Nothing Special   »   [go: up one dir, main page]

JPS60145957A - High tenacity sintered body - Google Patents

High tenacity sintered body

Info

Publication number
JPS60145957A
JPS60145957A JP59002426A JP242684A JPS60145957A JP S60145957 A JPS60145957 A JP S60145957A JP 59002426 A JP59002426 A JP 59002426A JP 242684 A JP242684 A JP 242684A JP S60145957 A JPS60145957 A JP S60145957A
Authority
JP
Japan
Prior art keywords
oxide
sintered body
nitride
zirconia
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59002426A
Other languages
Japanese (ja)
Inventor
八田 篤明
祐 恩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Krosaki Harima Corp
Original Assignee
Kurosaki Refractories Co Ltd
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurosaki Refractories Co Ltd, Nippon Steel Corp filed Critical Kurosaki Refractories Co Ltd
Priority to JP59002426A priority Critical patent/JPS60145957A/en
Publication of JPS60145957A publication Critical patent/JPS60145957A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Products (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は広範な適用範囲を有する高靭性エンニアリング
セラミックスに関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to high-toughness engineering ceramics having a wide range of applications.

〔従来技術とその問題点〕[Prior art and its problems]

炭化珪素は窒化珪素と並んで化学的に安定で、耐摩耗性
、耐熱衝撃性に優れ、高温の強度、硬度が高いなど数多
くの有利性からエンジニアリングセラミックスとして最
も有望視される材料である。
Silicon carbide, like silicon nitride, is chemically stable, has excellent wear resistance and thermal shock resistance, and has many advantages such as high strength and hardness at high temperatures, making it the most promising material for engineering ceramics.

従来、かかる炭化珪素焼結体の最大の欠点は破壊靭性に
劣ることと云われ、こわれ易いことが本質的な問題点で
あった。
Conventionally, the biggest drawback of such silicon carbide sintered bodies is said to be poor fracture toughness, and the essential problem is that they are easy to break.

そこで多くの研究者によって応力を吸収できる組織構成
の研究が始められ、古くは粒界に金属を介在せしめるサ
ーメットが、最近では準安定のジルコニアを介在せしめ
ることが盛んに研究されている。
Therefore, many researchers have begun research into microstructural structures that can absorb stress, and in the past, cermets with metal interposed at the grain boundaries have been actively researched, but recently cermets with metastable zirconia interposed therein have been actively researched.

現状においては、サーメットは高温で塑性変形と酸化劣
化を起すので構造材料として未だ不適当とされているが
、ジルコニアを添加することによって靭性を増したアル
ミナ材料は、タフンドセラミックスとして切削工具を初
めエンジン部品に至るまでその研究範囲を拡大されつつ
ある。
Currently, cermet is still considered unsuitable as a structural material because it undergoes plastic deformation and oxidative deterioration at high temperatures, but alumina material, which has increased toughness by adding zirconia, is used as tough ceramics for cutting tools and other applications. The scope of research is being expanded to include engine parts.

しかしタフンドアルミナ、タフンドジルコニアは何れも
酸化物であり、1000“C以上では塑性変形を起すの
で独立した構造材料としての機能を果すことができない
。例えば、ピストンやシリンダーヘッドをセラミックス
で構成する研究においては、冷端側を金属構造材のバッ
クアンプによって支持し、セラミックスは単なる断熱材
的な役割に置き換えられているに過ぎない。若しも1.
共有結合の強い炭化珪素や窒化珪素に準安定あるいは半
安定化されたジルコニアの靭性が賦与できればセラミッ
クス構造材料としての理想的な機能が得られるであろう
ことが考えられる。
However, both toughened alumina and toughened zirconia are oxides and undergo plastic deformation at temperatures above 1000"C, so they cannot function as independent structural materials. For example, when pistons and cylinder heads are made of ceramics, In research, the cold end side is supported by a back amplifier made of metal structural material, and the ceramics are simply replaced with the role of a heat insulating material.If 1.
It is thought that if the toughness of metastable or semi-stable zirconia could be imparted to silicon carbide or silicon nitride, which have strong covalent bonds, an ideal function as a ceramic structural material could be obtained.

しかしながら、単に、炭化珪素にジルコニアを添加して
焼成すれば、 2 ZrO2+ 35iC−” 2 ZrC+ 3 S
iO↑+C○↑ (1)(1)式の反応によって焼成時
に多量のガスを発生し緻密な焼結体が得られず、ガスを
発生して緻密化しない上に高温強度が低下する。また(
1)式の生成物であるZrCは焼結体の耐酸化性を劣化
させるという問題がある。
However, if zirconia is simply added to silicon carbide and fired, 2 ZrO2+ 35iC-" 2 ZrC+ 3 S
iO↑+C○↑ (1) Due to the reaction of the formula (1), a large amount of gas is generated during firing, making it impossible to obtain a dense sintered body, and the high temperature strength is lowered in addition to the generation of gas, which prevents densification. Also(
ZrC, which is a product of formula 1), has the problem of deteriorating the oxidation resistance of the sintered body.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、前記炭化珪素の高温機械特性と準安定
あるいは半安定のジルコニアがもたらず高靭性とを併せ
て有する焼結体を実現化することにある。
An object of the present invention is to realize a sintered body that has both the high-temperature mechanical properties of silicon carbide and the high toughness that metastable or semi-stable zirconia does not provide.

