Nothing Special   »   [go: up one dir, main page]

JPS60175009A - Production of plastic optical element having refractive index distribution - Google Patents

Production of plastic optical element having refractive index distribution

Info

Publication number
JPS60175009A
JPS60175009A JP59031138A JP3113884A JPS60175009A JP S60175009 A JPS60175009 A JP S60175009A JP 59031138 A JP59031138 A JP 59031138A JP 3113884 A JP3113884 A JP 3113884A JP S60175009 A JPS60175009 A JP S60175009A
Authority
JP
Japan
Prior art keywords
refractive index
monomer
index distribution
polymer
distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59031138A
Other languages
Japanese (ja)
Inventor
Yasuji Otsuka
大塚 保治
Yasuhiro Koike
康博 小池
Yuichi Aoki
裕一 青木
Akio Takigawa
滝川 章雄
Koichi Maeda
浩一 前田
Ikuo Tago
田子 育良
Motoaki Yoshida
元昭 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP59031138A priority Critical patent/JPS60175009A/en
Publication of JPS60175009A publication Critical patent/JPS60175009A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • B29D11/00355Production of simple or compound lenses with a refractive index gradient

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ophthalmology & Optometry (AREA)
  • Mechanical Engineering (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

PURPOSE:To obtain easily an element having a refractive index distribution by polymerizing partly a monomer to form a transparent gel-like material, adding another monomer which provides a polymer having a different refractive index to the surface, diffusing the monomer from the surface in a perpendicular direction to polymerize the monomers and subjecting the polymer to curving. CONSTITUTION:A monomer Ma forming a net-like polymer having a refractive index Na (e.g., diallyl phthalate) is poured into a cylindrical vessel 2 and is partly polymerized by heating to form a transparent gel object 1. A monomer Mb which forms a polymer having the refractive index different from the refractive index of Na (e.g., ethyl acrylate) is poured onto the surface of the object 1 and is diffused from the surface in a perpendicular diretion; at the same time said monomers are polymerized by heating to form a refractive index distribution in which the refractive index changes continuously in one direction into the object 1. The object is heated in succession to complete the polymn. and to fix the refractive index distribution. The one surface of the resulted plymer is worked to have a curved surface by which the optical element having the refractive index distribution is obtd.

Description

【発明の詳細な説明】 本発明は、屈折率分布を有する合成樹脂光学素子の製造
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a synthetic resin optical element having a refractive index distribution.

近年、球面レンズの収差補正を光軸方向に屈折率分布を
つけることに依って行なう事が提案されており、たとえ
ば球面と平面に依って形成された凸レンズに於いては、
光軸方向の屈折率分布が、次に示す式(1)又は(2)
In recent years, it has been proposed to correct aberrations in spherical lenses by creating a refractive index distribution in the optical axis direction. For example, in a convex lens formed by a spherical surface and a flat surface,
The refractive index distribution in the optical axis direction is expressed by the following formula (1) or (2).
.

n (z )=no (t−tz ) (1)n(z)
=noy7:コ范(2) (式中n(z)は球面の中心から光軸方向に2の距離に
ある点の屈折率、noは球面の中心の屈折率、tは正の
定数、2は球面の中心からの光軸方向の距離)を満゛た
す様であれば、レンズの球面収差が飛躍的に減少するこ
とが理論的に示されている。
n (z)=no (t-tz) (1) n(z)
=noy7: 范(2) (In the formula, n(z) is the refractive index of a point located at a distance of 2 from the center of the spherical surface in the optical axis direction, no is the refractive index of the center of the spherical surface, t is a positive constant, 2 It has been theoretically shown that the spherical aberration of the lens can be dramatically reduced if the distance (distance in the optical axis direction from the center of the spherical surface) is satisfied.

この様な屈折率分布を形成する為には、素材中に所定の
屈折率分布を示現する組成分布を形成すれば良く、たと
えば無機ガラスを使用する場合にはイオン交換やCVD
法などの方法によって形成できる。しかしながら無機ガ
ラスを使用する場合、イオン交換にしてもOVDにして
も、莫大な熱や真空の設備を必要とし、余り実用的では
ない。従って、屈折率分布をもった曲面レンズを製造す
るには、有機ガラスが有利である。
In order to form such a refractive index distribution, it is sufficient to form a composition distribution that exhibits a predetermined refractive index distribution in the material. For example, when using inorganic glass, ion exchange or CVD may be used.
It can be formed by methods such as the law. However, when inorganic glass is used, both ion exchange and OVD require enormous amounts of heat and vacuum equipment, which is not very practical. Therefore, organic glasses are advantageous for manufacturing curved lenses with a refractive index distribution.

一方、合成樹脂を使用して光学機器などに使用するレン
ズを製造することは近年盛んになっており、プラスチッ
クレンズを用いたカメラも最近製作されているが、未だ
にその光学性能はガラスに※ 較べて劣る様である。これは、プラスチック熱膨張係数
がガラスより1桁程度大きいことや、成型した場合に型
を忠実に反映しないことなどが原因であると言われてい
る。このような欠陥は前記のような屈折率分布を形成し
た球面レンズを使用することで大幅に改善することがで
きる。
On the other hand, the use of synthetic resin to manufacture lenses for use in optical equipment has become popular in recent years, and cameras using plastic lenses have recently been manufactured, but their optical performance is still inferior to that of glass*. It seems that it is inferior. This is said to be due to the fact that the coefficient of thermal expansion of plastic is about an order of magnitude larger than that of glass, and that when molded, it does not faithfully reflect the mold. Such defects can be greatly improved by using a spherical lens having a refractive index distribution as described above.

