Nothing Special   »   [go: up one dir, main page]

JPS60148679A - Submerged arc welding method - Google Patents

Submerged arc welding method

Info

Publication number
JPS60148679A
JPS60148679A JP439384A JP439384A JPS60148679A JP S60148679 A JPS60148679 A JP S60148679A JP 439384 A JP439384 A JP 439384A JP 439384 A JP439384 A JP 439384A JP S60148679 A JPS60148679 A JP S60148679A
Authority
JP
Japan
Prior art keywords
welding
molten metal
magnetic field
force
submerged arc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP439384A
Other languages
Japanese (ja)
Inventor
Mitsuaki Obara
小原 充明
Tsutomu Kimura
木村 剣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP439384A priority Critical patent/JPS60148679A/en
Publication of JPS60148679A publication Critical patent/JPS60148679A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/08Arrangements or circuits for magnetic control of the arc

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Arc Welding In General (AREA)
  • Arc Welding Control (AREA)

Abstract

PURPOSE:To prevent generation of an undercut, to increase a welding speed, and to improve a productivity by making a force of a reverse direction operate on a molten metal flow by an electromagnetic force of a moving magnetic field against a molten metal, in case of a horizontal submerged arc welding. CONSTITUTION:In case of a large heat input welding or a high speed welding, a molten pool 5 becomes long and large, and flows 6 in the rear of an arc. A force 11 for obstructing a metallic flow is operated by providing a moving magnetic field generating device 7 just behind an arc fusion zone 10. By this force 11, a good welding state is obtained by preventing generation of an undercut part of a weld zone, and a work efficiency can be improved by further increasing a welding speed.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は通常の水平サブマージアーク溶接、例えばスト
レートシーム溶接鋼管の製造や鋼板の各種板継ぎを行う
ためのサブマージアーク溶接法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to ordinary horizontal submerged arc welding, such as a submerged arc welding method for manufacturing straight seam welded steel pipes and joining various types of steel plates.

(従来技術) 従来よシ水平サブマージアーク溶接では、例えばストレ
ートシーム鋼管などの溶接を高速化する為に、さまざま
な方案が出されている1例えば、高速多電極アーク溶接
法(特公昭54−32749号公報)やI開先高速サブ
マージアーク溶接法(特公昭56−52672)のよう
に、溶接ワイヤー、フラックス、開先卦よび溶接条件の
改善によって溶接の高速化を行なっている。
(Prior art) In conventional horizontal submerged arc welding, various methods have been proposed to speed up the welding of straight seam steel pipes. Welding speed has been increased by improving the welding wire, flux, groove shape, and welding conditions, such as the I-groove high-speed submerged arc welding method (Japanese Patent Publication No. 56-52672).

(従来技術の問題点) 従来技術では第1図に示すように、溶接条件によって決
まるアーク力や、スラグと金属(固体。
(Problems with the conventional technology) As shown in Figure 1, in the conventional technology, the arc force determined by the welding conditions and the difference between slag and metal (solid).

液体)の界面張力1重力等で生ずる溶融金属流によって
、溶融金属後退距離3とピード止端部凝固開始位置4の
相対関係が決まシ、それによってアンダーカットなどの
溶接欠陥が発生しない最高溶接速度の限界が決まってい
た。
The relative relationship between the molten metal retraction distance 3 and the solidification start position 4 at the toe of the peed is determined by the molten metal flow generated by the interfacial tension of the liquid (1) gravity, etc., thereby achieving the maximum welding speed at which welding defects such as undercuts do not occur. The limits were set.

(発明の目的) 本発明はアンダーカットなどの溶接欠陥を発生させるこ
となく、最高溶接速度の限界を従来法よシさらに向上さ
せることが可能なサブマージアーク溶接法を得ることを
目的としている。
(Objective of the Invention) The object of the present invention is to obtain a submerged arc welding method that can further improve the maximum welding speed limit compared to conventional methods without causing welding defects such as undercuts.

(発明の構成0作用) 本発明に係るサブマージアーク溶接法では、水平サブマ
ージアーク溶接において溶接中に生成する溶融金属に対
して移動磁界による電磁推力を作用させることにより、
溶融金属後退距離を制御して最高溶接速度の向上を可能
としている。
(Structure 0 Effect of the Invention) In the submerged arc welding method according to the present invention, by applying an electromagnetic thrust by a moving magnetic field to the molten metal generated during welding in horizontal submerged arc welding,
The maximum welding speed can be increased by controlling the molten metal retreat distance.

