起因する速度エラーによる画像劣化が
大きい。
(2) Image deterioration due to speed errors caused by defocus is significant.

(3)複数の光軸を有する。(3) It has multiple optical axes.

このため、 (al 露光スリット幅内の積分されたMTFがまるこ
と、 (b) 速度エラーも含めたMTFが測定できること、 (c) 走査方向と直交する方向に対し連続的に測定で
きること、 等が要求される。これらの要求を達成するために考えら
れた従来の集合光学系評価装置の一例を示したのが第7
図である。
For this reason, (al) the integrated MTF within the exposure slit width is the same, (b) the MTF including the speed error can be measured, (c) the measurement can be performed continuously in the direction perpendicular to the scanning direction, etc. The seventh example shows an example of a conventional collective optical system evaluation device designed to meet these requirements.
It is a diagram.

第7図においては、第1図に示したと同一の部分は同一
の引用数字で示したので重複する説明は省略するが、コ
ンデンサーレンズ2の後段に配設される拡散板18と、
拡散板18の後段に配設される物体側スリット19と、
物体側スリット19の後段に配設される集合光学系10
0と、物体側スリット19の格子に一致する細溝を備え
て集合光学系100の後段に配設される検出用スリット
20と、検出用スリット20の後段に配設される拡散板
21とを備えておシ、他の構成は第1図と共通する。
In FIG. 7, the same parts as shown in FIG. 1 are indicated by the same reference numerals, so redundant explanation will be omitted.
an object-side slit 19 arranged after the diffusion plate 18;
Collective optical system 10 arranged after the object side slit 19
0, a detection slit 20 provided with a narrow groove matching the grid of the object-side slit 19 and disposed at the rear of the collective optical system 100, and a diffuser plate 21 disposed at the rear of the detection slit 20. The other configurations are the same as in FIG. 1.

以上の構成において、拡散板18によって物体側スリッ
ト19に光源1の光がほぼ均一に照明された状態下で、
物体側スリット19と集合光学系iooは矢印方向に共
に同一速度で移動する。これによって集合光学系によシ
検出用スリット20に格子の像が投影されるが、この投
影過程で光学的にフーリエ変換され、光信号は拡散板2
1を介して受光器9によシ受光されて電気信号に変換さ
れ、以後第″1図の場合と同様の処理が行なわれる。
In the above configuration, under a state in which the object-side slit 19 is illuminated with light from the light source 1 almost uniformly by the diffuser plate 18,
The object side slit 19 and the collective optical system ioo both move at the same speed in the direction of the arrow. As a result, an image of the grating is projected onto the detection slit 20 by the collective optical system, and in this projection process, it is optically Fourier transformed, and the optical signal is transmitted to the diffuser plate 20.
1, the light is received by the light receiver 9 and converted into an electrical signal, and thereafter the same processing as in the case of FIG. 1 is performed.

このように集合光学系100の長手方向に対し直角方向
に平行な格子に対するMTFを測定することができる。
In this way, the MTF for the grating parallel to the longitudinal direction of collective optical system 100 can be measured.

しかし、従来の集合光学系評価装置にあっては、集合レ
ンズが長手方向に多数配列された構造を有するため、移
動方向Slに直交する方向のMTFを測定できない不都
合がある。例えば、複写機においては、横方向の線が走
査系の振動の影響でコントラストの劣化が生じ易く、横
方向の格子のMTF測定は不可欠となっている。この場
合、第7図に示した縦方向の測定と同様に、レンズ群を
連続的に横方向に測定できることが望まれる。
However, since the conventional collective optical system evaluation apparatus has a structure in which a large number of collective lenses are arranged in the longitudinal direction, it is inconvenient that it cannot measure the MTF in the direction perpendicular to the moving direction Sl. For example, in a copying machine, the contrast of horizontal lines tends to deteriorate due to the vibration of the scanning system, making MTF measurement of horizontal grids essential. In this case, it is desirable to be able to continuously measure the lens group in the horizontal direction, similar to the measurement in the vertical direction shown in FIG.