本発明の目的は、このような従来の屈折率一様なプラス
チックレンズの欠点を大幅に改善し得る、屈折率分布を
有した合成樹脂レンズを簡単にしかも高精度で製造する
方法を提供することにある。
An object of the present invention is to provide a method for manufacturing a synthetic resin lens having a refractive index distribution simply and with high precision, which can greatly improve the drawbacks of conventional plastic lenses having a uniform refractive index. It is in.

すなわち本発明は (樽 屈折率Naの網状重合体(共重合体を含む)Pa
を形成する単量体(単量体混合物を含む)Maを一部重
合して透明ゲル物体を形成する工程。
That is, the present invention (barrel) has a reticular polymer (including a copolymer) with a refractive index of Na, Pa
A step of partially polymerizing the monomer (including monomer mixture) Ma forming the transparent gel body.

(t)) Naとは異なる屈折率Nbを有する重合体(
共重合体を含む)Pbを形成する単量体(単量体混合物
を含む)Hbを液体、気体および霧滴状態のいずれかで
前記透明ゲル物体に接触させ、その表面からその表面に
対して垂直方向に拡散・重合させ屈折率が一方向に連続
的に変化する屈折率分布を形成する工程。
(t)) A polymer (
A monomer (including a mixture of monomers) that forms Pb (including a copolymer) is brought into contact with the transparent gel object in either a liquid, gas, or atomized state, and is applied from its surface to its surface. A process of diffusing and polymerizing in the vertical direction to form a refractive index distribution in which the refractive index changes continuously in one direction.

(C) 加熱等により重合を完結させ、上記屈折率分布
を固定化する工程及び、 (d) 屈折率分布が形成された前記重合体の少なくと
も片面を所定曲面、例えば屈折率変化方向の軸線上を中
心とする球面に加工する工程を含む屈折率分布を有する
合成樹脂光学素子の製造方法を要なとしている。
(C) fixing the refractive index distribution by completing the polymerization by heating, etc.; and (d) turning at least one side of the polymer with the refractive index distribution formed on a predetermined curved surface, for example, on the axis of the refractive index change direction. The key point is a method of manufacturing a synthetic resin optical element having a refractive index distribution, which includes the step of processing into a spherical surface centered at .

以下に本発明の詳細な説明する。The present invention will be explained in detail below.

まず屈折率Haの網状重合体(共重合体を含む)−を形
成する単量体(単量体混合物を含む)Maを容器に満た
し一部重合させて透明ゲル物体に成形する。この透明ゲ
ル物体は、溶剤に不溶な成分(網状構造の重合体)を5
〜90重量%含んでいる。
First, a container is filled with a monomer (including a monomer mixture) Ma that forms a network polymer (including a copolymer) having a refractive index of Ha, and a portion of the monomer (including a monomer mixture) is polymerized to form a transparent gel object. This transparent gel body contains 55% of a solvent-insoluble component (a polymer with a network structure).
Contains ~90% by weight.

次KNaと番j異なる屈折率Nbを有する重合体(共重
合体を含む)を形成する単量体(単量体混合物を含む)
Mbを液体・気体および霧滴のいずれかの状態で前記透
明ゲル物体に接触させ、表面からその表面に対して垂直
方向に拡散・重合させて、屈折率が一方向に連続的に変
化する屈折率分布を形成させる。Mbが液体・気体及び
霧滴状態の3種類の方法は各々特公昭jj−111ざl
、特公昭56−1J7jλlおよび特願昭、!17−1
133!;Itに述べられている、合成樹脂光伝送体の
製造方法における拡散。
A monomer (including a monomer mixture) forming a polymer (including a copolymer) having a refractive index Nb different from KNa
Mb is brought into contact with the transparent gel object in the form of liquid, gas, or mist, and diffused and polymerized from the surface in a direction perpendicular to the surface, resulting in refraction in which the refractive index changes continuously in one direction. form a rate distribution. The three methods in which Mb is in a liquid, gas, and mist state are each disclosed in the Japanese Patent Publication No. 111-111.
, Special Publication Showa 56-1J7jλl and Special Publication Showa,! 17-1
133! ; Diffusion in the method for manufacturing a synthetic resin optical transmission body described in It.

重合方法に準じて実施することができる。It can be carried out according to the polymerization method.

例えば、前記透明ゲル物体中KMbを液体状態で拡散・
重合させる場合について述べると、第1図に示すように
まず開始剤を添加した単量体Maを所定量円筒型の容器
2に注入管3を通じて注入し、容器λ内の液上空間を排
気管≦で排気しつつ窒素導入管jで窒素ガスを送給して
窒素置換した後コックを閉じて密閉する。
For example, by diffusing KMb in the transparent gel object in a liquid state,
Regarding the case of polymerization, as shown in Fig. 1, a predetermined amount of monomer Ma to which an initiator has been added is injected into a cylindrical container 2 through an injection pipe 3, and the upper liquid space inside the container λ is drained through an exhaust pipe. While exhausting at ≦, nitrogen gas is supplied through the nitrogen introduction pipe j to perform nitrogen replacement, and then the cock is closed to seal the tank.

容器を液面が容器底壁と平行になるように静置した上で
所定温度で所定時間加熱し、表面が平滑な前記透明ゲル
物体lを形成する。
The container is left standing so that the liquid level is parallel to the bottom wall of the container, and then heated at a predetermined temperature for a predetermined time to form the transparent gel object 1 with a smooth surface.