大入熱溶接や高速溶接のように、溶融池が長大となる溶
接の場合、溶融金属はアーク後方へ流れて凝固する。本
発明の溶接法は、例えば第2図(a)に示すように、こ
の凝固前の溶接金属に対して平行に設置した移動磁界発
生装置7により、発生する移動磁界によってや誘導され
たりず電流と移動磁界の相互作用によって溶融金属に推
力を与え、任意の形に溶接ビードを凝固させるものであ
る。
In welding where the molten pool is long, such as high heat input welding or high-speed welding, the molten metal flows toward the rear of the arc and solidifies. In the welding method of the present invention, for example, as shown in FIG. 2(a), a moving magnetic field generating device 7 is installed parallel to the weld metal before solidification, so that no current is induced by the moving magnetic field generated. The interaction between the molten metal and the moving magnetic field applies thrust to the molten metal, solidifying the weld bead into an arbitrary shape.

第2図(b)に示すのは、移動磁界発生装置7を溶接部
の裏面に設置して、溶接部の裏面から前記同様に磁界を
作用させるものである。この態様では、直接溶融金属の
表面に磁界発生装置7を設けた前記の態様に比較して、
効果は減少するが、設備上の障害物が無いので、設備設
計上はこの方が有利な場合もある。
What is shown in FIG. 2(b) is a device in which a moving magnetic field generating device 7 is installed on the back side of the welding part, and a magnetic field is applied from the back side of the welding part in the same manner as described above. In this embodiment, compared to the above embodiment in which the magnetic field generator 7 is provided directly on the surface of the molten metal,
Although the effectiveness is reduced, there are no obstacles on the equipment, so this may be more advantageous in terms of equipment design.

なお第2図では単極サブマージアーク溶接を例示したが
、多電極サブマージアーク溶接に適用しても勿論同様の
効果がある。
Although single-electrode submerged arc welding is illustrated in FIG. 2, the same effect can be obtained even when applied to multi-electrode submerged arc welding.

次に本発明法の作用について、更に具体的に述べる。例
えば、第2図において移動磁界を付加しない場合、溶融
金属は溶接進行方向と反対の方向へ流れるが、高速溶接
になると、溶融金属後退距離が大きくなし、第3図(b
)に示すようにアンダーカット12が発生する。このと
き第2図に示す移属後退距離が小さくなってアンダーカ
ットは防止され、第2図(a)に示すような良好なビー
ドを得ることができる。
Next, the effect of the method of the present invention will be described in more detail. For example, in Fig. 2, when no moving magnetic field is applied, the molten metal flows in the opposite direction to the welding progress direction, but when high-speed welding is performed, the molten metal recedes distance becomes large, and as shown in Fig. 3 (b).
), an undercut 12 occurs. At this time, the transfer retreat distance shown in FIG. 2 becomes small, undercutting is prevented, and a good bead as shown in FIG. 2(a) can be obtained.

(実施例) 第1表に本発明の実施例を示す。供試材は平板鋼板を使
い、従来法の最高溶接速度の限界以上で溶接した場合に
おいて、従来法の移動磁界による推力を与えない場合と
、本発明法の移動磁界による推力を与えた場合とについ
てサブマージアーク溶接を実施した。
(Example) Table 1 shows examples of the present invention. The test material used was a flat steel plate, and when welding was carried out at a speed exceeding the maximum welding speed limit of the conventional method, the conventional method applied no thrust due to the moving magnetic field, and the present method applied thrust due to the moving magnetic field. Submerged arc welding was carried out for this.

第1表に示す結果から明らかなように、従来法の場合に
はアンダーカットが発生したが、本発明法ではそのよう
な欠陥は発生せず、良好な溶接ビードを得ることができ
た。
As is clear from the results shown in Table 1, undercuts occurred in the conventional method, but such defects did not occur in the method of the present invention, and a good weld bead could be obtained.

第 1 表 前記のように最高溶接速度は、溶接アークによって生ず
る溶融金属の流れや溶融ヘッドのバランスによって、溶
融金属後退距離やビード上端部凝固開始位置が制限され
るが、本発明法により、移動磁界によって溶接時の溶融
金属に人為的に推力を加えることにより、かな多自由に
ビード形状を制御し最高溶接速度の限界を向上させるこ
とができる。
Table 1 As mentioned above, the maximum welding speed is limited by the molten metal flow caused by the welding arc and the balance of the molten head, as well as the molten metal retreat distance and the bead top solidification start position. By artificially applying thrust to the molten metal during welding using a magnetic field, it is possible to freely control the bead shape and improve the maximum welding speed limit.

