JPS60157017A - Flow rate detector of reaction gas for organic metal growth in gas phase - Google Patents
Flow rate detector of reaction gas for organic metal growth in gas phaseInfo
- Publication number
- JPS60157017A JPS60157017A JP1206484A JP1206484A JPS60157017A JP S60157017 A JPS60157017 A JP S60157017A JP 1206484 A JP1206484 A JP 1206484A JP 1206484 A JP1206484 A JP 1206484A JP S60157017 A JPS60157017 A JP S60157017A
- Authority
- JP
- Japan
- Prior art keywords
- reaction gas
- gas
- flow rate
- ultraviolet light
- mocvd
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
- G01F1/56—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using electric or magnetic effects
- G01F1/64—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using electric or magnetic effects by measuring electrical currents passing through the fluid flow; measuring electrical potential generated by the fluid flow, e.g. by electrochemical, contact or friction effects
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- General Physics & Mathematics (AREA)
- Measuring Volume Flow (AREA)
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、有機金属気相成長用反応ガスの流量検出器に
関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a flow rate detector for a reaction gas for organometallic vapor phase growth.
有機金me熱分解することによって化合物半導体結晶を
成長させる有機金属気相成長法(MOCVD法)は大き
な面積にわたって均一な成長を得やすく、急峻性も良い
ことから、最近、短波長レーザ等の作成に急速に利用さ
れるようになってきた〇ところで、MOCVD法では、
成長する化合物結晶の各成分元素とげ一ノ9ントとを全
て気体状態で反応槽に導入することができる。従って、
成長層の組成、成長速度或いは成長膜の膜厚などのよう
な成長層の特性は流1li11節によって制御すること
ができる・すなわチ、成長層の特性は反応ガスの供給量
に強く依存している。反応ガスの供給量はキャリアガス
(水素)に比べて受診であり、典型的な例としてA、H
3の場合には10慢希釈のものが使用され、有機金属ガ
スの場合には水素によるバブリングが行なわれている。The metal organic chemical vapor deposition method (MOCVD method), which grows compound semiconductor crystals by thermally decomposing organic gold, is easy to obtain uniform growth over a large area and has good steepness, so it has recently been used to create short wavelength lasers, etc. By the way, the MOCVD method is rapidly becoming used for
All of the component elements and thorns of the compound crystal to be grown can be introduced into the reaction tank in a gaseous state. Therefore,
The properties of the grown layer, such as the composition of the grown layer, the growth rate, or the thickness of the grown film, can be controlled by flow clauses, i.e., the properties of the grown layer strongly depend on the amount of reactant gas supplied. ing. The amount of reactant gas supplied is smaller than that of carrier gas (hydrogen), and typical examples include A and H.
In the case of No. 3, a dilution of 10 is used, and in the case of organometallic gas, bubbling with hydrogen is performed.
しかしながら、成長層の特性制御を流量調節で行えるに
もかかわらず、バブリングの際に有機金属ガスがキャリ
アガス(水素)にどの程度混入し輸送されるかわかって
いない。現実にはキャリアガスの流量とバブラーの温度
を試行錯誤的に制御しているだけであり、成長層の特性
制御を高めるためには実際にどれだけのガスが流れてい
るか正確な値を知る必要がある〇本発明の目的は、精密
な膜の特性制御を行なうためMOCVD用反応ガスの流
量を正確に測定する有機金桝気相成長用反応ガスの流量
検出益金提供することにある。However, although the characteristics of the grown layer can be controlled by adjusting the flow rate, it is not known to what extent the organometallic gas is mixed into the carrier gas (hydrogen) and transported during bubbling. In reality, the carrier gas flow rate and bubbler temperature are only controlled by trial and error, and in order to better control the characteristics of the growth layer, it is necessary to know the exact value of how much gas is actually flowing. 〇An object of the present invention is to provide a method for detecting the flow rate of a reaction gas for organic metal vapor phase growth, which accurately measures the flow rate of a reaction gas for MOCVD in order to precisely control the characteristics of a film.
この1的を達成するために、本発明による流量検出器は
、有機金属気相成長用反応ガスの流路に対して真空紫外
光を照射する手段と、真空紫外光の光路に垂直に電圧を
印加する手段とを設け、真空紫外光によシ反応ガスのみ
をイオン化し、そしてそのイオン電流値を検出する微小
電流計を設け、微小電流計で検出したイオン電流値より
反応ガスの流量を測定するようにしたことを特徴として
いるO
以下本発明を、添附図面を参照して実繞例について説明
する。In order to achieve this first objective, the flow rate detector according to the present invention includes means for irradiating vacuum ultraviolet light onto the flow path of a reaction gas for organometallic vapor phase growth, and a means for applying a voltage perpendicular to the optical path of the vacuum ultraviolet light. A micro-ammeter is provided to ionize only the reactive gas using vacuum ultraviolet light and detect the ion current value, and the flow rate of the reactive gas is measured from the ion current value detected by the micro-ammeter. Hereinafter, the present invention will be described with reference to actual examples with reference to the accompanying drawings.
