JPS60186353A - Fracture predicting device for tool - Google Patents
Fracture predicting device for toolInfo
- Publication number
- JPS60186353A JPS60186353A JP59037274A JP3727484A JPS60186353A JP S60186353 A JPS60186353 A JP S60186353A JP 59037274 A JP59037274 A JP 59037274A JP 3727484 A JP3727484 A JP 3727484A JP S60186353 A JPS60186353 A JP S60186353A
- Authority
- JP
- Japan
- Prior art keywords
- tool
- outbreak
- signal
- component
- processed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23Q—DETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
- B23Q17/00—Arrangements for observing, indicating or measuring on machine tools
- B23Q17/09—Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool
- B23Q17/0952—Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool during machining
- B23Q17/0971—Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool during machining by measuring mechanical vibrations of parts of the machine
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
- Machine Tool Sensing Apparatuses (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、マシニングセンター等といった工作機械に使
用される工具の破損を予知するための装置に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a device for predicting damage to a tool used in a machine tool such as a machining center.
一般に、物体が破壊する際に音が生ずることはしばしば
経験される。そして、その最終的な破壊に至るまでには
その物体内で塑性変形及び微細な割れが繰り返して行な
われ、その都度弾性波(超音波)が発生することも知ら
れている。このように、固体が変形又は破壊するときに
音、すなわち弾性波が発生する現象は、いわゆるアコー
スティック・エミッション現象(A、 E現象)と称さ
れ、更にこのようにして発生される弾性波はAE波と呼
ばれる。Generally, it is often experienced that a sound is produced when an object breaks. It is also known that plastic deformation and microscopic cracking occur repeatedly within the object until it reaches its final destruction, and elastic waves (ultrasonic waves) are generated each time. The phenomenon in which sound, or elastic waves, is generated when a solid deforms or breaks is called the so-called acoustic emission phenomenon (A, E phenomenon), and the elastic waves generated in this way are also known as AE. called a wave.
このAE現象はマシニングセンター等の工作機械におい
ても発生し、例えばドリルを用いて適当な材料に穴を空
ける場合には、その穴空は作業中にドリル内に発生する
塑性変形及び破壊によりAE波が生ずる。但し、ドリル
内部の微細な割れ及び塑性変形に起因するAE波は人間
の聴覚には感じられず、通常感することのできるのは最
終的な破断の際の音だけである。This AE phenomenon also occurs in machine tools such as machining centers. For example, when using a drill to make a hole in a suitable material, the hole is filled with AE waves due to plastic deformation and destruction that occur inside the drill during operation. arise. However, the AE waves caused by minute cracks and plastic deformation inside the drill cannot be felt by human hearing, and the only thing that can be normally felt is the sound of the final break.
従来、このAE現象を利用してドリル等の工具の破損を
人間の知覚によらず自動的に検知するようにした装置が
ある。例えば、チタン酸ジルコン酸鉛圧電セラミックス
(PZT)のような変換子(以下、AE変換子という)
を工具の近傍に配置し、この変換子によって工具からの
AE波を電気信号としてのいわゆるAE倍信号変換し、
工具が破損した場合に生ずる突発的AE倍信号基づいて
警報器を作動させるような装置である。Conventionally, there is a device that uses this AE phenomenon to automatically detect damage to a tool such as a drill without relying on human perception. For example, a transducer such as lead zirconate titanate piezoelectric ceramics (PZT) (hereinafter referred to as an AE transducer)
is placed near the tool, and this converter converts the AE wave from the tool into a so-called AE multiplied signal as an electrical signal.
This is a device that activates an alarm based on a sudden AE double signal that occurs when a tool is damaged.
この形式の装置によれば警報器からの警報により工具が
破損したことを知ることができるので、それを合図に工
具を交換すれば作業を続行することができる。しかしな
がら、このように工具が破損した後にその工具を交換す
る場合には、破損時点で加工を受けていた材料には破片
が残るし、又、場合によっては傷付くこともあり、製品
としての価値がなくなってしまう。又、破損の状態如何
によっては工具の交換に手間がかかることもある。With this type of device, it is possible to know that a tool has been damaged by an alarm from the alarm, so if the tool is replaced using this as a signal, the work can be continued. However, when replacing a tool after it has been damaged, fragments may remain in the material that was being processed at the time of breakage, and in some cases, the material may be damaged, reducing the value of the product. will be gone. Furthermore, depending on the state of damage, it may take time and effort to replace the tool.
