Nothing Special   »   [go: up one dir, main page]

JPS60180623A - Method and device for bending metallic pipe - Google Patents

Method and device for bending metallic pipe

Info

Publication number
JPS60180623A
JPS60180623A JP3604284A JP3604284A JPS60180623A JP S60180623 A JPS60180623 A JP S60180623A JP 3604284 A JP3604284 A JP 3604284A JP 3604284 A JP3604284 A JP 3604284A JP S60180623 A JPS60180623 A JP S60180623A
Authority
JP
Japan
Prior art keywords
bending
temperature
bending part
heating
bent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3604284A
Other languages
Japanese (ja)
Other versions
JPH0235609B2 (en
Inventor
Junji Sumikawa
澄川 順二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3604284A priority Critical patent/JPS60180623A/en
Publication of JPS60180623A publication Critical patent/JPS60180623A/en
Publication of JPH0235609B2 publication Critical patent/JPH0235609B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D7/00Bending rods, profiles, or tubes
    • B21D7/16Auxiliary equipment, e.g. for heating or cooling of bends
    • B21D7/162Heating equipment

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Bending Of Plates, Rods, And Pipes (AREA)

Abstract

PURPOSE:To minimize the working thickness-reduction at the back side of a bending part by lowering the working temperature of the back side of a bending part and elevating the working temperature of the belly side at the time of high frequency bending work. CONSTITUTION:In the bending work of a metallic pipe by high frequency heating, the temperature of the back side of a bending part is regulated to <=1,000 deg.C in case of stainless steel and to <=500 deg.C in case of carbon steel. Further, the temperature of the belly part of the bending part is regulated to >=1,000 deg.C in case of stainless steel and to >=700 deg.C in case of carbon steel. These temperature differences are easily attained by using a high-frequency heating coil having a taper formed by making the coil width at the back side of a bending part wider and the coil width at the belly part narrower.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、金属管の曲げ加工方法及びその装置に関する
。特に、高周波加熱による金属管の曲げ加工において、
加工に#う曲げ部の変形、特に曲げ部における背側の肉
厚減少を防止する金属管の曲げ加工方法及びそれに関す
る金属管の曲げ加工装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a method and apparatus for bending a metal tube. In particular, when bending metal tubes using high-frequency heating,
The present invention relates to a method for bending a metal tube that prevents deformation of the bent portion during processing, particularly a decrease in wall thickness on the back side of the bent portion, and a metal tube bending device related thereto.

〔発明の背景〕[Background of the invention]

従来の高周波誘導加熱曲げ加工では、曲げ部を加熱する
高周波加熱コイルは、曲げ加工背側及び曲げ加工腹側形
状が同一である環状コイルであるため、高周波加熱域は
曲げ部の背側と腹側でほぼ均一となる。従って、この高
周波加熱域の外部荷重による金属管の降伏点や引張強さ
や伸びは、はぼ均一である。それゆえ被加工管の一端を
アームに固定し、もう一端を押し装置でパイプを押し出
すことにより、高周波誘導加熱域に曲げモーメントを付
与した時、発生する曲げモーメントは曲げ部の背側と腹
側で同一であることにより、曲げ部の背側と腹側では同
一量の塑性変形奮起こし、曲げ部の腹側で増肉した分に
相当する量が、曲げ部の背側にて減肉する傾向にある。
In conventional high-frequency induction heating bending, the high-frequency heating coil that heats the bent part is a circular coil whose shape is the same on the dorsal and ventral sides of the bent part, so the high-frequency heating area covers the dorsal and ventral sides of the bent part. It becomes almost uniform. Therefore, the yield point, tensile strength, and elongation of the metal tube due to external loads in this high-frequency heating region are almost uniform. Therefore, when a bending moment is applied to the high-frequency induction heating area by fixing one end of the pipe to be processed to an arm and pushing the pipe out using a pushing device at the other end, the bending moment that occurs will occur on the dorsal and ventral sides of the bent part. Because they are the same, the same amount of plastic deformation is induced on the dorsal and ventral sides of the bent part, and the amount of thickness increased on the ventral side of the bent part tends to decrease by an amount equivalent to the thickness increase on the dorsal side of the bent part. be.

この傾向は、一定の円弧を描くアームの長ばを短くシ、
曲げ半林を小さく設定した場合に特に曲げ部層側の増肉
と曲げ部付側の減肉が大きくなる。このうち、曲げ部付
側の減肉量が大きくなることは、曲げ管を使用する上で
は、設計上必要とする規定肉厚を保持するために、この
減肉量を補うだけの量を、曲げ加工前の金属管の肉厚に
あらかじめ上乗せすることによシ対処することになり曲
げ管使用上の不利益となっている。この不利益を排除す
るために、による押し力とアーム加わるブレーキ力によ
る圧縮力が被曲げ加工管に加えられ、曲げ部付側におけ
る肉厚の減少を軽減する方が一般によく取られている。
This tendency is caused by shortening the length of the arm that draws a certain arc,
When the bending half-layer is set small, the increase in thickness on the side of the bending layer and the decrease in thickness on the side with the bending part become particularly large. Of these, the amount of thinning on the side with the bent part is large, which means that when using a bent pipe, in order to maintain the specified wall thickness required for the design, the amount of thinning to compensate for this thinning amount is increased. This has to be dealt with by adding an additional layer to the thickness of the metal tube before bending, which is a disadvantage in the use of bent tubes. In order to eliminate this disadvantage, it is generally a good practice to apply compressive force due to the pushing force and the braking force applied by the arm to the pipe to be bent to reduce the decrease in wall thickness on the side where the bending part is attached.