次KNaとは異なる屈折率を有する重合体(共重合体を
含む)Pbを形成する単量体(単量体混合物を含む)M
bを、注入管ゲを通じて容器中の透明ゲル物体lの表面
上に所定量注入する。その後、再び容器内を窒素置換し
て密閉し、容器2を恒温槽に入れて所定温度で所定時間
、上記容器を加熱して、単量体Wbを透明ゲル物体l中
に表面からその表面に対して垂直方向に拡散・重合させ
て屈折率が一方向(図示例で容器底壁に垂直な方向)に
連続的に変化する屈折率分布を形成させる。
Monomers (including monomer mixtures) that form Pb (including copolymers) with a refractive index different from that of KNa
A predetermined amount of b is injected onto the surface of the transparent gel object l in the container through the injection tube. Thereafter, the inside of the container is again replaced with nitrogen and sealed, and the container 2 is placed in a constant temperature bath and heated at a predetermined temperature for a predetermined time to transfer the monomer Wb from the surface into the transparent gel object l. By diffusing and polymerizing in the vertical direction, a refractive index distribution in which the refractive index continuously changes in one direction (in the illustrated example, the direction perpendicular to the bottom wall of the container) is formed.

その後、更に所定温度で所定時間・加熱処理して重合を
完結させることにより、第2図に示すように一方の面ざ
Aから他方の面ざBまで屈折率が厚み2方向に連続的に
変化する、円盤状の重合体基材gが得られる。そして単
量体HaおよびMbの選択によって単量体Mbの接触面
JA側が最大屈折率n1で裏面JB側が最小屈折率n2
となるような分布あるいは逆に裏面gB側が最大屈折率
でgA面が最小屈折率となるざの最大屈折率面側を、屈
折率が変化する方向の軸線つまり基材gの表面ざA、ざ
Bに垂直な軸線9上の点lOを中心とする所定曲率半径
Rの球面に研磨等により加工し、低屈折率側を平面に加
工する。
After that, the polymerization is further completed by heat treatment at a predetermined temperature for a predetermined period of time, so that the refractive index changes continuously in two thickness directions from one side surface A to the other surface surface B as shown in Figure 2. A disc-shaped polymer base material g is obtained. Then, depending on the selection of monomers Ha and Mb, the contact surface JA side of monomer Mb has a maximum refractive index n1, and the back surface JB side has a minimum refractive index n2.
Or conversely, the maximum refractive index surface side where the back surface gB side has the maximum refractive index and the gA surface has the minimum refractive index is the axis in the direction in which the refractive index changes, that is, the surface roughness A and the surface roughness of the base material g. A spherical surface having a predetermined radius of curvature R centered at a point lO on the axis 9 perpendicular to B is processed by polishing or the like, and the lower refractive index side is processed into a flat surface.

これにより光軸方向に前述の(1)式あるいは(2)式
で表わされる屈折率分布をもち、光軸に直角な面内では
屈折率が一様であるような合成樹脂凸レンズl/が得ら
れる。
As a result, a synthetic resin convex lens l/ having a refractive index distribution expressed by the above-mentioned equation (1) or (2) in the optical axis direction and a uniform refractive index in a plane perpendicular to the optical axis can be obtained. It will be done.

次に前記透明ゲル物体中KMbを一方向から気体又は霧
滴状態で拡散・重合させて基材gをつくる場合について
述べる。
Next, a case will be described in which the base material g is prepared by diffusing and polymerizing KMb in the transparent gel body from one direction in the form of a gas or atomized droplets.

まず、前記透明ゲル物体は前述と同様な方法で容器中に
形成させる。
First, the transparent gel body is formed in a container in the same manner as described above.

その後、単量体Mbを外部にて所定温度で加熱して気化
させるか(気体状態)又は超音波、スプレーノズルなど
で霧化させた(霧滴状a)上で、所定量窒素をキャリヤ
ーガスとして、容器中の透明ゲル物体の表面上に送り込
む。所定温度で所定時間上記容器を加温して単量体Mb
を透明ゲル物体中に表面からその表面に対し垂直方向に
拡散・重合させて屈折率が一方向に連続的に変化する屈
折率分布を形成させる。その後容器内に窒素ガスを再び
送り込み、窒素置換した後所定温度で所定時間加熱処理
して重合を完結させて厚み2方向に屈折率分布をもった
基材ざをつくる。
Thereafter, the monomer Mb is heated externally at a predetermined temperature to vaporize it (gaseous state) or is atomized using ultrasonic waves, a spray nozzle, etc. (fog droplet form a), and then a predetermined amount of nitrogen is added to the carrier gas. onto the surface of the transparent gel object in the container. By heating the container at a predetermined temperature for a predetermined time, the monomer Mb
is diffused and polymerized into a transparent gel object from the surface in a direction perpendicular to the surface to form a refractive index distribution in which the refractive index changes continuously in one direction. Thereafter, nitrogen gas is fed into the container again, and after nitrogen substitution, heat treatment is performed at a predetermined temperature for a predetermined time to complete polymerization, thereby creating a base material having a refractive index distribution in two directions of thickness.

気体状態で拡散・重合きせる場合は、単量体Mbの蒸気
を含む雰囲気中のMbの蒸気の圧力があまりに低いとゲ
ル物体内のMb拡散量が小となって希望の屈折率分布が
得られないので、この圧力は絶対圧で/mmI(g以上
であることが好ましく、より好ましい圧力範囲はjmm
lig以上である。
When diffusing and polymerizing in a gaseous state, if the pressure of the Mb vapor in the atmosphere containing monomer Mb vapor is too low, the amount of Mb diffused within the gel body will be small and the desired refractive index distribution will not be obtained. Since there is no
It is more than lig.

