Nothing Special   »   [go: up one dir, main page]

JPS60143743A - Optoacoustic type gas analyzer - Google Patents

Optoacoustic type gas analyzer

Info

Publication number
JPS60143743A
JPS60143743A JP58248203A JP24820383A JPS60143743A JP S60143743 A JPS60143743 A JP S60143743A JP 58248203 A JP58248203 A JP 58248203A JP 24820383 A JP24820383 A JP 24820383A JP S60143743 A JPS60143743 A JP S60143743A
Authority
JP
Japan
Prior art keywords
gas
light
chamber
light receiving
infrared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58248203A
Other languages
Japanese (ja)
Other versions
JPS6356489B2 (en
Inventor
Takao Imaki
隆雄 今木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horiba Ltd
Original Assignee
Horiba Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horiba Ltd filed Critical Horiba Ltd
Priority to JP58248203A priority Critical patent/JPS60143743A/en
Publication of JPS60143743A publication Critical patent/JPS60143743A/en
Publication of JPS6356489B2 publication Critical patent/JPS6356489B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/1702Systems in which incident light is modified in accordance with the properties of the material investigated with opto-acoustic detection, e.g. for gases or analysing solids

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To increase the output, by communicating a pneumatic type detector to a pair of light receiving chambers, which are filled with a sample gas under the state a gas filter, wherein a measuring gas is sealed, is held in-between, and alternately projecting light beams from a pair of light sources arranged at facing positions. CONSTITUTION:A measuring gas is sealed in a gas filter 1. A sample gas is fed to light receiving chambers 2 and 3 from a feeding pipe 8. Under the state, a power source switch 19 is turned ON, and infrared rays are projected to the chamber 2 from the light source 15. The gas to be measured and an interfering gas in the chamber 2 absorbs the infrared-ray energy having a specified wavelength and the pressure in the chamber 2 is increased. Almost all the infrared-ray energy having the absorption wavelength of the measuring gas is absorbed by the filter 1. The infrared-ray energy is absorbed by the interfering gas in the chamber 3, and the pressure in the chamber 3 is increased. Owing to the pressure increase in the chambers 2 and 3, a film body 4a of a detector 4 is displaced by displacement amount DELTAl in the direction P. A switch 18 is switched, and the film body 4a is displaced by the displacement amount DELTAl in the direction Q by the infrared rays from a light source 16. Thus the displacement amount can be made substantially twice.

Description

【発明の詳細な説明】 本発明は光音1型ガス分析針に関する。[Detailed description of the invention] The present invention relates to a Koson type 1 gas analysis needle.

試料ガス中の特定のガスの濃度を測定するものとして、
光音覇型ガス分析計があり、例えば特公昭57−487
32号公報に示されるものが知られている。このガス分
析計は特に、試料ガス内に含まれる干渉ガスの干渉影響
を有効に排除することができるところから、極めて高い
測定精度を有している。
For measuring the concentration of a specific gas in a sample gas,
There is a light sound type gas analyzer, for example,
The one shown in Publication No. 32 is known. In particular, this gas analyzer has extremely high measurement accuracy because it can effectively eliminate the interference effects of interfering gases contained in the sample gas.

本発明は上述した光音1型ガス分析針を更に改良するも
ので、従来に比してその出力を大幅に増大させ、もって
S/N比の向上を図ることを目的とする。
The present invention further improves the optical sound type 1 gas analysis needle described above, and aims to significantly increase its output compared to the conventional one, thereby improving the S/N ratio.

以下、本発明の一実施例を図面に基いて説明する。Hereinafter, one embodiment of the present invention will be described based on the drawings.

第1図において、(1)は測定ガスを封入して構成した
ガスフィルタ、+21 、 +81はこのガスフィルタ
il)を間にはさんだ状態でその両側に互いに一直線状
となるように配置された一対の受光室である。そして、
前記受光室(2) 、 (B)にはそれぞれ試料ガスの
導入口(2m)、(3m)及び導出口(2b)、(3b
) カRけられている。
In Fig. 1, (1) is a gas filter constructed by sealing the measurement gas, and +21 and +81 are a pair of gas filters (il) placed between them, and arranged in a straight line on both sides of the gas filter. This is the light receiving chamber. and,
The light receiving chambers (2) and (B) have sample gas inlets (2m) and (3m) and outlet ports (2b) and (3b), respectively.
) It has been rejected.