この方法では、アーム軸にブレーキ力を加えるために、
ブレーキ発生装置を設置することが必要となる。このこ
とは、曲げ加工装置製作上製作費用のアップとなり、設
備投資上好ましくない。また、このブレーキ力をアーム
の中心軸に与えることにより、軸には、多大なねじシモ
ーメントが付与されることになるため、必要以上に、ア
ーム中心軸を太くする必要が生じる欠点がある。
In this method, in order to apply braking force to the arm axis,
It is necessary to install a brake generator. This increases the manufacturing cost of the bending device, which is unfavorable in terms of equipment investment. Further, by applying this braking force to the central axis of the arm, a large thread moment is applied to the shaft, so there is a drawback that the central axis of the arm needs to be made thicker than necessary.

一方これらの、被曲げ加工管に圧縮力を与える曲げ加工
方式に代わり、金属では、900C程度の熱間加工域に
おいては、降伏点、引張強さが低下し伸びが増加する性
質、また、400C程度の温間加工域では、熱間加工域
に比べ、降伏点、引張強さが高くなり、伸びが低くなる
性質を利用し、減肉を防止する必要がある曲げ部付側の
曲は加工温度を下げることにより、曲げ部付側の変形抵
抄を増加させ、減肉を軽減させる方法として、曲げ加工
時曲げ部付側における高周波加熱部に水を吹きかけるこ
とによシ、加熱部を冷却し、曲はモーメント付与部にお
ける曲げ部付側の曲げ加工温度を熱間加工域よりはずす
ことによる被加工部背側の降伏点及び引張強度を高くし
、かつ伸びを低くおさえ、曲げ部付側の減肉量をおさえ
る方法がとられている。この方法においては、高周波加
熱リングのアームクランプ側に設ける冷却リングに加え
、高周波加熱リングの押し装置側に極部冷却用ノズルを
設け、曲げ部付側の極部を約60111 snO巾で局
部的に冷却し、曲げ部付側における降伏点、引張強度を
上げることによシ変形抵抗を増加させ曲げ部付側におけ
る減肉量を低減させる効果はあるが、高周波加熱コイル
及び通常の冷却リング設定の他に、局部冷却用のノズル
設定を必要とし、加工前段取り時間の増大とともに、局
部ノズルの設定誤差による曲げ管材質の不均一性を生ず
ること及び冷却水が重力により管の下部側表面をったっ
て流れることにより曲げ部材質に不均一性を生じる可能
性があろうまた、冷却水のコントロールがパルプの開度
調整による機械的コント・ロールにであるため、水圧変
動の−ために常に均一な冷却性能を望めないこと、また
、高周波曲げ加工方式が常に同一径のものを加工し、か
つ常に連続曲げ・をしているわけではないことにより必
ずコイルを取りはずしまた、設定するため、常に同一位
置に高周波加熱コイルの設定及び冷却リングの設定及び
局部冷却リングの設定が出来るわけではないため、これ
らの3つのコイル及び冷却リングの微調整を必要とし、
熟練者を必要とする欠点がある。
On the other hand, instead of these bending methods that apply compressive force to the pipe to be bent, in the hot working region of about 900C, the yield point and tensile strength decrease and the elongation increases. In the warm working area, the yield point and tensile strength are higher and the elongation is lower than in the hot working area. As a method of increasing the deformation resistance on the side of the bent part and reducing thickness loss by lowering the temperature, the heated part is cooled by spraying water on the high frequency heating part on the side of the bent part during bending. However, the bending temperature of the bending part side in the moment applying part is set higher than the hot working area, thereby increasing the yield point and tensile strength of the back side of the workpiece part, and keeping the elongation low. Methods are being taken to limit the amount of thinning. In this method, in addition to a cooling ring provided on the arm clamp side of the high-frequency heating ring, a nozzle for cooling the pole part is provided on the pushing device side of the high-frequency heating ring, and the pole part on the side with the bent part is locally heated with a width of approximately 60111 snO. It is effective to increase the deformation resistance and reduce the amount of thinning on the bent side by increasing the yield point and tensile strength on the bent side, but the high frequency heating coil and normal cooling ring setting In addition, it is necessary to set a nozzle for local cooling, which increases pre-processing setup time, causes unevenness in the bent pipe material due to setting errors in local nozzles, and causes the cooling water to cover the lower surface of the pipe due to gravity. There is a possibility that non-uniformity may occur in the material of the bending part due to continuous flow.Also, since the cooling water is controlled mechanically by adjusting the pulp opening, it is always uniform due to water pressure fluctuations. In addition, because the high-frequency bending method always processes items with the same diameter and does not always bend continuously, the coil must be removed and set, so it is always the same diameter. Since it is not possible to set the high-frequency heating coil, the cooling ring, and the local cooling ring at each location, fine adjustment of these three coils and the cooling ring is required.
The disadvantage is that it requires a skilled person.