以上の製造方法において、単量体MaとMbの各々が重
合体になった時の屈折率Na、Nbはどちらか高くても
かまわないが、屈折率差の絶対値はQ、003又は、そ
れ以上が好ましい。
In the above manufacturing method, when each of the monomers Ma and Mb becomes a polymer, either the refractive index Na or Nb may be higher, but the absolute value of the refractive index difference is Q, 003 or higher. The above is preferable.

以上の方法により製造した(1)式及び(2)式のよう
な屈折率分布を有する合成樹脂物体において、屈折率が
高い方の端面を球面加工し、屈折率が低い方の端面を平
面加工して凸レンズを形成すると、従来の屈折率が一定
であるレンズに比べて著しく球面収差が減少したレンズ
を製造することが可能である。
In a synthetic resin object having a refractive index distribution as shown in formulas (1) and (2) produced by the above method, the end face with a higher refractive index is processed into a spherical surface, and the end face with a lower refractive index is processed into a flat surface. When a convex lens is formed by using a convex lens, it is possible to manufacture a lens whose spherical aberration is significantly reduced compared to a conventional lens having a constant refractive index.

本発明方法は片面が球面で他面が平面のレンズに限定さ
れず、両面が球面であるような屈折率分布をもったレン
ズを製作することもできる。
The method of the present invention is not limited to lenses in which one surface is spherical and the other surface is flat; it is also possible to manufacture lenses having a refractive index distribution such that both surfaces are spherical.

前記透明ゲル物体の原料となるべき単量体Maとしては
、アリル基、アクリル酸基、メタクリル酢基またはビニ
ル基のうちの2種類以」二の基を有する単」1に体を用
いることができる。次に単量体Maの具体例を挙げる。
As the monomer Ma to be the raw material for the transparent gel object, a monomer having two or more groups selected from the group consisting of an allyl group, an acrylic acid group, a methacrylic acid group, and a vinyl group can be used. can. Next, specific examples of monomer Ma will be given.

(1) アリル化合物 フタル酸ジアリル、イソフタル酸ジアリル、テレフタル
酸ジアリル、ジエチレングリコールビスアリルカーボネ
ート等のジアリルエステル;トリメリ ト酸トリアリル
、リン酸トリアリル、亜リン酸トリアリル等のトリアリ
ルエステル、メタクリル酸アリル、アクリル酸アリル等
の不飽和酸アリルエステル。
(1) Allyl compounds diallyl esters such as diallyl phthalate, diallyl isophthalate, diallyl terephthalate, diethylene glycol bisallyl carbonate; triallyl esters such as triallyl trimellitate, triallyl phosphate, triallyl phosphite, allyl methacrylate, acrylic Unsaturated acid allyl esters such as allyl acids.

(2) R1−R2−R3で表される化合物R1及びR
3がいずれもビニル基、アクリル基、ビニルエステル基
(2) Compounds R1 and R represented by R1-R2-R3
3 is a vinyl group, an acrylic group, or a vinyl ester group.

またはメタクリル基である化合物:R1及びR3のいず
れか一方がビニル基、アクリル基、メタクリル基及びビ
ニルエステル基のtつの基のうちのいずれかであり、他
方が残りの3つの基のうちのいずれかである化合物。こ
こでR2は以下に示され2価の基のうちから選択できる
or a compound that is a methacrylic group: one of R1 and R3 is one of the following groups: a vinyl group, an acrylic group, a methacrylic group, and a vinyl ester group, and the other is any one of the remaining three groups. A compound that is Here, R2 can be selected from the divalent groups shown below.

■ a − C吉3 (CH2(R20)「CH2CH2−(m−0−20)
”(OH2)P−(P−3〜1s) (OH2)iH 一0H2(j OH2(1*]−’〜3)(CH2)j
H CH3CH3 (3)上記(1)と(2)の単量体の混合物、またはモ
ノビニル化合物、ビニルエステル類、アクリル酸エステ
ル類及びメタクリル酸エステル類の5種のうちの少なく
ともlaIと上記(1)または(2)の単量体(または
その混合物)との混合物。
■ a - C Kichi 3 (CH2 (R20) "CH2CH2-(m-0-20)
”(OH2)P-(P-3~1s) (OH2)iH -0H2(j OH2(1*]-'~3)(CH2)j
H CH3CH3 (3) A mixture of the monomers of (1) and (2) above, or at least laI of the five types of monovinyl compounds, vinyl esters, acrylic esters, and methacrylic esters and the above (1) or a mixture with the monomer (or mixture thereof) of (2).

また単量体Mbとしては、次のようなものが挙げられる
Furthermore, examples of the monomer Mb include the following.