(4)はニューマチック型検出器(以下、検出器という
)で、図示する側にあっては、隔室(4)の内部に張設
されたコンデンサマイクロホンや膜(以下、膜体という
) (4a)とこの膜体(4i) iこ対向して設けら
れた固定極(4b)とからなるコンデンサマイクロホン
検出器が用いられている。そして、前記膜体(4a)の
一方便と前記受光室の一方(2)とが、又、膜体(4a
)の他方側と受光室の他方(3)とがそれぞれ連通する
ように、連通路(5)、(6)が設けられている。(7
)は高インピーダンス増中器で、前記検出器(4)の出
力、即ち、膜体(4a)の変位に基づく電気信号を増幅
するものである。
(4) is a pneumatic type detector (hereinafter referred to as a detector), and the side shown in the figure includes a condenser microphone and a membrane (hereinafter referred to as a membrane body) stretched inside the compartment (4). 4a) and a fixed pole (4b) provided opposite the membrane body (4i). And, one side of the membrane body (4a) and one side (2) of the light receiving chamber are also connected to the membrane body (4a).
) and the other side (3) of the light-receiving chamber are provided with communication paths (5) and (6), respectively. (7
) is a high impedance intensifier that amplifies the output of the detector (4), that is, the electrical signal based on the displacement of the membrane (4a).

(8)は試料ガスの供給管で、2又に分岐して、キャピ
ラリ(91、(101を介して前記導入口(2m)、(
3a)に接続されている。(11) 、 (121i1
試料ガスの排出管で、それぞれキャピラリQ埼、 04
)を介して前記導出口(zb)、(3b)に接続されて
いる。
(8) is a supply pipe for the sample gas, which branches into two and passes through the capillary (91, (101) to the inlet (2 m), (
3a). (11) , (121i1
Sample gas discharge pipe, capillary Qsai, 04 respectively.
) is connected to the outlet ports (zb) and (3b).

(lfi) 、 HGt一対の光源(たとえば黒体輻射
光源)で、いずれの光源(lfil 、 (Iftlか
ら発せられる光(例えば、赤外線)も受光室(2)(又
は(3))−ガスフィルタ+1)−受光室(3)(又は
(2))の順で照射できるよう互いに対向配置されてい
る。
(lfi), HGt A pair of light sources (for example, a black body radiation source), and the light (for example, infrared) emitted from either light source (lfil, (Iftl) is the light receiving chamber (2) (or (3)) - gas filter +1 ) - light receiving chamber (3) (or (2)) are arranged facing each other so that the light can be irradiated in this order.

そして、2つの受光室(21、(81とガスフィルタ+
11(以下、受光室等Aという)を照射する光は、前記
光源0荀、α呻から交互に与えられるように構成されて
いる。すなわち、電源07)と光源(+51 、 On
との間に切換スイッチ輪を設け、この切換スイッチ幀を
切換操作することにより、いずれか一方の光源(+5)
Then, two light receiving chambers (21, (81 and gas filter +
The light irradiating the light receiving chamber 11 (hereinafter referred to as light receiving chamber A) is configured to be alternately applied from the light sources 0 and . That is, power supply 07) and light source (+51, On
A change-over switch ring is provided between the
.

(+呻が点灯するように構成しである。(I鋳は電源ス
ィッチである。
(It is configured so that the + button lights up. (The I button is the power switch.

なお、受光室等Aを照射する光が2つの光源(Im。Note that the light that irradiates A, such as the light receiving chamber, is from two light sources (Im.