〔発明の構成〕[Structure of the invention]

本発明者等は土量組成がSiCとZrO2から構成る配
合物にZrO2結晶安定化剤を過剰に添加し、雰囲気加
圧下で焼成することによって(1)式のSiCおよびZ
rO2の分解反応を阻止しつつ、高温安定な不定比粒界
相を形成せしめ緻密な焼結体が得られることを見出だし
た。また、本発明者等は上記配合物に高温安定な金属窒
化物を添加することにより粒界相がNを含む不定比化合
物となることを見いだし、焼結体の機械的性質が改善さ
れることを知見し本発明に至った。
The present inventors added an excessive amount of ZrO2 crystal stabilizer to a composition consisting of SiC and ZrO2, and fired it under pressure in an atmosphere to obtain SiC and ZrO2 of formula (1).
It has been found that a dense sintered body can be obtained by forming a non-stoichiometric grain boundary phase that is stable at high temperatures while inhibiting the decomposition reaction of rO2. In addition, the present inventors have discovered that by adding a high-temperature stable metal nitride to the above compound, the grain boundary phase becomes a non-stoichiometric compound containing N, and the mechanical properties of the sintered body are improved. This discovery led to the present invention.

本発明の特徴は、第一に、ジルコニアの部分安定化と粒
界相の形成のために、純粋に近い単斜晶のジルコニアニ
対して Y203. Sm203’。
The characteristics of the present invention are, firstly, that in order to partially stabilize zirconia and form a grain boundary phase, Y203. Sm203'.

Er2 03 + Ce2 03 、Yb2 03. 
Nd2 03.MgO。
Er2 03 + Ce2 03 , Yb2 03.
Nd2 03. MgO.

CaO等のジルコニア結晶安定化剤の1種又は2種以上
の含量でZrに対して安定化剤中に存在する金属元素の
1〜40原子当量%を加えてなるものである。そして、
第二の特徴は、焼結体の機械的性質を改善するためにS
iCを活性化し、且つ粒界相として窒素を含む不定比化
合物を形成するAIN 。
One or more zirconia crystal stabilizers such as CaO are added in an amount of 1 to 40 atomic equivalent percent of the metal element present in the stabilizer relative to Zr. and,
The second feature is that S is used to improve the mechanical properties of the sintered body.
AIN activates iC and forms a non-stoichiometric compound containing nitrogen as a grain boundary phase.

GeN、 BeN、 Be3 N2 、 Cr2 N、
 CrN、 BN。
GeN, BeN, Be3N2, Cr2N,
CrN, BN.

GaN、 Si3 N4 、 Nb3 N4 、 Ta
N、 NbN等の高温安定な窒化物の1種又は2種以上
を1〜20原子当量%加えてなるものである。
GaN, Si3N4, Nb3N4, Ta
It is made by adding 1 to 20 atomic equivalent percent of one or more high temperature stable nitrides such as N and NbN.

本発明のさらにもう一つの特徴は、(1)式のような分
解反応を阻止するためには従来、平衡論的に考えられて
いるようにSin、C○のような生成物ガスの分圧を作
用させることは必ずしも必要ではなく、Arのような比
較的分子量の大きい不活性ガス圧力のみでも分解反応の
制御が可能であるという知見によって、多種の化合物を
使用することが可能となった点である。
Yet another feature of the present invention is that in order to prevent the decomposition reaction shown in equation (1), the partial pressure of product gases such as Sin and C○ is The knowledge that it is not always necessary to act on decomposition reactions, and that the decomposition reaction can be controlled simply by the pressure of an inert gas with a relatively large molecular weight, such as Ar, has made it possible to use a wide variety of compounds. It is.

本発明の焼結体の製造に当っては、上記配合物を不活性
ガス雰囲気又は非酸化性ガス雰囲気下で1600〜21
00°C2望ましくは1700℃〜2000℃で焼成す
るが、(1)式の反応による多孔質化を防止して緻密化
した焼結体を得るためには、比較的原子量の大きい不活
性ガスが効果的であり、例えばtj eよりもNe−、
NeよりもAr、^rよりもKr、 Xeとその分解抑
制効果は大きく、これらの不活性ガスおよび又はN2ガ
スを用いて2〜100気圧の圧力で雰囲気加圧焼結する
ことが望ましい。更には、−酸化炭素ガスの分圧を同時
に作用せしめることによって、SiCの酸化分解を更に
効果的に制御することができる。不活性ガス圧について
も100気圧を上限としなくてもよいがそれ以上の効果
は大きく期待できない。このガス圧焼結は緻密な焼結体
を得るための重要な要件の一つである。
In producing the sintered body of the present invention, the above compound is heated to a temperature of 1,600 to 21
00°C2 The firing is preferably carried out at 1700°C to 2000°C, but in order to prevent porosity caused by the reaction in equation (1) and obtain a densified sintered body, an inert gas with a relatively large atomic weight is required. effective, e.g. Ne−, than tj e.
The effect of suppressing decomposition is greater with Ar than with Ne, with Kr than with ^r, and with Xe, and it is desirable to carry out pressure sintering in an atmosphere at a pressure of 2 to 100 atmospheres using these inert gases and/or N2 gas. Furthermore, by simultaneously applying the partial pressure of -carbon oxide gas, the oxidative decomposition of SiC can be controlled more effectively. The upper limit of the inert gas pressure may not be 100 atm, but greater effects cannot be expected. This gas pressure sintering is one of the important requirements for obtaining a dense sintered body.