また、高周波加熱曲げ加工においては、冷却ノズルの加
工精度によシ、冷却水の吹出し方向及び各穴から吹出さ
れる冷却水量に違いを生じ、これによる冷却範囲のバラ
ンスがくずれることにょシ加熱巾α不均一性が生まれる
ことは明白であシ、ノズルの加工精度(製作精度によシ
曲げ管の仕上り状態あるいは材質の不均一性を壕ねくお
それがあるという欠点もある。さらに、前述の曲げ部付
側と曲は部層側に温度差を設ける加工方法として、破面
げ加工管と高周波加熱リング及び冷却リングの中心軸を
ずらし、高周波加熱リングと破面は加工管表面とのギャ
ップを曲げ部付側で大きく、曲げ部層側で小さくするこ
とによυ、曲げ部付側の磁束密度を小さくシ、曲げ部層
側で磁束密度を大きくすることにより、曲げ部付側の温
度を低くし、腹側の温度を高くする方法が考案されてい
るが、ギャップ差によシ加熱温度が大きく違うため、ギ
ャップ設定の作業は重要なものである。従って、これも
ただ単にコイルを設定するだけですぐに曲げ加工を開始
出来るものではなく、熟練者による微調整を必要とする
ものである。このため、曲げ加工前の段取シ作業が増大
するという欠点がある。
In addition, in high-frequency heating bending processing, depending on the processing accuracy of the cooling nozzle, there may be differences in the direction of cooling water blowing out and the amount of cooling water blowing out from each hole, which may cause an imbalance in the cooling range. It is obvious that α non-uniformity occurs, and there is also the drawback that the processing accuracy (manufacturing accuracy) of the nozzle may lead to non-uniformity in the finished state or material of the bent pipe. As a processing method that creates a temperature difference between the bent side and the curved part side, the center axes of the fractured surface-bent pipe, high-frequency heating ring, and cooling ring are shifted, and the high-frequency heating ring and the fractured surface are placed in the gap between the surface of the processed pipe. By making υ larger on the bending part side and smaller on the bending part layer side, the temperature on the bending part side can be decreased by decreasing the magnetic flux density on the bending part side and increasing the magnetic flux density on the bending part layer side. A method has been devised to lower the temperature of the ventral side and raise the temperature of the ventral side, but the work of setting the gap is important because the heating temperature varies greatly depending on the difference in the gap. It is not possible to start bending immediately after setting, but requires fine adjustment by a skilled person.Therefore, there is a drawback that the setup work before bending increases.

また、本ギヤイブを設ける方法は、材質により有用性カ
異なシ、ステンレス鋼においては、簡単に温度差を設け
ることが出来ても、炭素鋼においては、温度差をつけに
くいという欠点がある。また、同一材質においても、真
円の高周波加熱コイルを採用する限り、曲げ部付側で減
肉をおさえるに都合の良い温度にギャップを設定すると
、中立部の温度低下及び腹側では、ギャップ極小による
過加熱となる事が考えられ、おのずと加熱温匪差に制限
が設けられ、これにより加二[条件に制限が設けられる
欠点がある。
Furthermore, the usefulness of this method of providing a gear blade differs depending on the material, and although it is possible to easily create a temperature difference in stainless steel, it has the disadvantage that it is difficult to create a temperature difference in carbon steel. In addition, even if the material is the same, as long as a perfectly circular high-frequency heating coil is used, if the gap is set at a temperature that is convenient for suppressing thinning on the side with the bent part, the temperature will drop in the neutral part and the gap will be minimized on the ventral side. Therefore, there is a drawback that there is a limit on the difference in heating temperature, and this limits the conditions.

また、これらの温度差を設ける曲げ加工方式では、ノズ
ル調整やギャップ調整に熟練者を必要とし、熟練者の減
少が目立つ今日においては採用が難しい高周波加熱曲げ
方法である。
Furthermore, the bending method that creates these temperature differences requires a skilled person for nozzle adjustment and gap adjustment, and is a high-frequency heating bending method that is difficult to employ in today's world where the number of skilled people is decreasing.

〔発明の目的〕[Purpose of the invention]

本発明は、この様な従来技術の問題点を解決すべくなさ
れたもので、高周波曲げ加工時の曲げ部付側の加工温度
を低くシ、曲げ部層側の加工温度を高くし曲げ部付側の
加工減肉を最小におさえる金属管の曲げ加工方法及びそ
の装置を提供することを目的とする。
The present invention has been made in order to solve the problems of the conventional technology, and it is possible to lower the processing temperature on the bending part side and increase the processing temperature on the bending part layer side during high frequency bending. It is an object of the present invention to provide a method for bending a metal tube and an apparatus for the same, which minimizes side wall loss during processing.