第1.2図にはガス流量検出器の一実施例を概略的に示
し1はガス導入口2を介してMOCVD装置(図示して
ない)への反応ガス供給通路に連通ずるイオン化室で、
このイオン化室2にはA「、H2゜Kr、 Xe 放電
管のような真空紫外光放電管6が取付けられ、4はその
光学結晶窓である・またこの放電管6に相対する位置に
は光トラップ5が取付けられ、この光トラップ5には陽
極6が設けられ。FIG. 1.2 schematically shows an embodiment of the gas flow rate detector, and 1 is an ionization chamber that communicates with a reaction gas supply passage to an MOCVD apparatus (not shown) through a gas inlet 2;
A vacuum ultraviolet light discharge tube 6 such as an A', H2°Kr, A trap 5 is attached, and this optical trap 5 is provided with an anode 6.
紫外線によって放出する二次電子を吸収するように作用
する0放電管3からの紫外光の光路に垂直に電圧を印加
する電極7が設けられ、この電極7は電源8に接続され
ている。一方電極7に相対しティオンコレクタ9が配置
され、このイオンコレクタ9は微小電流計10に接続さ
れる〇第3図には検出器への反応ガス系のフローシート
’(z示し、第1.2図に示す部分に対応した部分は同
じ符号で示す。第3図において11はフィルタ、12.
13はバイパス流量可変パルプである。An electrode 7 is provided for applying a voltage perpendicular to the optical path of the ultraviolet light from the zero discharge tube 3, which acts to absorb secondary electrons emitted by ultraviolet light, and this electrode 7 is connected to a power source 8. On the other hand, an ion collector 9 is arranged opposite to the electrode 7, and this ion collector 9 is connected to a microammeter 10. In FIG. Parts corresponding to those shown in Fig. 2 are indicated by the same reference numerals.In Fig. 3, 11 is a filter, 12.
13 is a bypass flow rate variable pulp.
Fl(oCVDに用いられる反応ガスのイオン化ポテン
シャルは、下表に例示するようにキャリアガスとして用
いられる水素のイオン化ポテンシャルより低い。The ionization potential of the reaction gas used in Fl(oCVD) is lower than the ionization potential of hydrogen used as a carrier gas, as illustrated in the table below.
従って、Ar 共鳴線(11,6eV、 11.8 e
V )、 Kr共鳴線(to、03 eV、 10.6
4 eV )やIt2のライフしα線(10・2ev)
の真空紫外光をイオン化室1内に放射することによって
反応ガスのみをイオン化させることができる。Therefore, the Ar resonance line (11,6 eV, 11.8 e
V), Kr resonance line (to, 03 eV, 10.6
4 eV) and It2 life alpha rays (10.2ev)
By emitting vacuum ultraviolet light into the ionization chamber 1, only the reaction gas can be ionized.
実際、ガス導入口2からの反応ガスとキャリアガスがイ
オン化室1内を通って排ガス処理系へ流れる際に、放射
管3からの真空紫外光の照射罠より、反応ガスだけがイ
オン化され、キャリアガスの水素はイオン化されない。In fact, when the reactive gas and carrier gas from the gas inlet 2 pass through the ionization chamber 1 and flow to the exhaust gas treatment system, only the reactive gas is ionized by the vacuum ultraviolet light irradiation trap from the radiation tube 3, and the carrier gas is ionized. Gaseous hydrogen is not ionized.
この時のイオン電流がイオンコレクタ9に接続している
微小電流計10で検出される。こうして微小電流計10
で検出したイオン電流の値に基いて反応ガスの濃度が測
定される。このようにして測定したイオン電流とガス流
量の関係を第4図に示す。The ion current at this time is detected by a microcurrent meter 10 connected to the ion collector 9. In this way, the microammeter 10
The concentration of the reactant gas is measured based on the value of the ionic current detected in the step. FIG. 4 shows the relationship between the ion current and the gas flow rate measured in this way.
第5図には本発明のガス流量検出器を実際のMOCvD
装置に適用した使用例を示す。14〜16は三つの反応
ガス成分のそれぞれの流量を検出するようにされたガス
流量検出器、 Al−A3.81〜B3 はパルプ、1
7はb幻CVD装置の反応僧であり。Figure 5 shows the gas flow rate detector of the present invention in an actual MOCvD.
An example of use applied to the device is shown below. 14 to 16 are gas flow rate detectors configured to detect the flow rates of each of the three reaction gas components; Al-A3.81 to B3 are pulp; 1
7 is the reaction monk of the phantom CVD device.