本発明は上記の点に鑑み、破損の直前まで工具を使用す
ることを可能にして経済性を維持しつつ、破損に至る前
に工具の交換を行なうことによって加工材料の損傷を防
止するとともに作業の容易なうちに工具の交換をできる
ようにすることを目的とする。In view of the above points, the present invention maintains economic efficiency by making it possible to use the tool until just before breakage, and prevents damage to the workpiece by replacing the tool before breakage occurs. The purpose is to allow tools to be replaced easily.
この目的は、工具の破損をその直前に予知することによ
って達成でき、又その破損の予知は、稼動中の工具から
発生するAE倍信号うちの突発成分の個数から判断され
る。このように工具破損がAE倍信号うちの突発成分の
個数から判断できるということは、本発明者等が種々の
実験を行なった結果から知見したものであり、以下その
実験について説明する。This objective can be achieved by predicting tool breakage immediately before it occurs, and the prediction of breakage is determined from the number of sudden components in the AE multiplied signal generated from the tool in operation. The fact that tool damage can be determined from the number of sudden components in the AE multiplied signal was discovered from the results of various experiments conducted by the inventors, and the experiments will be described below.
第1図に示すように、工作機械例えばマシニンクセンタ
ー1のヘッド2にドリル3を装着し、テーブル4の上に
固定された材料5をそのドリル3によって穴空けする。As shown in FIG. 1, a drill 3 is attached to the head 2 of a machine tool, for example, a machining center 1, and a hole is made with the drill 3 in a material 5 fixed on a table 4.
そしてその際、同じくテーブル4の上に装着したAEセ
ンザー6内に設けたAEE換子(図示せず)によって、
ドリル3からのAE波をAE倍信号と変換する。この場
合にAEE換子から得られる測定信号としてのAE倍信
号、第2図に示すように単一の突発成分と、第3図に示
すような複数の突発成分が重なった状態から成る重複突
発成分とを含んでいる。尚、これらの図において横軸は
時間t1縦軸は出力電圧■である。At that time, an AEE converter (not shown) provided in the AE sensor 6 also mounted on the table 4,
The AE wave from the drill 3 is converted into an AE multiplied signal. In this case, the AE multiplied signal as a measurement signal obtained from the AEE commutator, a single sudden component as shown in Figure 2, and a duplicate sudden component consisting of a state in which multiple sudden components overlap as shown in Figure 3. Contains ingredients. In these figures, the horizontal axis represents time t1, and the vertical axis represents output voltage ■.
−5−
単一突発成分は、第1図の処理回路7によってその突発
成分の最大出力値であるy、 (第2図)と同じ大きさ
のパルス信号に処理される(第4図参照)。一方、第3
図の重複突発成分については次のように、すなわぢ最大
出力がy2 である最初の突発成分は上述した単一突発
成分と同様に扱い、最大出力がy、である2番目の突発
成分はその最大出力y4から前信号の残留出力y3を除
いたY4−Y*を出力値とするパルス信号に処理される
(第5図参照)。以下、第4図、第5図のようにして得
られたAE倍信号AEE理信号という。-5- The single sudden component is processed by the processing circuit 7 in Fig. 1 into a pulse signal of the same magnitude as the maximum output value of the sudden component, y, (Fig. 2) (see Fig. 4). . On the other hand, the third
Regarding the duplicate sudden components in the figure, the first sudden component whose maximum output is y2 is treated in the same way as the single sudden component described above, and the second sudden component whose maximum output is y is treated as follows. It is processed into a pulse signal whose output value is Y4-Y*, which is obtained by subtracting the residual output y3 of the previous signal from the maximum output y4 (see FIG. 5). Hereinafter, the AE multiplied signal obtained as shown in FIGS. 4 and 5 will be referred to as the AEE multiplied signal.