(4) 0H2−C−000Yで表わされる化合物ただ
し、式中Xは水素原子またはメチル基、((3H2) 
IH(1−1−1>、i−プルピル基、i−ブチル基、
S−ブチル基、t−ブチル基、(h−0−J) 及び−((3H2(3H20)p−(jH20H3(P
−/−4)から成る群から選ばれた基、または−(OF
2)a−F(a−t 〜6)、−OHg(OFg)bH
(b−/−ざ)、−0H20H20・(H2CF3、 (OH2CH20)c OFgOFgH(C−/−4’
)、−0H2CH20・0H2(OF2)aF (a−
/−4)、−0Hz (OF2 )do(OF2 ) 
IF (cl−/−2、1−/ −4)及び−8i(0
02Hs)3から成る群より選ばれた基を表す。
(4) A compound represented by 0H2-C-000Y, where X is a hydrogen atom or a methyl group, ((3H2)
IH (1-1-1>, i-propyl group, i-butyl group,
S-butyl group, t-butyl group, (h-0-J) and -((3H2(3H20)p-(jH20H3(P
-/-4) or -(OF
2) a-F(at ~6), -OHg(OFg)bH
(b-/-za), -0H20H20・(H2CF3, (OH2CH20)c OFgOFgH(C-/-4'
), -0H2CH20・0H2(OF2)aF (a-
/-4), -0Hz (OF2)do(OF2)
IF (cl-/-2, 1-/-4) and -8i (0
Represents a group selected from the group consisting of 02Hs)3.

(510H2−OHO(3−Rdで表される化合物1 ただし、式中Rdは−(IOHg )f−OHs (f
−0〜2)、−(OHg)gH(g−z〜3)、 (h−θ〜コ)から成る群より選ばれた基を表す。
Compound 1 represented by (510H2-OHO(3-Rd), where Rd is -(IOHg)f-OHs (f
-0~2), -(OHg)gH(g-z~3), and (h-θ~ko).

(6) (4)及び(5)の単量体の混合物〇単量体M
aとして上記(1)〜(3)、単量体Mbとして(4)
〜(6)のいずれも組み合わせることができる。
(6) Mixture of monomers (4) and (5) 〇 Monomer M
(1) to (3) above as a, (4) as monomer Mb
Any of (6) to (6) can be combined.

また上記透明ゲル物体のゲル化状態を調節するには、(
3)項に挙げたように架橋性単量体Haに不飽和基を一
つ有する単量体を添加する方法及び(3Br 4 e 
0C14eメルカプタン類等の連鎖移動剤を添加する方
法、または両者を併用する方法が有効である。
In addition, in order to adjust the gelation state of the transparent gel object, (
As mentioned in section 3), the method of adding a monomer having one unsaturated group to the crosslinkable monomer Ha and the method of adding a monomer having one unsaturated group (3Br 4 e
A method of adding a chain transfer agent such as 0C14e mercaptans or a method of using both together is effective.

実施例1 重合開1.it剤として過酸化ベンゾイルを2.0重量
%を加えたジエチレングリコールピスアリールカーボネ
ー)(OR−J9)を第11ilのような円柱状容器2
に入れた後、容器内雰囲気を窒素置換して密閉した。こ
の円柱状容器をり0℃で22分間加熱した後、コj℃ま
で冷却して表面が平滑な透明ゲル物体を容器中に形成さ
せた。このゲル物体はアセトンに不溶な成分(網状重合
体)コ4(、/重量%、アセトンに可溶でメタノールに
不溶な成分(#iI状重状体合体、3重量%、メタノー
ルに可溶な成分(単量体)49.4重量%から成ってい
る。
Example 1 Polymerization opening 1. Diethylene glycol pisaryl carbonate (OR-J9) containing 2.0% by weight of benzoyl peroxide as an IT agent was placed in a cylindrical container 2 such as No. 11il.
After filling the container with nitrogen, the atmosphere inside the container was replaced with nitrogen and the container was sealed. This cylindrical container was heated at 0° C. for 22 minutes and then cooled to 0° C. to form a transparent gel body with a smooth surface inside the container. This gel body consists of an acetone-insoluble component (reticular polymer) 4 (/wt%), an acetone-soluble and methanol-insoluble component (#iI-like polymer aggregate, 3 wt%, methanol-soluble component) It consists of 49.4% by weight of components (monomers).

次に透明ゲル物体の約20重量%のメタクリル酸コ、2
.コトリフルオロエチル(、?FMA)’i:容量内の
透明ゲル物体上に注入した後、容器を20″Cの恒温槽
中に設置し約3日間放置した。ついで、恒温槽を70℃
 に上げて約2日間加熱処理して重合を完結させた。こ
のようにして得られた合成樹脂体を容器から取り出し、
白化している厚みコないしJmm程度の表面層を削りと
って平行平面の円盤状の基材を得た。この基材の屈折率
分布を測定した結果を第1図のグラフに曲線Aで示す。
Next, about 20% by weight of methacrylic acid in the transparent gel body, 2
.. Cotrifluoroethyl (?FMA)'i: After injecting onto the transparent gel object in the volume, the container was placed in a constant temperature bath at 20''C and left for about 3 days.Then, the constant temperature bath was placed at 70℃.
The polymerization was completed by heat treatment for about 2 days. The synthetic resin body obtained in this way is removed from the container,
The whitened surface layer having a thickness of about 1 to 2 mm was scraped off to obtain a parallel plane disk-shaped base material. The results of measuring the refractive index distribution of this base material are shown by curve A in the graph of FIG.

第4図のグラフは横軸が上記基材の拡散開始側の面から
の深さで、たて軸は拡散開始面を基準とした屈折率差を
示している。
In the graph of FIG. 4, the horizontal axis represents the depth from the surface of the base material on the diffusion initiation side, and the vertical axis represents the refractive index difference based on the diffusion initiation surface.

次いで上記基材中に形成された屈折率分布Aのうち直線
部分を残して他部分を研磨除去すると同時に、高屈折率
面側を球面に、低屈折率面側を平面に加工して凸レンズ
を得た。
Next, the linear portion of the refractive index distribution A formed in the base material is left and the other portions are polished away, and at the same time, the high refractive index side is processed into a spherical surface and the low refractive index side is processed into a flat surface to form a convex lens. Obtained.