〔発明の概要〕[Summary of the invention]

本発明は、曲げ加二り部の背側曲げ加工温度を腹側曲げ
加工温度よシ低くシ、温度依存性のある金属管の変形抵
抗を、曲げ部層側で底く、曲げ部付側で高くする温度差
曲げ加工方法において、加熱コイルの電流密度°と被加
工管側曲げ部発熱量が比例すること及び電流密度がコイ
ル断面積に反比例することに着目し、曲げ部層側のコイ
ル巾を小さくシ、コイル断面積を最小とし、曲げ部付側
のコイル巾を大きくしコイル断面積が最大となる様にコ
イルを変化させることにより、曲げ部層側の電流密度を
高くし被加工管を高温にし、曲げ部付側の電流密度を低
くし被加工管を低温にする高周波曲げ加工用加熱コイル
の形状を提供すること。及び、温度差の適切な条件を与
えることにある。
The present invention lowers the dorsal side bending temperature of the bent portion to a lower temperature than the ventral side bending temperature, and reduces the temperature-dependent deformation resistance of the metal tube such that the bending portion layer side bottoms out and the bending portion side In the temperature difference bending method, we focused on the fact that the current density of the heating coil is proportional to the amount of heat generated at the bending part on the side of the pipe to be processed, and that the current density is inversely proportional to the cross-sectional area of the coil. By changing the coil so that the width is small and the cross-sectional area of the coil is minimized, and the coil width on the side with the bent part is increased to maximize the coil cross-sectional area, the current density on the side of the bent part is increased and the workpiece is processed. To provide a heating coil for high frequency bending that heats up the tube, lowers the current density on the bending part side, and lowers the temperature of the tube to be processed. and providing appropriate conditions for temperature difference.

〔発明の実施例〕[Embodiments of the invention]

本発明においては、第1図に示す如く、一定入力電流値
(I)に対し、コイル断面積を、腹側SIから背側S2
へ変化させ、その比をαとすると、背側断面積を1とす
る と、腹側では1/αの割合となる。
In the present invention, as shown in FIG. 1, for a constant input current value (I), the coil cross-sectional area is changed from ventral side SI to dorsal side S2.
If the ratio is α, then if the dorsal cross-sectional area is 1, the ventral side will have a ratio of 1/α.

ここで、電流密度をψとすると、次の関係式によシ、表
わされる。
Here, if the current density is ψ, it is expressed by the following relational expression.

従って、曲げ部層側では、(3)式、背側では、(4)
式となる。
Therefore, on the bending layer side, formula (3) is used, and on the back side, formula (4) is used.
The formula becomes

ことで、ψ1 :腹側電流密度 ψ2 :背側電流密度 を示す。(1)式、(3)式、(4)式よりψl ψ2=−・・・(5) α となり、背側電流密度(ψ2)は、背側と腹側のの断面
積の比によシ変化する。
Thus, ψ1: ventral current density ψ2: dorsal current density. From equations (1), (3), and (4), ψl ψ2=−...(5) α, and the dorsal current density (ψ2) varies depending on the ratio of the cross-sectional area of the dorsal and ventral Change.

第2図は、加熱コイルの周方向電流密度の変化を示して
いる。この図の様に、曲げ部層側で高電流密度となり、
曲げ部付側では低電流密度となることがわかる。
FIG. 2 shows the change in circumferential current density of the heating coil. As shown in this figure, the current density is high on the bending layer side,
It can be seen that the current density is low on the bent side.

また、皺曲げ加工管の発熱量(Q)は、加えられた電流
密度(ψ)に比例する。
Further, the calorific value (Q) of the wrinkled pipe is proportional to the applied current density (ψ).

発熱量(Q)=電流密度(ψ) ・・・(6)従って、
加熱部の周方向発熱#(Q)の分布は、第3図とな見曲
げ部層側で高発熱量、曲げ部付側で低発熱量となること
がわかる。皺曲げ加工管の加工温度(T)と、発熱量(
Q)は、比例関係にある。
Calorific value (Q) = current density (ψ) ... (6) Therefore,
As shown in FIG. 3, the distribution of heat generation #(Q) in the circumferential direction of the heating section is such that the amount of heat generated is high on the bent layer side and low on the side with the bent portion. Processing temperature (T) and calorific value (
Q) is in a proportional relationship.

加工温度(T)−発熱量(Q) ・・・(7)第4図は
、皺曲げ加工管の加工温度分布を示している。破線は、
皺曲げ加工管壁内熱伝導がない場合を示し、実線は、皺
曲げ加工管壁内熱伝導がある場合を示している。この様
に、コイル断面積を連続的に変化させることにより、被
加工管の加工温度曲げ部層側では高く、曲げ部付側では
低く保つことが可能である。
Processing temperature (T) - calorific value (Q) (7) Fig. 4 shows the processing temperature distribution of the wrinkled pipe. The dashed line is
The solid line shows the case where there is no heat conduction within the wrinkled tube wall, and the solid line indicates the case where there is heat conduction within the wrinkled tube wall. By continuously changing the coil cross-sectional area in this way, it is possible to maintain the processing temperature of the tube to be processed high on the bending layer side and low on the bending layer side.