このようにして得られたAEE理信号はドリル3(第1
図)からのAE波に対応して生ずるわけであり、本実験
ではこのAEE理信号の数を計数し、その計数値とドリ
ルの破損との関係を調べることが主目的である。但し、
計数すべきAEE理信号は、不要成分を除去するために
処理信号出力レベルで0.12V以上の強度を有するも
のが対象とされる。The AEE signal obtained in this way is the drill 3 (first
This is generated in response to the AE waves from the AE wave shown in Fig.), and the main purpose of this experiment was to count the number of these AEE signals and investigate the relationship between the counted value and drill damage. however,
The AEE signals to be counted are those having an intensity of 0.12 V or more at the processed signal output level in order to remove unnecessary components.
第6図は実験結果を示すグラフであり、横軸は 4−
ドリル3によって空けた穴数Hを示し、縦軸は横軸に示
した個数目の穴を空けている最中に発生するAB処理信
号の数AEnである。このグラフからもわかるように、
X印で示すドリルの破損点aから2個だけ手前の点すを
境としてAEE理信号の数が急激に多くなることがわか
る。従って逆にAEE理信号の数が、境界点すよりも手
前側の正常切削時の処理信号数の平均値Daよりも多く
なった時点を見計らって工具の折損時期であると判断で
きる。この場合、平均値Daよりどの程度多くなった時
点を破損時期と判断するかは、実情に応じて判断すれば
良いのであるが、一般的には3.8σ (σ:処理信号
数の分布の標準偏差)程度にとるのが望ましい。これは
、正常切削時に観測されるAE処処理帯号数異常切削時
のものであると見誤る確率を0.01%以下に押えるた
めである。具体的な数値としては、直径3関のドリルを
用いて深さ15藺の穴を空ける場合、−行程全体すなわ
ち一個の穴を空ける間のAE処処理帯号数45個、従っ
てドリル1回転当りのAE処理信号数を1.4個程度に
とるのが良い。Figure 6 is a graph showing the experimental results, where the horizontal axis shows the number H of holes drilled by the 4-drill 3, and the vertical axis shows AB occurring while drilling the number of holes shown on the horizontal axis. The number of processed signals is AEn. As you can see from this graph,
It can be seen that the number of AEE signals increases rapidly from the point two points before the breakage point a of the drill indicated by the X mark. Therefore, conversely, it can be determined that it is time to break the tool by determining the point in time when the number of AEE processing signals becomes greater than the average value Da of the number of processed signals during normal cutting on the near side of the boundary point S. In this case, how much more than the average value Da should be judged as the failure time can be determined depending on the actual situation, but generally it is 3.8σ (σ: the distribution of the number of processed signals). It is desirable to set the value to about the standard deviation). This is to suppress the probability that the AE treatment band number observed during normal cutting is mistaken for abnormal cutting to 0.01% or less. As a concrete value, when drilling a hole with a depth of 15 mm using a drill with a diameter of 3 holes, - the number of AE treatment bands during the entire stroke, that is, drilling one hole, is 45, therefore, per rotation of the drill. It is preferable to set the number of AE processing signals to about 1.4.
以下、本発明をその実施例を示す図面に基づいて詳細に
説明する。EMBODIMENT OF THE INVENTION Hereinafter, the present invention will be described in detail based on drawings showing embodiments thereof.
第7図は本発明の一実施例を示す工具の破損予知装置の
回路図である。図示の回路によって第1図に示したドリ
ル3の破損を予知するものとすれば、第1図中のA E
センサー6が第7図に同一符号で示すA Eセンサーと
して働く。このAEセンザー6からのA、 E信号は、
前述の通り処理回路7によってパルス状のAE処理信号
(第4図、第5図)とされた後にカウンター8へ送られ
る。このカウンター8はマイクロプロセッサ−9からの
カウンター信号Sによってリセット及びスタートし、計
数結果をマイクロプロセッサ−9へ送る。マイクロプロ
セツ→ノー−9にはカウンター8からの計数信号C以外
に、工作機械1(第1図)の主軸の一回転確認信号(す
なわち工具の一回転確認信号)R及びコンソールIOか
らの信号Pが入力される。FIG. 7 is a circuit diagram of a tool damage prediction device showing an embodiment of the present invention. If damage to the drill 3 shown in FIG. 1 is predicted by the illustrated circuit, A E in FIG.