この凸レンズの球面収差は非常に小さく、光学性能に優
れていることが確認できた。
It was confirmed that the spherical aberration of this convex lens was extremely small and that it had excellent optical performance.

実施例λ 実施例1のようにして容器λ中に形成したゲル体を30
″Cの恒温槽中においてJFMAを加え2’1時間放置
した。ついで恒温槽を70°Cに上げて2tI時間加温
し重合を完結させた。白化している表面層を除去して得
られた透明樹脂体の屈折率分布を測定した結果を第μ図
グラフ中に曲線Bで示 値す。
Example λ A gel body formed in a container λ as in Example 1 was
JFMA was added in a constant temperature bath at 70°C and left for 21 hours. The temperature bath was then raised to 70°C and heated for 2tI hours to complete polymerization. The whitened surface layer was removed. The results of measuring the refractive index distribution of the transparent resin body are shown as curve B in the graph in Figure μ.

次に上記基材の高屈折率面側を球面に、また低屈折率面
側を平面に研磨加工して凸レンズを得た実施例3 実施例/のゲル体上面にlOoCの恒温槽中において3
FMkを注入した後λ日間放置して、?FMAを前記ゲ
ル体中に拡散・共重合させた。ついで70°Cで2を時
間保ち重合を完結させた。
Next, a convex lens was obtained by polishing the high refractive index side of the base material into a spherical surface and the low refractive index side into a flat surface.
After injecting FMk, leave it for λ days, ? FMA was diffused and copolymerized into the gel body. Then, 2 was kept at 70°C for an hour to complete the polymerization.

表面の白化層を除去して得た透明樹脂体の屈折率分布を
第3図に示す。この透明樹脂体のうち屈折率分布がほぼ
直線を成す表面から、2mmないし+mmの範囲を使用
して高屈折率面を球面に、低屈折率面を平面に研磨加工
して直径13.ざmmの凸レンズを製作した。このレン
ズの球面収差を第6図中に曲線Cで示し、また比較のた
めに屈折率が一様であるレンズの収差曲線をDで示す。
FIG. 3 shows the refractive index distribution of the transparent resin body obtained by removing the surface whitening layer. From the surface of this transparent resin body where the refractive index distribution forms a substantially straight line, the high refractive index surface is polished into a spherical surface and the low refractive index surface is polished into a flat surface using a range of 2 mm to +mm to a diameter of 13. A convex lens with a diameter of 1 mm was manufactured. The spherical aberration of this lens is shown by curve C in FIG. 6, and for comparison, the aberration curve of a lens with a uniform refractive index is shown by D.

第6図から本発明で得られる屈折率分布型の球面レンズ
は通常の球面レンズに比べて外周に至るまで著しく球面
収差が少ないことが判る。
It can be seen from FIG. 6 that the gradient index spherical lens obtained by the present invention has significantly less spherical aberration up to the outer periphery than a normal spherical lens.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法の一実施例を示す断面図、第2図は
拡散重合の結果得られる屈折率分布型基材を示す断面図
、第3図は同基材を加工して得られる屈折率分布型の球
面レンズを示す断面図、第1図、第S図は本発明方法で
得られる基材中の屈折率分布の具体例を示すグラフ、第
6図は本発明7であり、たて軸は光軸からの距離、横軸
は球面収差量である。 Ma、Mb 単量体 l 透明ゲル物体 2 容器 J、4/ 単量体注入管
 ! 窒素導入管 t 排気管 ざ 屈折率分布をもっ
た基材 1/ 屈折率分布をもった球面レンズ 特許出願人 日本板硝子株式会社 第1I!1 第2図 第30 第4因 第5図 第6図 扉面は鼻音 (mm)
Fig. 1 is a cross-sectional view showing an embodiment of the method of the present invention, Fig. 2 is a cross-sectional view showing a gradient index base material obtained as a result of diffusion polymerization, and Fig. 3 is a cross-sectional view showing a gradient index base material obtained by processing the same base material. A cross-sectional view showing a refractive index distribution type spherical lens, FIG. 1 and FIG. S are graphs showing specific examples of the refractive index distribution in the base material obtained by the method of the present invention, and FIG. The vertical axis is the distance from the optical axis, and the horizontal axis is the amount of spherical aberration. Ma, Mb Monomer l Transparent gel object 2 Container J, 4/ Monomer injection tube! Nitrogen introduction pipe t Exhaust pipe Za Base material with refractive index distribution 1/ Spherical lens with refractive index distribution Patent applicant Nippon Sheet Glass Co., Ltd. No. 1 I! 1 Figure 2 Figure 30 Factor 4 Figure 5 Figure 6 Door surface is nasal (mm)

Claims (1)