各要素は図示したように接続されている。このように構
成した装置においてガス流量を測定する際には、まずパ
ルプA1〜A3 i閉じ、パルプ81〜B3 を開いて
各反応ガス成分をそ−れぞれ組合さった検出器14,1
5.16へ送り込む。こうして各検出器で反応ガスの濃
度測定が行なわれる。そしてその測定結果に基づき反応
ガスの精密な流量制御を行なったのち、バルブB1〜B
3を閉じると同時にバルブA1〜A3 ′f:開いてM
OCvD装置の反応’417へ反応ガスを供給する0
以上説明してきたように本発明によれば、従来制御の不
十分であったMOCVDにおける有機金属ガスの精密制
御が可能となシ、これによシ成長層の組成分布や不純物
分布を急峻にでき、均一な膜を再現性よく得ることがで
きる・従って本発明の検出器はMOCVD法における化
合物半導体の敵意化に大いに役立つものである0Each element is connected as shown. When measuring the gas flow rate in the apparatus configured as described above, first, the pulps A1 to A3i are closed, the pulps 81 to B3 are opened, and the detectors 14 and 1 are connected to each reactant gas component.
Send it to 5.16. In this way, each detector measures the concentration of the reactant gas. Then, after performing precise flow control of the reaction gas based on the measurement results, valves B1 to B
At the same time as closing 3, valves A1 to A3 'f: open M
Supplying Reactant Gas to Reaction '417 of OCvD Device As explained above, according to the present invention, it is possible to precisely control the organometallic gas in MOCVD, which has been insufficiently controlled in the past. The composition distribution and impurity distribution of the Si-grown layer can be made steep, and a uniform film can be obtained with good reproducibility. Therefore, the detector of the present invention is of great help in making compound semiconductors hostile in the MOCVD method.
【図面の簡単な説明】
第1.2図は本発明のガス流量検出器の構成を示す概略
平面図および断面図、第3図は第1.2図の装置に対す
る反応ガス流路系を示す線図・第4図はイオン電流とガ
ス流量との関係を示すグラフ、第5図はMOCVD装置
に本発明の検出器を適用した例を示す概略線図である@
図中、1:イオン化室、 6:放電管、 5:光トラッ
プ、 7:電極、 9:イオンコレクタ、1〇二微小電
流計。
第1図
第2図
第3図
刀λノ兜量(SCCm、)
昭和59年 2月24日
特許庁長官殿
1、事件の表示
昭和b9年 特許願 第 12064号2、発明の名称
有機金属気相成長用反応ガスV)流に検出器3、補正を
する者
事件との関係 特許出願人
住 所 神荒用県茅ケ崎市萩園2500番地名称 日本
真空技術株式会社
4、代理人
〒105住所 東京都港区西新橋1丁目1番15号物産
ビル別館 電話(591) 02616、補正の内容
添附図面9第3図、會」切栖の汎シ補正します。[Brief Description of the Drawings] Fig. 1.2 is a schematic plan view and cross-sectional view showing the configuration of the gas flow rate detector of the present invention, and Fig. 3 shows a reaction gas flow path system for the device shown in Fig. 1.2. Diagram - Figure 4 is a graph showing the relationship between ion current and gas flow rate, and Figure 5 is a schematic diagram showing an example of applying the detector of the present invention to an MOCVD device.@In the figure, 1: Ionization chamber , 6: discharge tube, 5: optical trap, 7: electrode, 9: ion collector, 102 microcurrent meter. Fig. 1 Fig. 2 Fig. 3 Sword λ helmet amount (SCCm) February 24, 1980 Mr. Commissioner of the Japan Patent Office 1 Indication of the case 1983 Patent Application No. 12064 2 Name of the invention Organometallic gas Reaction gas for phase growth V) Detector 3, relation to the case of the person who makes corrections to the flow Patent applicant address 2500 Hagizono, Chigasaki City, Kamarayo Prefecture Name Japan Vacuum Technology Co., Ltd. 4, agent address 105 Address Tokyo Bussan Building Annex, 1-1-15 Nishi-Shinbashi, Minato-ku Tel: (591) 02616, Contents of the amendment Attached drawing 9 Figure 3, ``Kirisu'' general purpose correction.