Sensor 6 serves as an AE sensor, shown with the same reference numerals in FIG. The A and E signals from this AE sensor 6 are
As described above, the signal is converted into a pulse-like AE processing signal (FIGS. 4 and 5) by the processing circuit 7 and then sent to the counter 8. This counter 8 is reset and started by a counter signal S from the microprocessor-9, and sends the counting result to the microprocessor-9. In addition to the count signal C from the counter 8, the microprocessor → No. 9 receives a signal R for confirming one revolution of the spindle of the machine tool 1 (Fig. 1) (i.e., a signal for confirming one rotation of the tool) and a signal from the console IO. P is input.
又、付属のメモリー11との間で信号の授受が行なわれ
る。Further, signals are exchanged with the attached memory 11.
マイクロプロセッサ−9は、工具の破損予知作業に先立
って第8図に示す流れに従い、メモリー11に1本のド
リルについての切削テークを記憶させる。すなわち、一
回転確認信号1(に基づいて工具−回転当りのAB処理
信号の数をカウンター8で読み取り、その値を記憶させ
るのである。このような切削データの記憶作業は複数回
行なわれ、それらの記憶値を基にして第9図に示すよう
にA−E処理信号の数の平均値J〕aが算出される。こ
の平均値Daは第6図に示す平均値Daと等しくなる。Prior to the tool damage prediction work, the microprocessor 9 stores the cutting take for one drill in the memory 11 according to the flow shown in FIG. That is, the counter 8 reads the number of AB processing signals per rotation of the tool based on the one-rotation confirmation signal 1 (1), and stores the value.Such cutting data storage is performed multiple times, and Based on the stored values, an average value J]a of the number of A-E processed signals is calculated as shown in FIG. 9. This average value Da is equal to the average value Da shown in FIG.
又、記憶された各信号数の標準偏差σがとられ、基準値
としての
Ds = Da +3.8σ
が設定される。この基準値が工具破損の予知の基準とな
る値であり、破損の予知をすべきドリルについての一回
転当りのAE処理信号数がこの値を越えたときをもって
工具が破損したものと判断するのである。Further, the standard deviation σ of each stored number of signals is taken, and Ds = Da + 3.8σ is set as a reference value. This reference value is the standard value for predicting tool breakage, and when the number of AE processing signals per rotation of the drill for which breakage should be predicted exceeds this value, it is determined that the tool is broken. be.
かくしてメモリー11に基準値Dsが記憶されると第1
0図に示す流れに従って破損予知作業が行なわれる。す
なわち、ドリル3が回転中であることを確認し、−回転
当りのAE処理信号数を計数し、その計数値と前記の基
準値Dsとを比較し、そしてその計数値が基準値Dsよ
りも大きい場合には破損信号Qを発生させる。この破損
信号Qに基づいて警報を発するか、あるいは工作機械を
停止させ、工具を交換する。When the reference value Ds is thus stored in the memory 11, the first
Damage prediction work is performed according to the flow shown in Figure 0. That is, confirm that the drill 3 is rotating, count the number of AE processing signals per rotation, compare the counted value with the reference value Ds, and if the counted value is higher than the reference value Ds. If it is large, a corruption signal Q is generated. Based on this damage signal Q, a warning is issued or the machine tool is stopped and the tool replaced.
以」二のようにドリル3からのAE波に基づいて得られ
たAE処理信号(第4図、第5図)の数によってそのド
リル3の破損を正確に予知するようにしたので、破損の
直前にドリル交換することが可能となり、その結果ドリ
ルを最大限に有効に使用することができ、しかもドリル
破損による材料の損傷等を防止できるようになった。As described above, damage to the drill 3 is accurately predicted based on the number of AE processing signals (Figures 4 and 5) obtained based on the AE waves from the drill 3, so damage to the drill 3 can be predicted accurately. It is now possible to replace the drill just beforehand, and as a result, the drill can be used as effectively as possible, and damage to materials due to drill breakage can be prevented.
尚、上記の実施例では基準値Dsの設定、AE処理信号
数と基準値Dsとの比較等をマイクロプロセッサ−9に
プログラムされた所定の流れに基づいて行なうようにし
ているが、本発明はこの実施例に限定されるものでなく
、例えば基準値Dsの設定も任意の方法で行なって良く
、又AE処理信号数と基準値Dsとの比較も周知の比較
装置を用いることができる。In the above embodiment, the setting of the reference value Ds, the comparison of the number of AE processing signals and the reference value Ds, etc. are performed based on a predetermined flow programmed in the microprocessor-9. The present invention is not limited to this embodiment, and, for example, the reference value Ds may be set using any method, and a well-known comparison device may be used to compare the number of AE processing signals with the reference value Ds.