第5図は、本発明における加熱コイルの横断面形状を示
し、第6図は、加熱コイルの背側断面形状及び腹側断面
形状を示している。同一肉厚のコイル素材を用いる場合
曲げ部層側のコイル巾t1に対し、曲げ部付側のコイル
巾t2を広くとることにより、第4図の温度分布を得る
ことが出来る。
FIG. 5 shows the cross-sectional shape of the heating coil in the present invention, and FIG. 6 shows the dorsal side cross-sectional shape and the ventral side cross-sectional shape of the heating coil. When using coil materials of the same thickness, the temperature distribution shown in FIG. 4 can be obtained by making the coil width t2 on the side with the bending part wider than the coil width t1 on the side of the bending part layer.

第7図は、加工時温度における変形抵抗の、曲げ部の背
側と腹側における応力差Δσと減肉抑止量Δeの関係の
1例を示している。これにより、応力差Δσが大きくな
る程減肉抑止量が大きくなることが明らかである。さら
に、この応力差Δσは温度に依存しておシ、その変形抵
抗値の温度依存性を第8図に示している。
FIG. 7 shows an example of the relationship between the stress difference Δσ between the back side and the ventral side of the bent portion and the thickness reduction suppression amount Δe of the deformation resistance at the processing temperature. It is clear from this that the greater the stress difference Δσ, the greater the amount of suppression of wall thinning. Furthermore, this stress difference Δσ depends on temperature, and FIG. 8 shows the temperature dependence of the deformation resistance value.

本発明における温度差の付与方法による実施例は、ステ
ンレス鋼管及び炭素鋼管について次の様になっている。
Examples of the method of applying a temperature difference according to the present invention are as follows for stainless steel pipes and carbon steel pipes.

ステンレス鋼については、曲げ加工半径を、直径の2倍
とした場合曲げ部付側の加熱温度をtooot:’以上
、曲げ部層側の加熱温度を800C以下として加工行う
ことにより、変形抵抗差Δσ= 7 Kg /lea 
”となシ、9チの減肉抑止量を得ることが出来、通常曲
げ加工においては、20%前後の減肉量であるから、縮
減肉量は、約ttS前後に改善することが可能となる。
For stainless steel, when the bending radius is twice the diameter, the heating temperature on the side with the bending part is tooot:' or more and the heating temperature on the layer side of the bending part is 800C or less to reduce the deformation resistance difference Δσ. = 7 kg/lea
``It is possible to obtain a thickness reduction prevention amount of 9 inches, and since the amount of thickness reduction in normal bending processing is around 20%, it is possible to improve the amount of thickness reduction to around ttS. Become.

炭素鋼については、曲げ加工半径を直径の2倍とした場
合曲げ部付側の加熱一温度を700t:’以上、曲げ部
層側の加熱温度を500C以下として加工を行うことに
より、変形抵抗差Δσ=7Kf/flIl12となシ、
9チの減肉抑止量を得ることが出来、ステンレス鋼同様
、通常曲は加工においては、20チ前後の減肉量である
から、縮減肉量は、約11チ前後に改善することが可能
となる。この様に、炭素鋼、ステ/レス鋼ともに、約2
00Cの温度差を設けることにより、減肉量の改善が可
能であシ、この条件を満たすテーバ付の高周波加熱コイ
ル形状は、次の様になる。
For carbon steel, when the bending radius is twice the diameter, the heating temperature on the bending side is 700T:' or more, and the heating temperature on the bending layer side is 500C or less to reduce the difference in deformation resistance. Δσ=7Kf/flIl12,
It is possible to obtain a thickness reduction prevention amount of 9 inches, and as with stainless steel, the amount of thinning is usually around 20 inches during processing, so the amount of thinning can be improved to around 11 inches. becomes. In this way, both carbon steel and steel/stainless steel have approximately 2
By providing a temperature difference of 00C, it is possible to improve the amount of thinning, and the shape of the tapered high-frequency heating coil that satisfies this condition is as follows.

高温側(腹側)曲げ加工温度(電流値の関数)をTI 
(I)とすると、テーバ伺高周波加熱コイノ?の背側コ
イル断面積(S2)と腹側コイル断面積(Sl )の比
αは、(8)式にて示される。
The high temperature side (ventral side) bending temperature (function of current value) is TI
If it is (I), then is the Teba high frequency heating Koino? The ratio α between the dorsal coil cross-sectional area (S2) and the ventral coil cross-sectional area (Sl) is expressed by equation (8).

T1(I) 、、、(9゜ TI(I)−ΔT ここで、ΔT:背側と腹側の温度差 従って、先の実施例において、ステンレス鋼では、α=
 1.25 ・・・(10) 炭素鋼では、 α=1,4 川(11) となる。
T1(I) ,,, (9°TI(I)-ΔT where ΔT: temperature difference between dorsal side and ventral side Therefore, in the previous example, for stainless steel, α=
1.25...(10) For carbon steel, α=1.4 Kawa (11).