(発明の効果) 以上説明した如く、本発明法によれば、最高溶接速度を
向上させることができるので、生産性が向上し、工業的
に非常に価値ある発明である。
(Effects of the Invention) As explained above, according to the method of the present invention, the maximum welding speed can be improved, productivity is improved, and the invention is industrially very valuable.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、溶融金属後退距離とビード上端部凝固開始位
置を示す説明図。 第2図は、本発明法の説明図で、(a)は移動磁界発生
装置で電磁推力をビード表面側から溶融金属に作用させ
る場合、(b)は同様に裏面から作用させる場合である
。 第3図は溶接部の断面図を示し、(a)は適正な溶接待
のピード形状、(b)はアンダーカットが発生している
ピード形状である。 1・・・母材、2・・・ピード、3・・・溶融金属後退
距離、4・・・ビード止端部凝固開始位置、5・・・溶
融金属、6・・・溶融金属流、7・・・移動磁界発生装
置、8・・・電極、9・・・ワイヤー、10・・・アー
ク、11・・・磁界の移動方向、12・・・アンダーカ
ット。 代理人 弁理士 秋 沢 政 光 他2名
FIG. 1 is an explanatory diagram showing the retreat distance of molten metal and the solidification start position of the upper end of the bead. FIG. 2 is an explanatory diagram of the method of the present invention, in which (a) shows the case where the electromagnetic thrust is applied to the molten metal from the front side of the bead using a moving magnetic field generator, and (b) shows the case where the electromagnetic thrust is applied from the back side. FIG. 3 shows a cross-sectional view of a welded part, in which (a) shows a proper bead shape before welding, and (b) shows a bead shape in which an undercut has occurred. 1... Base material, 2... Pead, 3... Molten metal retreat distance, 4... Bead toe solidification start position, 5... Molten metal, 6... Molten metal flow, 7 ... Moving magnetic field generator, 8... Electrode, 9... Wire, 10... Arc, 11... Moving direction of magnetic field, 12... Undercut. Agent: Patent attorney Masamitsu Akizawa and 2 others

Claims (1)

【特許請求の範囲】[Claims] (1)水平サブマージアーク溶接において溶接中に生成
する溶融金属に対して移動磁界による電磁推力を作用さ
せることを特徴とするサブマージアーク溶接法。
(1) A submerged arc welding method characterized by applying electromagnetic thrust by a moving magnetic field to molten metal generated during horizontal submerged arc welding.
JP439384A 1984-01-13 1984-01-13 Submerged arc welding method Pending JPS60148679A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP439384A JPS60148679A (en) 1984-01-13 1984-01-13 Submerged arc welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP439384A JPS60148679A (en) 1984-01-13 1984-01-13 Submerged arc welding method

Publications (1)

Publication Number Publication Date
JPS60148679A true JPS60148679A (en) 1985-08-05

Family

ID=11583104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP439384A Pending JPS60148679A (en) 1984-01-13 1984-01-13 Submerged arc welding method

Country Status (1)

Country Link
JP (1) JPS60148679A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0251423A2 (en) * 1986-06-23 1988-01-07 Philip John Blakeley Improvements relating to welding
JPH0518736U (en) * 1991-08-29 1993-03-09 株式会社サンク理研工業 Shaft fastener

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0251423A2 (en) * 1986-06-23 1988-01-07 Philip John Blakeley Improvements relating to welding
JPH0518736U (en) * 1991-08-29 1993-03-09 株式会社サンク理研工業 Shaft fastener

Similar Documents

Publication Publication Date Title
CN107322148B (en) Welding method based on tungsten electrode argon arc welding and cold metal transition welding composite heat source and application
JP5461399B2 (en) Short-time stud joining method in which an arc is generated by advancing the first workpiece in a plurality of stages in the direction of the second workpiece.
JPS60148679A (en) Submerged arc welding method
JP4224196B2 (en) Multi-electrode submerged arc welding method with excellent weld bead shape
KR101145654B1 (en) Gas metal buried arc welding of lap-penetration joints
JPS58176074A (en) Consumable electrode type pulse arc welding method
JPH0731888Y2 (en) Ultra-thin material lap joint welding equipment
JP3256089B2 (en) Non-consumable nozzle type electroslag welding method
JPS6227914B2 (en)
JPS6245474A (en) Narrow groove tig welding device
Ukita et al. High-speed DCEN TIG welding of very thin aluminium sheets with magnetic arc control
JPS6045034B2 (en) DC TIG weaving welding method
JPS61266185A (en) Double electrode mig welding method
JPS5827035B2 (en) Overlay welding method using a strip electrode
JPS5927773A (en) Single side welding method
JPS62263868A (en) Narrow gap tig welding method
JP3741402B2 (en) Two-electrode electrogas welding method
Aswal et al. Various Methods of Metal Transfer in the Welding Process
JPS582743B2 (en) Non-consumable electrode arc welding method
JPH0359785B2 (en)
JPH048146B2 (en)
JPH0532154B2 (en)
JPH01202371A (en) Ac pulse submerged arc welding method
JPH078438B2 (en) Electroslag welding method
JPS6147635B2 (en)