〔発明の目的及び構成〕[Object and structure of the invention]

本発明は、上記に鑑みてなされたものであシ、縦、横両
方向のB、(TF及び光強度の測定を行なえるようにす
るため、円板の外縁部に放射状に伸びる格子を配設して
形成した格子部を該円板の回転によって集合光学系の基
準方向に対し直交する方向及び平行な方向に位置させる
ようにした集合光学系評価装置を提供するものである。
The present invention has been made in view of the above, and in order to be able to measure B (TF) and light intensity in both the vertical and horizontal directions, a radially extending grating is provided at the outer edge of the disk. The object of the present invention is to provide a collective optical system evaluation device in which a grating portion formed by the above-described method is positioned in a direction perpendicular to and parallel to a reference direction of the collective optical system by rotating the disk.

〔実施例〕〔Example〕

以下、本発明による集合光学系評価装置を詳細に説明す
る。
Hereinafter, the collective optical system evaluation apparatus according to the present invention will be explained in detail.

第8図及び第9図は本発明の一実施例を示し、第7図と
同一の部分は同一の引用数字で示したので重複する説明
は省略するが、縦方向の測定に関しては、第8図に示す
ように、拡散板18の後段に物体側スリット31(集合
光学系100の長手方向と垂直な方向に細溝を有す)を
設けると共に、外縁部に放射状に伸びる複数の格子を有
し、それぞれの格子が測定位置34にきたとき前記スリ
ット31と平行になる回転中心Mvを有する回転円板3
2を集合光学系100面上に位置するように配置する。
8 and 9 show one embodiment of the present invention, and the same parts as in FIG. As shown in the figure, an object side slit 31 (having a narrow groove in a direction perpendicular to the longitudinal direction of the collective optical system 100) is provided at the rear stage of the diffuser plate 18, and a plurality of gratings extending radially on the outer edge are provided. and a rotating disk 3 having a rotation center Mv that is parallel to the slit 31 when each grating reaches the measurement position 34.
2 is placed on the surface of the collective optical system 100.

また、横方向の測定に関しては、円板32を格子が測定
位置35にきたとき集合光学系の長手方向に一致するよ
うに配置する。伺、拡散板18の後段に物体側スリット
31(第゛8図)と同じ物体側スリット33が配置され
ている。
Regarding measurements in the lateral direction, the disk 32 is arranged so that when the grating reaches the measurement position 35, it coincides with the longitudinal direction of the collective optical system. An object-side slit 33, which is the same as the object-side slit 31 (FIG. 8), is arranged after the diffuser plate 18.

円板32はガラス等の透明円板が用いられ、周辺に透明
部分と不透明部分を円中心に対し放射状に配設して格子
が形成される。透過濃度は、測定精度を考慮して決定さ
れるが、通常、透明部で0.02以下、不透明部で2以
上の光学濃度のものが要求される。
The disk 32 is a transparent disk made of glass or the like, and a lattice is formed around the circumference by arranging transparent parts and opaque parts radially with respect to the center of the circle. The transmission density is determined in consideration of measurement accuracy, and usually requires an optical density of 0.02 or less in transparent parts and 2 or more in opaque parts.

以上の構成において、円板32がMyを回転中心とし矢
印方向に回転すると、測定位置34における格子は直線
的に移動(集合光学系100の移動方向と同一)シ、ス
リット31による投影像との重ね合せ、即ち光学的フー
リエ変換が達成される。第9図の実施例では測定位置3
5は34に対し相対的に90度回転した位置となる。こ
の場合の測定位置における格子の回転運動はほぼ直線と
して扱うことができ、その方向はY軸方向でsb第8図
の実施例とは直交する方向になり、第8図の場合と同様
に円板32の格イとスリット330投影像とが測定位置
35で重ね合せられ、光学的にフーリエ変換が行なわれ
る。
In the above configuration, when the disk 32 rotates in the direction of the arrow with My as the rotation center, the grating at the measurement position 34 moves linearly (same direction as the moving direction of the collective optical system 100), and the lattice is moved linearly with respect to the projected image by the slit 31. A superposition, ie an optical Fourier transform, is achieved. In the embodiment of FIG. 9, measurement position 3
5 is a position rotated by 90 degrees relative to 34. In this case, the rotational movement of the grating at the measurement position can be treated as a nearly straight line, and its direction is the Y-axis direction, which is perpendicular to the embodiment of sb Fig. 8, and circular as in the case of Fig. 8. The grid of the plate 32 and the projected image of the slit 330 are superimposed at the measurement position 35, and Fourier transformation is performed optically.