Cl1lのうちいずれか一方から与えられ心ようにする
には、上述したものの他、第2図に示すように構成して
もよい。すなわち、同図(4)は受光室等Aと両光源(
+5) 、 Qllf)との間に1つの開口部(20a
)を備えた円筒チョッパー−を設けたものであり、同図
(B)は受光室等Aと両光源+15) 、 Hとの間に
それぞれシャッターf2.1)、@を設けたものである
。そして、この第2図(2)、@)に示すものモは、両
光源(15) 、 Hを同時に点灯しておき、円筒チョ
ッパー−を回転させたり(同図囚)、シャッター叫に(
22を交互に開閉する(同図〕))ことにより、受光室
等Aを照射する光が両光源(159、061から交互に
与えられるようにしている。
In addition to the above-mentioned configuration, the configuration shown in FIG. 2 may be used in order to allow the signal to be supplied from either one of the Cl11 and Cl11. In other words, (4) in the same figure shows the light receiving chamber A and both light sources (
+5), Qllf) and one opening (20a
), and in the same figure (B), shutters f2.1) and @ are provided between the light receiving chamber A and both light sources +15) and H, respectively. The model shown in Figure 2 (2) @) turns on both light sources (15) and H at the same time, rotates the cylindrical chopper (see figure 2), and fires the shutter (
By alternately opening and closing the light receiving chamber 22 (see the same figure), the light irradiating the light receiving chamber etc. A is alternately provided from both light sources (159, 061).

また、上述の実施例においては、検出器(4)はコンデ
ンサマイクロホン検出器としているが、これをマイクロ
フローセンサで構成してあってもよし)。
Furthermore, in the above-described embodiment, the detector (4) is a condenser microphone detector, but it may also be a micro flow sensor.

次に上述のガス分析計の動作について説明すると、例え
ば測定ガスとして所定濃度のC0(−酸化炭素)をガス
フィルタT1)に封入し、供給管(8)により試料ガス
を導入口(2a)、(3a)を介して受光室(2)、(
3)にそれぞれ供給する。前記試料ガスには測定対象で
あるCOの他、C02(−酸化炭素)等の干渉ガスが含
まれている。
Next, the operation of the above-mentioned gas analyzer will be explained. For example, a predetermined concentration of C0 (-carbon oxide) as a measurement gas is sealed in a gas filter T1), and a sample gas is introduced into the inlet (2a) through the supply pipe (8). (3a) through the light receiving chamber (2), (
3) respectively. In addition to CO, which is the object of measurement, the sample gas contains an interfering gas such as CO2 (-carbon oxide).

この状態で、電源スィッチ(+9)をONにし、更に切
換スイッチ舖を操作して一方の光1niaが電源07)
に接続されると、前記光源(I荀から赤外線が受光室等
Aに向けて発せられる。前記赤外線はまず一方の受光室
(2)に入射し、この受光室(2)内の測定ガス及び干
渉ガスによって一定波長の赤外エネルギーが吸収され、
その結果前記受光室(2)内の温度が上昇し更に圧力が
上昇する。次に、前記赤外線はガスフィルタ(1)を通
過するが、この通過の際測定ガスの吸収波長の赤外線は
殆んど吸収される。更に、前記赤外線は他の受光室(8
)Iと入射し、主に干渉ガスによって赤外エネルギーが
吸収され、この吸収により前記受光室(3)内の温度上
昇が生じ、これによって圧力が上昇する。
In this state, turn on the power switch (+9) and operate the selector switch to switch one light 1nia to power 07).
When connected to the light source (I), infrared rays are emitted from the light source (I) toward the receiving chamber A.The infrared rays first enter one of the receiving chambers (2), and the measurement gas and Infrared energy of a certain wavelength is absorbed by the interfering gas,
As a result, the temperature inside the light receiving chamber (2) rises, and the pressure further rises. Next, the infrared rays pass through the gas filter (1), but during this passage, most of the infrared rays having the absorption wavelength of the measurement gas are absorbed. Furthermore, the infrared rays are transmitted to another light receiving chamber (8
) I, and the infrared energy is mainly absorbed by the interference gas, and this absorption causes a temperature rise in the light receiving chamber (3), which increases the pressure.

前記両受光室+21 、 (11の圧力上昇は連通路t
el 、 +61を介して直ちに検出器(4)の膜体(
4a)に伝えられるが、前記膜体(4a)は測定ガスに
よる赤外エネルギー吸収分だけP方向にふくらむよう変
位量Δlだけ変位する。(即ち、干渉ガスの影響が除去
される。)そして、前記変位量Δlに応じた電気信号S
が高インピーダンス増幅器(7)に出力される。
Both light receiving chambers +21, (the pressure increase in 11 is due to the communication path t
el, via +61 immediately the membrane body of the detector (4) (
4a), the membrane body (4a) is displaced by a displacement amount Δl so as to swell in the P direction by the amount of infrared energy absorbed by the measurement gas. (That is, the influence of the interfering gas is removed.) Then, the electric signal S corresponding to the displacement amount Δl
is output to a high impedance amplifier (7).