【特許請求の範囲】 (→ 屈折率Naの網状重合体(共重合体を含む)Pa
を形成する単量体(単量体混合物を含む)Maを容器内
に入れ一部重合させて透明ゲル物体を形成する工程。 (b) 前記Naとは異なる屈折率Nbを有する重合体
(共重合体を含む)Pbを形成する単量体(単量体混合
物を含む)Mbを液体、気体または霧滴状態で前記透明
ゲル物体と接触させてゲル物体表面から垂直方向に拡散
させるとともに重合させ、屈折率が一方向に連続的に変
化する屈折率分布を前記ゲル物体中に形成する工程。 (句 加熱等により重合を完結させて前記屈折率分布を
固定化する工程、及び (d) 屈折率分布が形成された前記重合体の少くとも
片面を曲面に加工する工程上を具えた屈折率分布を有す
る合成樹脂光学素子の製造方法。
[Claims] (→ Network polymer (including copolymer) with refractive index Na, Pa
A step of placing a monomer (including a monomer mixture) Ma forming a container into a container and partially polymerizing it to form a transparent gel body. (b) A monomer (including a monomer mixture) Mb forming a polymer (including a copolymer) Pb having a refractive index Nb different from that of the Na is used in the transparent gel in a liquid, gas, or atomized state. A step of bringing the gel into contact with an object and causing it to diffuse in a vertical direction from the surface of the gel object and polymerize, thereby forming a refractive index distribution in the gel object in which the refractive index changes continuously in one direction. (phrase) a step of fixing the refractive index distribution by completing the polymerization by heating etc., and (d) a step of processing at least one side of the polymer on which the refractive index distribution has been formed into a curved surface. A method for manufacturing a synthetic resin optical element having a distribution.
JP59031138A 1984-02-21 1984-02-21 Production of plastic optical element having refractive index distribution Pending JPS60175009A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59031138A JPS60175009A (en) 1984-02-21 1984-02-21 Production of plastic optical element having refractive index distribution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59031138A JPS60175009A (en) 1984-02-21 1984-02-21 Production of plastic optical element having refractive index distribution

Publications (1)

Publication Number Publication Date
JPS60175009A true JPS60175009A (en) 1985-09-09

Family

ID=12323076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59031138A Pending JPS60175009A (en) 1984-02-21 1984-02-21 Production of plastic optical element having refractive index distribution

Country Status (1)

Country Link
JP (1) JPS60175009A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2649397A1 (en) * 1989-07-07 1991-01-11 Essilor Int METHOD AND DEVICE FOR OBTAINING INDEX GRADIENT POLYMER
EP0409667A2 (en) * 1989-07-21 1991-01-23 Amo Puerto Rico Inc. Multifocal optical lens
FR2673576A1 (en) * 1991-03-08 1992-09-11 Essilor Int METHOD FOR OBTAINING AN ARTICLE IN TRANSPARENT POLYMERIC MATERIAL WITH REFRACTIVE INDEX GRADE
WO2000041650A1 (en) * 1999-01-12 2000-07-20 California Institute Of Technology Lenses capable of post-fabrication power modification
US6682195B2 (en) 2001-10-25 2004-01-27 Ophthonix, Inc. Custom eyeglass manufacturing method
US6712466B2 (en) 2001-10-25 2004-03-30 Ophthonix, Inc. Eyeglass manufacturing method using variable index layer
US6749632B2 (en) 2000-03-20 2004-06-15 California Institute Of Technology Application of wavefront sensor to lenses capable of post-fabrication power modification
US6813082B2 (en) 2000-11-27 2004-11-02 Ophthonix, Inc. Wavefront aberrator and method of manufacturing
US7115305B2 (en) 2002-02-01 2006-10-03 California Institute Of Technology Method of producing regular arrays of nano-scale objects using nano-structured block-copolymeric materials
US7217375B2 (en) 2001-06-04 2007-05-15 Ophthonix, Inc. Apparatus and method of fabricating a compensating element for wavefront correction using spatially localized curing of resin mixtures
US7293871B2 (en) 2000-11-27 2007-11-13 Ophthonix, Inc. Apparatus and method of correcting higher-order aberrations of the human eye
US7434931B2 (en) 2001-10-25 2008-10-14 Ophthonix Custom eyeglass manufacturing method
US7491628B2 (en) 2004-05-05 2009-02-17 California Institute Of Technology Method for patterning large scale nano-fibrous surfaces using capillography
US8021967B2 (en) 2004-11-01 2011-09-20 California Institute Of Technology Nanoscale wicking methods and devices

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS525857A (en) * 1975-07-01 1977-01-17 Nippon Zeon Co Ltd Cross-linkable halogen-containing polymecomposition
JPS5421751A (en) * 1977-07-19 1979-02-19 Mitsubishi Electric Corp Refractive index distribution type lens
JPS5536962A (en) * 1978-09-06 1980-03-14 Canon Inc Method for producing megnetic core
JPS56154707A (en) * 1980-04-30 1981-11-30 Fujitsu Ltd Light source coupler and its production

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS525857A (en) * 1975-07-01 1977-01-17 Nippon Zeon Co Ltd Cross-linkable halogen-containing polymecomposition
JPS5421751A (en) * 1977-07-19 1979-02-19 Mitsubishi Electric Corp Refractive index distribution type lens
JPS5536962A (en) * 1978-09-06 1980-03-14 Canon Inc Method for producing megnetic core
JPS56154707A (en) * 1980-04-30 1981-11-30 Fujitsu Ltd Light source coupler and its production