このように、周辺に一定の周期の格子が描かれている円
板32を2つの回転中心軸Mv 、 MHで回転させ、
かつ、X軸上にある測定位置34及びX軸上にある測定
位置35でそれぞれ測定することKより、縦方向と横方
向の各MTFの測定を行なうことができる。この円板3
20回転中に集合光学系100を図示81方向に移動さ
せれば、1/ンズ群を連続して測定することができる。
In this way, the disk 32 on which a lattice with a constant period is drawn around the periphery is rotated about the two rotation center axes Mv and MH,
Furthermore, by measuring at the measurement position 34 on the X-axis and the measurement position 35 on the X-axis, it is possible to measure each MTF in the vertical direction and the horizontal direction. This disk 3
If the collective optical system 100 is moved in the direction 81 shown in the figure during 20 rotations, the 1/lens group can be continuously measured.

F、4110図は本発明の他の実施例を示すものであシ
、第8図と第9図に示した実施例を一体化り、縦と横方
向のMTFを同時に測定できるようにしたものである。
Fig. F, 4110 shows another embodiment of the present invention, in which the embodiments shown in Figs. 8 and 9 are integrated, and the MTF in the vertical and horizontal directions can be measured simultaneously. It is.

共通する単一の円36の外周に回転中心IIllIMv
 、 MHを有する2つの円板32a。
The center of rotation IIllIMv is on the outer periphery of a common single circle 36
, MH.

32bの格子が測定位置37において直交するように該
円板32a 、32bを配置し、Moに配設したモータ
(図示せず)によってタイミングベルト等を介し各円板
を駆動する。
The disks 32a and 32b are arranged so that the grids 32b are perpendicular to each other at the measurement position 37, and each disk is driven by a motor (not shown) provided in Mo via a timing belt or the like.

以上の構成において、測定位置37における格子は互い
に直角に配設されたものが交叉し、スリット31によっ
て投影された像は測定位置37において回転円板32a
の格子と重ね合され、さらに回転円板32bの格子と重
ね合せられ順次光学的にフーリエ変換が行なわれる。
In the above configuration, the gratings arranged at right angles to each other at the measurement position 37 intersect, and the image projected by the slit 31 is projected onto the rotating disk 32a at the measurement position 37.
is superimposed on the lattice of the rotary disk 32b, and is further superimposed on the lattice of the rotating disk 32b, and optically Fourier transform is performed sequentially.

第11図は本発明の応用例を示すものであり、第8図と
同一の部分は同一の引用数字で示したので重複する説明
は省略するが、第8図に示した物体側スリット31を除
去し、幅ΔWu、長さluの細溝を有するスリット40
を集合光学系100と円板32の間に設けるようにした
点が第8図の構成と相違する。
FIG. 11 shows an example of application of the present invention, and the same parts as in FIG. 8 are indicated by the same reference numerals, so redundant explanation will be omitted, but the object side slit 31 shown in FIG. A slit 40 having a narrow groove with a width ΔWu and a length lu is removed.
The structure differs from that shown in FIG. 8 in that it is provided between the collective optical system 100 and the disk 32.

以上の構成において、集合光学系100を出た光はスリ
ブ)40に透過され、そのスリット像は回転板32の格
子と重ね合せられ、光強度の変化を測定することができ
る。
In the above configuration, the light exiting the collective optical system 100 is transmitted through the slit 40, and the slit image is superimposed on the grating of the rotary plate 32, so that changes in light intensity can be measured.

発明者らは、下記に示す条件のもとに本発明の実施例を
実施した。
The inventors carried out Examples of the present invention under the conditions shown below.