しかるに、ステンレス鋼の場合の本実施列におけるテー
パ付高周波加熱コイル形状は第9図となシ、炭素鋼の場
合の本実施例におけるテーバ付高周波加熱コイル形状は
第1θ図となる。
However, the shape of the tapered high-frequency heating coil in this embodiment in the case of stainless steel is as shown in FIG. 9, and the shape of the tapered high-frequency heating coil in this embodiment in the case of carbon steel is as shown in FIG. 1θ.

また、本発明による実施例では、真円の環状コイルで、
曲げ部層側から背側に向いコイル軸方向にコイルが長く
なる様に設計されているため、曲げ部層側を高温にし、
曲げ部付側を低温する効果があシ、従来の曲げ部付側を
局部的に冷却する方法や、曲げ部の背側と腹側でコイル
と皺曲は加工管とのギャップを変化させることによシ、
曲げ部付側を低温にし、曲げ部層側を高温にする方法と
同様な効果を得ることが出来る上に、通常曲げで行う皺
曲は加工管と高周波加熱コイル軸を単純に一致させるこ
とで、簡単に曲げ部の背側と腹側に温度差を設けること
が可能であり、高周波加熱コイルへの供給縦波をコント
ロールするこ2によシ簡単によ如正確に温度のコン]・
ロール及び加熱温度を調整することが可能となる特徴を
もっている。
In addition, in the embodiment according to the present invention, a perfectly circular annular coil,
Since the coil is designed so that it becomes longer in the coil axis direction from the bending layer side to the back side, the bending layer side is heated to a high temperature.
The effect of lowering the temperature on the side where the bent part is attached is poor, so the conventional method of locally cooling the side where the bent part is attached, and the method of changing the gap between the coil and the processed pipe on the dorsal and ventral sides of the bent part, are not effective. Yosi,
It is possible to obtain the same effect as the method of lowering the temperature on the side with the bent part and increasing the temperature on the layer side of the bent part, and the wrinkling that is normally done by bending can be achieved by simply aligning the processed pipe and the axis of the high-frequency heating coil. It is possible to easily create a temperature difference between the dorsal side and the ventral side of the bent part, and by controlling the longitudinal waves supplied to the high-frequency heating coil, it is possible to easily and accurately control the temperature.
It has the feature that it is possible to adjust the roll and heating temperature.

また、本実施例を用いた場合の、曲げ加工の動作列を第
11図に示す。
Further, FIG. 11 shows a sequence of bending operations when this embodiment is used.

一端を回転軸lの回υに回転可能な一定の円弧を描くア
ーム2に固定し、さらにもう一端を押し装置3によシフ
ランプされさらに、ガイドローラー6によシガイドされ
た被曲げ加工金属管4を高周波電源5に接続されたテー
パ付高周波加熱コイル7に接触することなく挿入し、高
周波加熱コイル直下を高周波誘導加熱によシ曲げ部背側
温度を低くかつ曲げ部腹側温度を高く保ちながら高周波
誘導加熱コイル7のアーム側に設けた冷却リング8よシ
冷却水を吹き出すことによシ加熱中をコントロールする
中で押し装置3にて被加工管4を前方へ押し出すことに
よシ高周波加熱域に#iげモーメントを付与し、曲げ加
工を行うものである。
A metal tube 4 to be bent is fixed at one end to an arm 2 that draws a constant arc and is rotatable in the rotation υ of the rotation axis l, and the other end is sifted by a pushing device 3 and further guided by a guide roller 6. is inserted into the tapered high-frequency heating coil 7 connected to the high-frequency power supply 5 without contacting it, and the area immediately below the high-frequency heating coil is heated by high-frequency induction heating while keeping the temperature of the dorsal side of the bent part low and the temperature of the ventral side of the bent part high. High-frequency heating is performed by blowing out cooling water through a cooling ring 8 provided on the arm side of the high-frequency induction heating coil 7.While heating is controlled, the tube to be processed 4 is pushed forward by a pushing device 3. The bending process is performed by applying a #i bending moment to the area.