次に切換スイッチ(181を操作して、他方の光源θ→
が電源αηに接続されるようにすると、今度は光源(I
ψから赤外線が受光室等Aに向けて発せられ、上述と同
様の動作を行うが、膜体(4a)はP方向とは正反対の
Q方向に向って変位量Δlだけ変位し、同様に電気信号
Sが出力される。
Next, operate the changeover switch (181) to select the other light source θ→
is connected to the power supply αη, then the light source (I
Infrared rays are emitted from ψ toward the light receiving chamber A, and the same operation as described above is performed, but the membrane body (4a) is displaced by the amount of displacement Δl in the Q direction, which is directly opposite to the P direction, and similarly generates electricity. A signal S is output.

而して、前記特公昭57−48732号公報に示すもの
においてもガスフィルタの両側に2つの受光室を設けて
いるが、両受光室の関係、すなわち測定側と比較側との
関係は固定されているため、膜体は一方向へのみΔlだ
け変位する。
In the device shown in Japanese Patent Publication No. 57-48732, two light-receiving chambers are provided on both sides of the gas filter, but the relationship between the two light-receiving chambers, that is, the relationship between the measurement side and the comparison side, is not fixed. Therefore, the membrane body is displaced by Δl only in one direction.

これに対して、上述の実施例においては受光室+21 
、 +31の測定側と比較側との関係は交互に入れかわ
り、膜体(4a)は正逆いずれの方向にもΔlだけ変位
するから、実質的な変量は2Δlとなる、すなわち従来
のこの種ガス分析計の出力の2倍もの電気信号を得るこ
とができるのである。
On the other hand, in the above embodiment, the light receiving chamber +21
, +31, the relationship between the measurement side and the comparison side is alternately switched, and the membrane body (4a) is displaced by Δl in either the forward or reverse direction, so the actual variable is 2Δl, that is, compared to the conventional method of this type. It is possible to obtain an electrical signal that is twice the output of a gas analyzer.

本発明の光音@qガス分析計は、測定ガスを封入したガ
スフィルタを間にはさんだ状態で、試料ガスを充填する
ための一対の受光室を設け、前記両受光室とニューマチ
ック型検出器とを連通せしめるとともに、前記両受光室
に試料ガスの導入口及び導出口をそれぞれ設け、前記両
光源から交互に与えられるように構成しているので、そ
の出力は従来の光音響型ガス分析針の2倍となり、従っ
てドリフト、指示誤差が小さくなり、SlN比が大幅に
向上する。
The photoacoustic@q gas analyzer of the present invention is provided with a pair of light receiving chambers for filling the sample gas with a gas filter filled with the measurement gas sandwiched between them, and a pair of light receiving chambers and a pneumatic type detection chamber are provided. In addition, both the light receiving chambers are provided with an inlet and an outlet for the sample gas, and the light is supplied alternately from the two light sources, so that the output is equal to that of conventional photoacoustic gas analysis. The number of needles is twice that of the needle, so drift and indication error are reduced, and the SIN ratio is greatly improved.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の一実施例を示すもので、第1図は光音響
型ガス分析計の構成図、第2図(A)(B)は、夫々、
光源の切換手段を示す説明図である。 (11−・・ガスフィルタ、+21 、 +31・・・
受光室、(za)、(3a)・・・導入口、(2b)、
(3b)・・・導出口、(4)・・・ニューマチック検
出器、(ILα6)・・・光源。 第1図 第2図 (A) 21 21 3
The drawings show one embodiment of the present invention; FIG. 1 is a configuration diagram of a photoacoustic gas analyzer, and FIGS. 2(A) and (B) are respectively,
FIG. 3 is an explanatory diagram showing a light source switching means. (11-...Gas filter, +21, +31...
Light receiving chamber, (za), (3a)...inlet, (2b),
(3b)... Outlet, (4)... Pneumatic detector, (ILα6)... Light source. Figure 1 Figure 2 (A) 21 21 3