以上のように本発明によれば、工具(ドリル・3)から
発生する弾性波(AE波)を電気信号(AE倍信号に変
換し、その電気信号のうちの所定の振幅の突発成分(A
E処理信号)の数を計数し、この計数値と基準値(Ds
=Da +3.8σ )とを比較することにより工具の
破損を予知するようにしたので、工具が破損してから工
具交換等といった措置を採るようにしていた従来の場合
に比べて、加工材料を傷めることもなく又、工具交換自
体も容易に行なえる等といった効果を得られることにな
った。As described above, according to the present invention, an elastic wave (AE wave) generated from a tool (drill 3) is converted into an electric signal (AE wave), and a sudden component (AE wave) of a predetermined amplitude of the electric signal is converted.
E processing signal) is counted, and this counted value and the reference value (Ds
= Da + 3.8σ) to predict tool damage, so compared to the conventional case where measures such as tool replacement were taken after the tool was damaged, it was possible to reduce the amount of material to be processed. The advantage is that there is no damage and the tool itself can be replaced easily.
第1図は本発明に係る破損予知装置を使用する工作機械
の一例の正面図、第2図はその破損予知装置に用いられ
るAE倍信号一例を示すグラフ、第3図はAP、信号の
他の一例を示すグラフ、第4図は第2図のA、 E信号
から作られる処理信号のクラブ、第5図は第3図のAE
倍信号ら作られる処理信号のグラフ、第6図は本発明の
基礎となる実験結果を示すグラフであって横軸にドリル
穴の個数をとり縦軸に穴空は作業中のドリルから生ずる
処理信号の数をとったもの、第7図は本発明の一実施例
である破損予知装置を示す図、第8図は第7図における
マイクロプロセッサ−におけるデータ記憶のためのプロ
グラミング例を示すフローチャート、第9図はマイクロ
プロセッサ−における基準値作成のためのプログラミン
グ例を示すフローチャート、第10図はマイクロプロセ
ッサ−における破損予知のためのプログラミング例を示
すフローチャートである。
5・・・材料 3・・・トIJル(工具)6・・・AE
変換子(変換子)
8・・・カウンター(計数手段)
9・・・マイクロプロセッサ−(比較手段)手続補正書
昭和59年 4 j’l 16 F、]特許庁長官 若
杉和夫 殿
1 事件の表示
昭和59年 特 許 願第037274 号2 発明の
名称
工具の破損予知装置
3 補正をする者
事f′1との関係 特 許 、II暫〔1人住所に茸所
末
氏名略称)株式会社松浦機械製作所
4代理人
住 所 東京都港区西新橋2丁1]32番4号 梶工業
ビル昭和 年 月 日
6補正の対象
委任状及び図面。
7、補正の内容
別紙の通り。
2−FIG. 1 is a front view of an example of a machine tool that uses the failure prediction device according to the present invention, FIG. 2 is a graph showing an example of an AE multiplied signal used in the failure prediction device, and FIG. 3 is a graph showing AP, signals and other signals. A graph showing an example. Figure 4 shows the processed signal club created from the A and E signals in Figure 2. Figure 5 shows the AE in Figure 3.