〔発明の効果〕〔Effect of the invention〕

本発明は、曲げ部付側の加熱温度をステンレス鋼で80
0C以下、炭素鋼で5001Z’以下とし、曲げ部層側
の加熱温度をステンレス鋼で1oooc以上、炭素鋼で
700C以上として、曲げ加工を行うこと、及び、曲げ
部付偶の加工温度を曲げ部層側の加工温度よシ低くする
ことにより曲げ部付側の減肉量を低減することが出来、
この温度差を、曲げ部付側でコイル幅を広くシ、曲げ部
層側にてコイル幅を狭くするテーパ状の高周波加熱コイ
ルを使用して簡単に付与することができるという効果が
ある。
In the present invention, the heating temperature on the side with the bent part is 80°C using stainless steel.
0C or less, 5001Z' or less for carbon steel, and the heating temperature on the bending part layer side is 1oooc or more for stainless steel, and 700C or more for carbon steel. By lowering the processing temperature on the layer side, the amount of thinning on the bent side can be reduced.
This temperature difference can be easily created by using a tapered high-frequency heating coil that has a wider coil width on the side with the bent portion and a narrower coil width on the side of the bent portion layer.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、高周波加熱コイルの断面積分布を示す線図、
第2図は、加熱コイルの周方向電流密度の変化を示す線
図、第3図は、加熱部の周方向発熱量(Q)分布を示す
線図、第4図は、被曲げ加工管の加工温度分布を示す線
図、第5図は、本発卵′に′計ける加熱コイルの横断面
図、第6図は、加熱コイルの背側断面形状及び腹側断面
形状を示す縦断面図、第7図は、加工温度における変形
抵抗の曲げ部の背側と腹側における応力差Δσと減肉抑
止量Δeの関係を示す#i1図、第8図は、変形抵抗値
の温度依存性を示す線図、第9図はステンレス鋼におけ
る本発明の実施例を示す縦断面図、第10図は、炭素鋼
における本発明の実施例を示す縦断面図、第11図は、
本実施列を用いた場合ψ・・・電流密度、T・・・曲げ
部付側、N・・・曲げ部中立部、C・・・曲げ部層側、
Q・・・発電量、T・・・加熱温度、t2・・・曲げ背
側コイル巾、Δσ・・・応力差、Δe・・・減肉抑止量
、σγ・・・変形抵抗、1・・・回転軸、2・・・アー
ム、3・・・押し装置、4・・・被曲げ加工管、5・・
・高周波電源、6・・・ガイドロー2−17・・・テー
パ付高周波加熱コイル、8・・・冷却リング。 代理人 弁理士 高橋明夫 ′$ 1 図 NTNC CA/ 7 /V’ C $ 3 圀 CN 7 A/ C CN 、7 N ( ′$3727 竿 乙 図 〈→ ′$7rI3 第8図 、’& A (’O Y q 図
FIG. 1 is a diagram showing the cross-sectional area distribution of the high-frequency heating coil;
Figure 2 is a diagram showing the change in circumferential current density of the heating coil, Figure 3 is a diagram showing the circumferential calorific value (Q) distribution of the heating section, and Figure 4 is a diagram showing the circumferential heat generation (Q) distribution of the heating coil. A diagram showing the processing temperature distribution, FIG. 5 is a cross-sectional view of the heating coil measured during the main egg generation, and FIG. 6 is a longitudinal cross-sectional view showing the dorsal and ventral cross-sectional shapes of the heating coil. , Figure 7 shows the relationship between the stress difference Δσ on the back side and the ventral side of the bending part of the deformation resistance at the processing temperature and the amount of thickness reduction suppression Δe, and Figure 8 shows the temperature dependence of the deformation resistance value. 9 is a longitudinal sectional view showing an embodiment of the present invention in stainless steel, FIG. 10 is a longitudinal sectional view showing an embodiment of the invention in carbon steel, and FIG. 11 is a longitudinal sectional view showing an embodiment of the invention in carbon steel.
When this implementation sequence is used, ψ...Current density, T...Bending part side, N...Bending part neutral part, C...Bending part layer side,
Q...Power generation amount, T...Heating temperature, t2...Bending back coil width, Δσ...Stress difference, Δe...Thickening suppression amount, σγ...Deformation resistance, 1...・Rotating shaft, 2...Arm, 3...Pushing device, 4...Pipe to be bent, 5...
- High frequency power supply, 6... Guide row 2-17... Tapered high frequency heating coil, 8... Cooling ring. Agent Patent Attorney Akio Takahashi'$ 1 Figure NTNC CA/ 7 /V' C $ 3 CN 7 A/ C CN, 7 N ('$3727 Figure 〈→ '$7rI3 Figure 8, '& A ( 'O Y q diagram

Claims (1)