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2649397A1 (en) * 1989-07-07 1991-01-11 Essilor Int METHOD AND DEVICE FOR OBTAINING INDEX GRADIENT POLYMER
US5095079A (en) * 1989-07-07 1992-03-10 Essilor International Cie Generale D'optique Method and device for producing a graded index polymer
AU635042B2 (en) * 1989-07-07 1993-03-11 Essilor International Compagnie Generale D'optique Method and device for producing a graded index polymer
EP0409667A2 (en) * 1989-07-21 1991-01-23 Amo Puerto Rico Inc. Multifocal optical lens
FR2673576A1 (en) * 1991-03-08 1992-09-11 Essilor Int METHOD FOR OBTAINING AN ARTICLE IN TRANSPARENT POLYMERIC MATERIAL WITH REFRACTIVE INDEX GRADE
US7210783B2 (en) 1999-01-12 2007-05-01 California Institute Of Technology Lenses capable of post-fabrication power modification
US7837326B2 (en) 1999-01-12 2010-11-23 Calhoun Vision, Inc. Lenses capable of post-fabrication power modification
AU766157B2 (en) * 1999-01-12 2003-10-09 California Institute Of Technology Lenses capable of post-fabrication power modification
WO2000041650A1 (en) * 1999-01-12 2000-07-20 California Institute Of Technology Lenses capable of post-fabrication power modification
CN1306918C (en) * 1999-01-12 2007-03-28 加利福尼亚技术学院 Lenses capable of post-fabrication power modification
US6813097B2 (en) 1999-01-12 2004-11-02 California Institute Of Technology Lenses capable of post-fabrication modulus change
US6450642B1 (en) 1999-01-12 2002-09-17 California Institute Of Technology Lenses capable of post-fabrication power modification
US6824266B2 (en) 1999-01-12 2004-11-30 California Institute Of Technology Lenses capable of post-fabrication power modification
US6749632B2 (en) 2000-03-20 2004-06-15 California Institute Of Technology Application of wavefront sensor to lenses capable of post-fabrication power modification
US6813082B2 (en) 2000-11-27 2004-11-02 Ophthonix, Inc. Wavefront aberrator and method of manufacturing
US7293871B2 (en) 2000-11-27 2007-11-13 Ophthonix, Inc. Apparatus and method of correcting higher-order aberrations of the human eye
US6989938B2 (en) 2000-11-27 2006-01-24 Ophthonix, Inc. Wavefront aberrator and method of manufacturing
US7695134B2 (en) 2000-11-27 2010-04-13 Ophthonix, Inc. Apparatus and method of correcting higher-order aberrations of the human eye
US7217375B2 (en) 2001-06-04 2007-05-15 Ophthonix, Inc. Apparatus and method of fabricating a compensating element for wavefront correction using spatially localized curing of resin mixtures
US6682195B2 (en) 2001-10-25 2004-01-27 Ophthonix, Inc. Custom eyeglass manufacturing method
US7021764B2 (en) 2001-10-25 2006-04-04 Ophtohonix, Inc. Eyeglass manufacturing method using variable index layer
US7249847B2 (en) 2001-10-25 2007-07-31 Ophthonix, Inc. Eyeglass manufacturing method using variable index layer
US6942339B2 (en) 2001-10-25 2005-09-13 Ophthonix, Inc. Eyeglass manufacturing method using variable index layer
US7434931B2 (en) 2001-10-25 2008-10-14 Ophthonix Custom eyeglass manufacturing method
US6840619B2 (en) 2001-10-25 2005-01-11 Ophthonix, Inc. Eyeglass manufacturing method using variable index layer
US6712466B2 (en) 2001-10-25 2004-03-30 Ophthonix, Inc. Eyeglass manufacturing method using variable index layer
US7845797B2 (en) 2001-10-25 2010-12-07 Ophthonix, Inc. Custom eyeglass manufacturing method
US7115305B2 (en) 2002-02-01 2006-10-03 California Institute Of Technology Method of producing regular arrays of nano-scale objects using nano-structured block-copolymeric materials
US7700157B2 (en) 2002-02-01 2010-04-20 California Institute Of Technology Method of producing regular arrays of nano-scale objects using nano-structured block-copolymeric materials
US8790104B2 (en) 2002-10-03 2014-07-29 Essilor International (Compagnie Generale D'optique Apparatus and method of fabricating a compensating element for wavefront correction using spatially localized curing of resin mixtures
US7491628B2 (en) 2004-05-05 2009-02-17 California Institute Of Technology Method for patterning large scale nano-fibrous surfaces using capillography
US8021967B2 (en) 2004-11-01 2011-09-20 California Institute Of Technology Nanoscale wicking methods and devices

Similar Documents

Publication Publication Date Title
JPS60175009A (en) Production of plastic optical element having refractive index distribution
EP0288567B1 (en) Material for oxygen-permeable hard contact lens with excellent impact resistance
JPS5821201A (en) Plastic lens
US4786446A (en) Process of forming a hydroxy-substitute polymeric shaped article
EP0436727B1 (en) Contact lens
JPS6127501A (en) Manufacture of synthetic resin optical element having refractive index distribution
KR920002310B1 (en) Plastic lens and method of manufacturing thereof
JPS6238419A (en) Contact lens
BR8202377A (en) PROCESS OF FORMING HYDROPHYL POLYMERIC GEL MOLD USED IN THE POLYMERIZATION AND COMPOSITION OF HYDROPHYL GEL POLYMERS PRODUCED BY THIS PROCESS
US6402995B1 (en) Process for preparing polyvinyl alcohol contact lenses
AU606754B2 (en) Organic glass for optical parts
JPH0438761B2 (en)
JPS58164608A (en) Resin for plastic lens
JPS5818601A (en) Synthetic resin lens
CA1241172A (en) Process for thermoformed articles
JPS6223001A (en) Production of spherical plastic lens
JPH0355801B2 (en)
JPS6311908A (en) Contact lens material
JPH0237561B2 (en)
JPS60258501A (en) Plastic lens having high refractive index
JPS58217511A (en) Production of transparent plastic
JPH0225482B2 (en)
JPS62113102A (en) Production of spherical plastic lens
JPH0374166B2 (en)
JPH0641336A (en) Production of formed plastic article