空間周波数 41p/wM 円板32の直径 300箇賂子の中心の円の半(イ)回
転速度 1/2回転/秒 出力信号周波数 170Hz レンズ移動(Sl)速度 5mm/秒 縦方向スリットの幅 40μm 縦及び横方向スリット長 16端 横方向のスリブ小幅 1論 光強度検出用スリットの幅 0.1 am受 光 器 
光電子増倍管 ランプ電力 250W 以上の条件による測定精度は、 MTFの場合 = 5チ以下 光強度変化 : 1%以下 であシ、良好な測定結果が得られた。
Spatial frequency 41p/wM Diameter of disk 32 300 Half rotation speed of the center circle of the ring 1/2 rotation/sec Output signal frequency 170Hz Lens movement (Sl) speed 5mm/sec Vertical slit width 40μm Vertical and horizontal slit length 16 ends Horizontal sleeve narrow width Width of slit for light intensity detection 0.1 am receiver
The measurement accuracy under the conditions of photomultiplier tube lamp power of 250 W or more was as follows: For MTF = 5 cm or less Light intensity change: 1% or less, and good measurement results were obtained.

〔発明の効果〕〔Effect of the invention〕

以上説明した通シ、本発明の集合光学系評価装置によれ
ば、周辺に所定間隔で放射状に伸びる格子を形成した円
板を回転し、前記格子集合光学系の基準方向に対し直交
する方向及び平行な方向に位置させるようにしたため、
前記集合光学系の縦、横両方向のMTF及び光強度の測
定を行うことができる。
As described above, according to the collective optical system evaluation apparatus of the present invention, a disk having a radially extending grating formed at predetermined intervals around the periphery is rotated, and a direction perpendicular to the reference direction of the grating collective optical system and a Because they are positioned in parallel directions,
It is possible to measure the MTF and light intensity of the collective optical system in both the vertical and horizontal directions.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の光学系評価装置を示す構成図、第2図は
第1図のスリット3に形成される投影像の説明図、第3
図は第1図のスリット5に形成される投影像の説明図、
第4図は通常のレンズによる像面形成説明図、第5図は
集合光学系レンズによる像面形成の説明図、第6図は投
影誤差発生の説明図、第7図は従来の集合光学系評価装
置を示す構成図、第8図及び第9図は本発明の一実施例
を示す斜視図、第10図は本発明の他の実施例を示す斜
視図、第11図は本発明の応用例を示す斜視図。 符号の説明 1・・・光源、2・・・コンデンサレンズ、9・・・受
光器、10・・・演算回路、11・・・表示部、18・
・・拡散板、31.33・・・物体側スリット、32.
32a、32b・−・円板、40−・・スリット、10
0・・・集合光学系。 特許 出願人 富士ゼロックス株式会社代理人 弁理士
 松 原 伸 之 同 弁理士 村 木 消 司 同 弁理士 平 1) 忠 雄 同 弁理士 上 島 淳 − 同 弁理士 鈴 木 均 第4図 第5図 第6図 第1O図 第1I図 1゜
FIG. 1 is a configuration diagram showing a conventional optical system evaluation device, FIG. 2 is an explanatory diagram of a projected image formed in the slit 3 of FIG. 1, and FIG.
The figure is an explanatory diagram of a projected image formed in the slit 5 of FIG.
Fig. 4 is an explanatory diagram of image plane formation by a normal lens, Fig. 5 is an explanatory diagram of image plane formation by a collective optical system lens, Fig. 6 is an explanatory diagram of projection error occurrence, and Fig. 7 is an explanatory diagram of a conventional collective optical system. 8 and 9 are perspective views showing one embodiment of the present invention, FIG. 10 is a perspective view showing another embodiment of the present invention, and FIG. 11 is an application of the present invention. A perspective view showing an example. Explanation of symbols 1... Light source, 2... Condenser lens, 9... Light receiver, 10... Arithmetic circuit, 11... Display unit, 18...
...Diffusion plate, 31.33...Object side slit, 32.
32a, 32b--disc, 40--slit, 10
0... Collective optical system. Patent Applicant: Fuji Xerox Co., Ltd. Agent Nobuyuki Matsuhara, Patent Attorney: Tsuji Muraki, Patent Attorney: Taira 1) Yudo Tadashi, Patent Attorney: Atsushi Ueshima - Patent Attorney: Hitoshi Suzuki Figures 4 and 5 Figure 6 Figure 1O Figure 1I Figure 1゜

Claims (1)