【特許請求の範囲】 1、一端を一定の円弧を描くアームに固定し、さらにも
う一端を油圧もしくはチェーン駆動によシバイブを前に
押し出す装置に接続された被曲げ加工金属管を高周波電
源に接続された環状の高周波加熱コイルに接触すること
なく挿入し、高周波加熱コイル直下を高周波誘導加熱に
よシ温間あるいは熱間加工域まで加熱すると同時に高周
波加熱コイルのアーム側に装着した冷却リングから冷却
材を吹き出し、加熱幅をコントロールすると同時に押し
装置によシバイブをアーム側に押し出すことにより、狭
い高周波加熱域に曲げモーメントを付与し、曲げ加工を
行う方法において、曲げ部背側温度をステンレス鋼で8
00C以下、炭素鋼で500U以下とし、曲げ部腹側温
度をステンレス鋼でtoooC以上、炭素鋼で700C
以上として、背側肉厚の減少を押えることを特徴とする
金属管の曲げ加工方法。 2、特許請求の範囲第1項において、曲げ部背側温度を
曲げ部腹側温度よシ底く設定するために曲げ部背側と曲
げ部腹側の加熱巾を変化させ、曲げ部背側で加熱巾を広
くシ、曲げ部腹側で加熱巾を狭くすることを特徴とする
金属管の曲げ加工方法3、 曲げ加工背側温度低くかつ
加熱巾を広くし、曲げ部腹側温度を高くしかつ加熱巾を
狭くするために、高周波加熱コイル巾を曲げ部背側で広
くし、かつ曲げ部腹側で狭くなる形状を特徴とする金属
管の曲げ加工装置。
[Claims] 1. A metal tube to be bent is connected to a high-frequency power source, with one end fixed to an arm drawing a constant arc, and the other end connected to a device that pushes the vibrator forward by hydraulic pressure or chain drive. The area directly under the high-frequency heating coil is heated by high-frequency induction heating to the warm or hot processing area, and at the same time, it is cooled from the cooling ring attached to the arm side of the high-frequency heating coil. In this method, the material is blown out, the heating width is controlled, and at the same time a pushing device is used to push the shivive toward the arm side, applying a bending moment to a narrow high-frequency heating area and performing bending. 8
00C or less, 500U or less for carbon steel, and the temperature on the ventral side of the bent part is more than tooC for stainless steel, 700C for carbon steel.
As described above, there is provided a metal tube bending method characterized by suppressing a decrease in the dorsal wall thickness. 2. In claim 1, in order to set the temperature on the back side of the bending part to be lower than the temperature on the ventral side of the bending part, the heating width on the back side of the bending part and the heating width on the ventral side of the bending part is changed; Metal tube bending method 3, characterized by widening the heating width at the bending part and narrowing the heating width at the ventral side of the bending part. Furthermore, in order to narrow the heating width, the high-frequency heating coil width is widened on the back side of the bending part and narrowed on the ventral side of the bending part.
JP3604284A 1984-02-29 1984-02-29 Method and device for bending metallic pipe Granted JPS60180623A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3604284A JPS60180623A (en) 1984-02-29 1984-02-29 Method and device for bending metallic pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3604284A JPS60180623A (en) 1984-02-29 1984-02-29 Method and device for bending metallic pipe

Publications (2)

Publication Number Publication Date
JPS60180623A true JPS60180623A (en) 1985-09-14
JPH0235609B2 JPH0235609B2 (en) 1990-08-13

Family

ID=12458650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3604284A Granted JPS60180623A (en) 1984-02-29 1984-02-29 Method and device for bending metallic pipe

Country Status (1)

Country Link
JP (1) JPS60180623A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6038902A (en) * 1998-01-23 2000-03-21 The Babcock & Wilcox Company Intrados induction heating for tight radius rotary draw bend
JP2011025314A (en) * 2009-06-30 2011-02-10 Sumitomo Metal Ind Ltd Apparatus for manufacturing bent member having correction function and method for manufacturing bent member

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5893516A (en) * 1981-11-30 1983-06-03 Hitachi Ltd Hot bending method for pipe

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5893516A (en) * 1981-11-30 1983-06-03 Hitachi Ltd Hot bending method for pipe

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6038902A (en) * 1998-01-23 2000-03-21 The Babcock & Wilcox Company Intrados induction heating for tight radius rotary draw bend
JP2011025314A (en) * 2009-06-30 2011-02-10 Sumitomo Metal Ind Ltd Apparatus for manufacturing bent member having correction function and method for manufacturing bent member
JP2013252567A (en) * 2009-06-30 2013-12-19 Nippon Steel & Sumitomo Metal Corp Apparatus for manufacturing bent member having correcting function, and method for manufacturing the bent member

Also Published As

Publication number Publication date
JPH0235609B2 (en) 1990-08-13

Similar Documents

Publication Publication Date Title
EP0788850B1 (en) Steel pipe manufacturing method and apparatus
US4796798A (en) Method of and apparatus for continuous production of seam-welded metal tubing
JPS5950730B2 (en) How to improve residual stress in austenitic stainless steel pipes, etc.
JPS60180623A (en) Method and device for bending metallic pipe
JP2009214112A (en) Method for manufacturing hot rolled steel sheet
JP2000005816A (en) Multi-wound stainless steel pipe
JPH02104421A (en) Warm spinning methods for metastable austenitic stainless steel
JPS5893516A (en) Hot bending method for pipe
JPS63112089A (en) Improving method for residual stress of double metal pipe and the like
JPS6044054B2 (en) Manufacturing method of metal bent pipe
JPH01154825A (en) Bending method for stainless steel pipe
JPH0247289B2 (en) KINZOKUKANNOMAGEKAKOKENNETSUSHORIHOHOOYOBISOCHI
JPS609543A (en) Cooling method in thickening work
JPS5561326A (en) Bending method for austenitic stainless cast steel pipe by high frequency induction heating
JPH0671348A (en) High-frequency heating coil in heating bending device of metal tube
JPH0367450B2 (en)
JPH03258417A (en) Bending method for metallic pipe
JPH03230818A (en) Heating device for high frequency bender
JPH08323426A (en) Bending method for metal tube
JPH0256165B2 (en)
JPS5852428A (en) Heat treatment for improving stress of shaft
JPS59129727A (en) Production of heat treated bent pipe
JPS61100636A (en) Method and apparatus for uniformly pulling metal material
JPS58181486A (en) Production of welded pipe
JPS5923819A (en) Cooling method of pipe material