FIG. 6 is a graph showing the experimental results that form the basis of the present invention. The horizontal axis represents the number of drilled holes, and the vertical axis represents the processing results from the drilling during operation. FIG. 7 is a diagram showing a failure prediction device according to an embodiment of the present invention; FIG. 8 is a flowchart showing an example of programming for data storage in the microprocessor in FIG. 7; FIG. 9 is a flowchart showing an example of programming for creating a reference value in a microprocessor, and FIG. 10 is a flowchart showing an example of programming for predicting damage in a microprocessor. 5...Materials 3...Tools 6...AE
Converter (converter) 8... Counter (counting means) 9... Microprocessor - (comparison means) Procedural amendment 1981 4 j'l 16 F, ] Commissioner of the Japan Patent Office Kazuo Wakasugi 1 Display of case 1981 Patent Application No. 037274 2 Name of the invention Tool damage prediction device 3 Relationship with the person making the amendment f'1 Patent, II provisional (1 person's address is abbreviated name of Takesho) Matsuura Machinery Co., Ltd. Manufacturer 4 Agent Address: 2-1 Nishi-Shinbashi, Minato-ku, Tokyo] 32-4 Kaji Kogyo Building, 1920 Showa Letter of attorney and drawings subject to amendment 6th month/day. 7. Details of the amendments are as shown in the attached sheet. 2-
Claims (1)
生する弾性波を電気信号に変換する変換子と、その変換
子からの電気信号のうちの所定の振幅以上の突発成分の
数を計数する計数手段と、その計数手段による計数値と
所定の基準値とを比較する比較手段とを有し、その比較
手段によって計数値が基準値を越えたのを検知すること
をも−って工具の破損を予知することを特徴とする工具
の破損予知装置。A transducer is placed near the tool that processes the material and converts the elastic waves generated during processing into electrical signals, and the number of sudden components of the electrical signals from the transducer that exceed a predetermined amplitude are counted. The tool has a counting means for comparing the counted value by the counting means with a predetermined reference value, and detects when the counted value exceeds the reference value by the comparing means. A tool breakage prediction device characterized by predicting breakage of a tool.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59037274A JPS60186353A (en) | 1984-03-01 | 1984-03-01 | Fracture predicting device for tool |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59037274A JPS60186353A (en) | 1984-03-01 | 1984-03-01 | Fracture predicting device for tool |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60186353A true JPS60186353A (en) | 1985-09-21 |
Family
ID=12493101
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59037274A Pending JPS60186353A (en) | 1984-03-01 | 1984-03-01 | Fracture predicting device for tool |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60186353A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020181380A (en) * | 2019-04-25 | 2020-11-05 | 株式会社日立製作所 | Abnormality sign detection system and method |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5537226A (en) * | 1978-09-04 | 1980-03-15 | Toshiba Corp | Overload monitor for cutting operation |
-
1984
- 1984-03-01 JP JP59037274A patent/JPS60186353A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5537226A (en) * | 1978-09-04 | 1980-03-15 | Toshiba Corp | Overload monitor for cutting operation |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020181380A (en) * | 2019-04-25 | 2020-11-05 | 株式会社日立製作所 | Abnormality sign detection system and method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4574633A (en) | Apparatus for detecting tool damage in automatically controlled machine tool | |
EP0119680B1 (en) | Apparatus for monitoring tool life | |
US4918616A (en) | Tool monitoring system | |
EP1348296B1 (en) | Control embedded machine condition monitor | |
EP0491958B1 (en) | Method and apparatus for generating pulses | |
JPS60186353A (en) | Fracture predicting device for tool | |
JP2020181380A (en) | Abnormality sign detection system and method | |
KR900007293B1 (en) | Tool monitoring system | |
US20200384618A1 (en) | Signal processing device and tool | |
CN205570743U (en) | Ultrasonic machining device and digit control machine tool | |
JPS606329A (en) | Method and apparatus for monitoring processing condition of work machine | |
JPH10267749A (en) | Abnormality diagnosis method in cutting work | |
JP2017140675A (en) | Cutting tool monitoring device | |
JPH06262493A (en) | Method for deciding too life by ae and device executing this method and automatic tool change system utilizing these method and device | |
CN110682160B (en) | Numerical control device of machine tool | |
DE3511140C2 (en) | ||
TWI690693B (en) | Method of measuring ultrasonic vibration of a rotating object during processing and ultrasonic vibration measurement module | |
EP4060442A1 (en) | Diagnostic apparatus, system, diagnostic method, and carrier means | |
JPH0123267B2 (en) | ||
JPS6044091B2 (en) | Electric discharge machining equipment | |
JPS61132864A (en) | Tool breakage detecting device | |
SU1220003A1 (en) | Device for detecting breakage of cutting tool in metal-removal machine tools | |
JPS61217759A (en) | Tool breakage detector | |
JPS61192450A (en) | Erroneous cutting judging method | |
SU775662A1 (en) | Method of measuring wearout value and testing punching dies |