【特許請求の範囲】[Claims] 光通過系路中に配設される評価対象の集合光学系と、所
定間隔で透明部と不透明部とが交互に配設された格子を
有して前記光学系の後段または前段に設けられる移動ス
リットと、細い切り抜き溝が設けられて前記光学系の前
段または後段に設けられる固定スリットとを備えて両ス
リットによる綜像を重ね合せて光学的フーリエ変換が行
なわれる集合光学系評価装置において、前記移動スリッ
トが、円板の外縁部に放射状に伸びる格子によって形成
され、該格子が該円板の回転中心軸の位置に応じて集合
光学系の基準方向に対し直交する方向及び平行な方向に
位置することを特徴とする集合光学系評価装置。
A collective optical system to be evaluated which is disposed in a light passage path, and a movable unit which has a grating in which transparent portions and opaque portions are alternately arranged at predetermined intervals and is provided at the rear or front stage of the optical system. In the collective optical system evaluation apparatus, the collective optical system evaluation apparatus is provided with a slit and a fixed slit provided with a narrow cutout groove and provided at the front stage or the rear stage of the optical system, and in which optical Fourier transformation is performed by superimposing the integral images from both the slits. The moving slit is formed by a grating extending radially on the outer edge of the disk, and the grating is positioned in a direction perpendicular and parallel to the reference direction of the collective optical system depending on the position of the rotation center axis of the disk. A collective optical system evaluation device characterized by:
JP12903483A 1983-07-15 1983-07-15 Apparatus for evaluating composite optical system Pending JPS6021432A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12903483A JPS6021432A (en) 1983-07-15 1983-07-15 Apparatus for evaluating composite optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12903483A JPS6021432A (en) 1983-07-15 1983-07-15 Apparatus for evaluating composite optical system

Publications (1)

Publication Number Publication Date
JPS6021432A true JPS6021432A (en) 1985-02-02

Family

ID=14999471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12903483A Pending JPS6021432A (en) 1983-07-15 1983-07-15 Apparatus for evaluating composite optical system

Country Status (1)

Country Link
JP (1) JPS6021432A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008107331A (en) * 2006-09-26 2008-05-08 Mitsubishi Rayon Co Ltd Device and method for inspecting capillary array sheet
JP2011235929A (en) * 2010-05-10 2011-11-24 Yoshihisa Furuta Article storage case

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56635A (en) * 1979-06-18 1981-01-07 Ricoh Co Ltd Mtf inspecting unit for noninverted equal-size image focusing element array

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56635A (en) * 1979-06-18 1981-01-07 Ricoh Co Ltd Mtf inspecting unit for noninverted equal-size image focusing element array

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008107331A (en) * 2006-09-26 2008-05-08 Mitsubishi Rayon Co Ltd Device and method for inspecting capillary array sheet
JP2011235929A (en) * 2010-05-10 2011-11-24 Yoshihisa Furuta Article storage case

Similar Documents

Publication Publication Date Title
JP3316837B2 (en) 3D imaging device
KR950033689A (en) Exposure apparatus and circuit pattern forming method using the same
JPH09210629A (en) Surface positioning detection device and device-manufacturing method using it
JPH05231985A (en) Method and device for measuring refractive power in optical system
JPS6021432A (en) Apparatus for evaluating composite optical system
JPH0629964B2 (en) Mark detection method
JPH07106243A (en) Horizontal position detector
JPH0398378A (en) Photoelectric scanner
JP6921578B2 (en) Surface foreign matter detection device and surface foreign matter detection method using it
JP3201473B2 (en) Optimal focus position measuring method and focus position measuring mask
JPH0949784A (en) Inspecting method for projection optical system and illumination optical system used for the inspection
JP2861092B2 (en) Image reading device
JPS60254109A (en) Optical device
JPH08304999A (en) Phase shift mask and focus position detecting method using the same
JPS6311921A (en) Focusing device for optical machine
JP3103314B2 (en) Corneal shape measuring device
JPH0226205B2 (en)
JPS6248179B2 (en)
JP2663525B2 (en) Strain inspection device
JPH06324472A (en) Original plate for exposure and projection exposing device using it
JPH0145861B2 (en)
JPS6411887B2 (en)
JP2589073B2 (en) Projection optical device
JP2583868Y2 (en) Object chart and lens focal position detecting device
JPS6037403B2 (en) Gap detection device