Claims (1)
を照射する手段と真空紫外光の光路に垂直に電圧を印加
する手段とを設け、真空紫外光により反応ガスのみをイ
オン化し、そしてそのイオン電流値を検出する微小電流
計を設け、微小電流計で検出したイオン電流値より反応
ガスの流量を測定するようにしたことを特徴とする有機
金属気相成長用反応ガスの流量検出器。A means for irradiating a flow path of a reaction gas for organometallic vapor phase growth with vacuum ultraviolet light and a means for applying a voltage perpendicular to the optical path of the vacuum ultraviolet light are provided, and only the reaction gas is ionized by the vacuum ultraviolet light, Flow rate detection of a reaction gas for organometallic vapor phase growth, characterized in that a microammeter is provided to detect the ion current value, and the flow rate of the reaction gas is measured from the ion current value detected by the microammeter. vessel.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1206484A JPS60157017A (en) | 1984-01-27 | 1984-01-27 | Flow rate detector of reaction gas for organic metal growth in gas phase |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1206484A JPS60157017A (en) | 1984-01-27 | 1984-01-27 | Flow rate detector of reaction gas for organic metal growth in gas phase |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60157017A true JPS60157017A (en) | 1985-08-17 |
JPH0527044B2 JPH0527044B2 (en) | 1993-04-20 |
Family
ID=11795170
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1206484A Granted JPS60157017A (en) | 1984-01-27 | 1984-01-27 | Flow rate detector of reaction gas for organic metal growth in gas phase |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60157017A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007250450A (en) * | 2006-03-17 | 2007-09-27 | Hamamatsu Photonics Kk | Ionizer |
WO2007108211A1 (en) * | 2006-03-17 | 2007-09-27 | Rigaku Corporation | Gas analyzer |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS49112655A (en) * | 1973-02-26 | 1974-10-26 | ||
JPS5188284A (en) * | 1975-01-16 | 1976-08-02 |
-
1984
- 1984-01-27 JP JP1206484A patent/JPS60157017A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS49112655A (en) * | 1973-02-26 | 1974-10-26 | ||
JPS5188284A (en) * | 1975-01-16 | 1976-08-02 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007250450A (en) * | 2006-03-17 | 2007-09-27 | Hamamatsu Photonics Kk | Ionizer |
WO2007108410A1 (en) * | 2006-03-17 | 2007-09-27 | Hamamatsu Photonics K.K. | Ionizing device |
WO2007108211A1 (en) * | 2006-03-17 | 2007-09-27 | Rigaku Corporation | Gas analyzer |
US20090008571A1 (en) * | 2006-03-17 | 2009-01-08 | Shigeki Matsuura | Ionizing Device |
US8044343B2 (en) | 2006-03-17 | 2011-10-25 | Rigaku Corporation | Gas analyzer |
US8592779B2 (en) | 2006-03-17 | 2013-11-26 | Hamamatsu Photonics K.K. | Ionizing device |
Also Published As
Publication number | Publication date |
---|---|
JPH0527044B2 (en) | 1993-04-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Raju et al. | Radiobiology of ultrasoft x rays: I. Cultured hamster cells (V79) | |
Miles et al. | Correlation of excess power and helium production during D2O and H2O electrolysis using palladium cathodes | |
JPH0225249B2 (en) | ||
Arthur et al. | Reaction of H atoms with some silanes and disilanes. Rate constants and Arrhenius parameters | |
US20080078504A1 (en) | Self-Calibrating Optical Emission Spectroscopy for Plasma Monitoring | |
Oura et al. | Elastic recoil detection analysis of hydrogen adsorbed on solid surfaces | |
Bougdira et al. | Effects of hydrogen on iron nitriding in a pulsed plasma | |
JPS60157017A (en) | Flow rate detector of reaction gas for organic metal growth in gas phase | |
Hickmott et al. | Stoichiometry and atomic defects in rf‐sputtered SiO2 | |
Shefer et al. | Photoelectron transport in CsI and CsBr coating films of alkali antimonide and CsI photocathodes | |
KR102025574B1 (en) | Apparatus for providing the sample gas and method thereof | |
KR101124868B1 (en) | Method and device for magnetron sputtering | |
US6903800B2 (en) | Film-processing method and film-processing apparatus | |
Wiemer et al. | Determination of chemical composition and its relationship with optical properties of Ti-N and Ti-VN sputtered thin films | |
Chen et al. | NH3-adsorption on Ge using a cylindrically shaped crystal | |
US20090095616A1 (en) | Apparatus and method for measuring vapor flux density | |
Moser et al. | Determination of the fluorine concentration in silicon films grown from the disproportionation of SiF2 | |
Hagström et al. | Photoemission studies of single crystals of titanium carbide | |
Welter et al. | Radical density measurements in an oxyacetylene torch diamond growth flame | |
JP3525674B2 (en) | Apparatus and method for measuring work function or ionization potential | |
Hötzl et al. | Experiences with large-area frisch grid chambers in low-level alpha spectrometry | |
Schirru et al. | X-ray induced photocurrent characteristics of CVD diamond detectors with different carbon electrodes | |
Bermond et al. | A field emission measurement of the isosteric heat of adsorption of metallic adatoms on single crystal faces of a metal (Pb/W) | |
Kagadei et al. | Atomic hydrogen flux density measured using thin metal films | |
NL2029605B1 (en) | Method for detecting content distribution of deuterium in tungsten with radio-frequency glow discharge optical emission spectrometer |