Claims (1)

【特許請求の範囲】[Claims] 測定ガスを封入したガスフィルタを間にはさんだ状態で
、試料ガスを充填するための一対の受光室を設け、前記
両受光室とニューマチック型検出器とを連通せしめると
ともに、前記両受光室に試料ガスの導入口及び導出口を
それぞれ設け、前記両受光室を照射するための一対の光
源を対向配置し、前記両受光室を照射する光が前記両光
源から交互に与えられるように構成したことを特徴とす
る光音響型ガス分析計。
A pair of light receiving chambers for filling the sample gas are provided with a gas filter filled with the measurement gas sandwiched between them, and both the light receiving chambers and the pneumatic detector are communicated with each other. An inlet and an outlet for the sample gas are respectively provided, a pair of light sources for irradiating both the light receiving chambers are arranged opposite each other, and the light for irradiating both the light receiving chambers is alternately provided from the two light sources. A photoacoustic gas analyzer characterized by:
JP58248203A 1983-12-31 1983-12-31 Optoacoustic type gas analyzer Granted JPS60143743A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58248203A JPS60143743A (en) 1983-12-31 1983-12-31 Optoacoustic type gas analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58248203A JPS60143743A (en) 1983-12-31 1983-12-31 Optoacoustic type gas analyzer

Publications (2)

Publication Number Publication Date
JPS60143743A true JPS60143743A (en) 1985-07-30
JPS6356489B2 JPS6356489B2 (en) 1988-11-08

Family

ID=17174725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58248203A Granted JPS60143743A (en) 1983-12-31 1983-12-31 Optoacoustic type gas analyzer

Country Status (1)

Country Link
JP (1) JPS60143743A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09512629A (en) * 1994-04-15 1997-12-16 アメリカン・スタンダード・インコーポレイテッド Indoor air quality sensor and indoor air quality detection method
US8848191B2 (en) 2012-03-14 2014-09-30 Honeywell International Inc. Photoacoustic sensor with mirror

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03779U (en) * 1989-02-10 1991-01-08
JPH0337573U (en) * 1989-08-18 1991-04-11

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09512629A (en) * 1994-04-15 1997-12-16 アメリカン・スタンダード・インコーポレイテッド Indoor air quality sensor and indoor air quality detection method
US8848191B2 (en) 2012-03-14 2014-09-30 Honeywell International Inc. Photoacoustic sensor with mirror

Also Published As

Publication number Publication date
JPS6356489B2 (en) 1988-11-08

Similar Documents

Publication Publication Date Title
US5170064A (en) Infrared-based gas detector using a cavity having elliptical reflecting surface
JP7075862B2 (en) Analysis equipment
US4236827A (en) Opto-acoustic gas analyzer
JP2000512757A (en) NDIR apparatus and method for measuring isotope ratios in gaseous samples
JPS62212551A (en) Gas chamber for test used for spectrometer
US3727050A (en) Gas analyzer
CN112763443B (en) Carbon dioxide sensor, calibration method and online detector
JPH0217327Y2 (en)
JPH1082740A (en) Infrared gas analyzer
JPS60143743A (en) Optoacoustic type gas analyzer
JPS6217183B2 (en)
US4803052A (en) Carbon monoxide detector
WO1996001418A1 (en) Ndir gas analysis using spectral ratioing technique
CN112033925A (en) Multi-component wide-range gas analyzer and gas analysis method
JPH07190930A (en) Gas analyzer
Hollowell Current instrumentation for continuous monitoring for SO2
EP0105659A2 (en) Carbon monoxide detectors
CN212748725U (en) Multi-component wide-range gas analyzer
CA1319833C (en) Infrared-based gas detector
CN216847477U (en) Raman device for gas analysis
KR830000032B1 (en) Photoacoustic gas analyzer
JPH07159323A (en) Fluid-modulated gas analyzer
CN219552237U (en) Gas absorption tank and carbon dioxide gas analyzer with same
CN218098832U (en) Gas detection system
JP2016057320A (en) Infrared gas analysis device