ZrO2は上記配合物の中でもSiCによって還元され
ZrCを形成し易いが、ガス圧焼結によって、SiCの
酸化分解が抑制されZrO2の還元量が少なくコントロ
ールされる。
Among the above compounds, ZrO2 is easily reduced by SiC to form ZrC, but by gas pressure sintering, oxidative decomposition of SiC is suppressed and the amount of ZrO2 reduced is controlled to be small.

配合物中に炭素を添加することによって無加圧焼結条件
ではZrO2→ZrCは大きくなるが、Ar中20〜1
00気圧の加圧焼結条件でZrO2=ZrCの反応は大
きく抑制される。高靭性化の要件は準安定あるいは半安
定のジルコニアを多く残留することにあり、配合物中の
炭素量コントロールとガス圧焼結コントロールは本発明
の目的を満足させうるちのである。
By adding carbon to the compound, ZrO2 → ZrC increases under pressureless sintering conditions, but 20 to 1 in Ar
The reaction of ZrO2=ZrC is greatly suppressed under the pressure sintering conditions of 000 atmospheres. The requirement for high toughness is to retain a large amount of metastable or semistable zirconia, and controlling the amount of carbon in the compound and gas pressure sintering can satisfy the object of the present invention.

本発明の焼結体における高い靭性は、出発原料として単
斜晶ZrO2に対して40原子当量%程度の安定化剤を
添加したにも拘らず、焼結体におけるZrO2は正方晶
系であることによって得られるものである。
The high toughness of the sintered body of the present invention is due to the fact that the ZrO2 in the sintered body is tetragonal, despite the addition of about 40 atomic equivalents of stabilizer to monoclinic ZrO2 as a starting material. This is obtained by

本発明者等のZrO2安定化剤のみの別の実験では、Z
rO2に対する希土類酸化物の含有量が、y2 o3で
は5モル%、CeO2では3モル%、Sc203 、 
Sm203 、 Br203 、 Nd203 。
In another experiment of ours with ZrO2 stabilizer only, ZrO2
The content of rare earth oxides relative to rO2 is 5 mol% for y2 o3, 3 mol% for CeO2, Sc203,
Sm203, Br203, Nd203.

Tb2O3等では各々3〜7モル%で、焼結体に、X線
的に立方晶ZrO2の回折線が確認されている。
For Tb2O3 and the like, cubic ZrO2 diffraction lines have been confirmed in the sintered body at 3 to 7 mol % respectively.

即ち本発明による配合物の焼結体では、安定化剤はジル
コニアの安定化剤として機能する以外に窒素を含む粒界
の不定比化合物の形成に消費されており、また低温形の
単斜晶ZrO2も少ないか又は確認が困難な程度である
。研究上では未だ不解明 −な領域を多く含むものでは
あっても、本発明により高靭性で緻密な炭化珪素焼結体
が得られるに至ったものである。
That is, in the sintered body of the compound according to the present invention, the stabilizer, in addition to functioning as a stabilizer for zirconia, is consumed in the formation of non-stoichiometric compounds at the grain boundaries containing nitrogen, and also in the formation of non-stoichiometric compounds at the grain boundaries containing nitrogen. ZrO2 is also low or difficult to confirm. Although there are many areas that are still unclear in research, the present invention has made it possible to obtain a highly tough and dense silicon carbide sintered body.

以下に、本発明の焼結体に影響を与える各要因について
の実験例を示す。
Experimental examples regarding each factor that affects the sintered body of the present invention are shown below.

(実験例−1) 土量組成中のSiC100重量部に対して種々な重量比
率のZrO2配合物に関する実験の結果を表1に示した
。これからZrO2が5重量部以下では緻密化が進行せ
ず、80重量部を越えると破壊靭性値が劣化することが
判る。
(Experimental Example-1) Table 1 shows the results of experiments regarding ZrO2 blends at various weight ratios to 100 parts by weight of SiC in the soil composition. It can be seen from this that when ZrO2 is less than 5 parts by weight, densification does not proceed, and when it exceeds 80 parts by weight, the fracture toughness value deteriorates.

(実験例−2) 土量組成5t0100重量部に対してZrO245,5
重量部を固定しZr○2結晶安定化剤およびその添加量
を種々変えて実験した結果を表2,3に示した。
(Experimental example-2) ZrO245.5 for soil volume composition 5t0100 parts by weight
Tables 2 and 3 show the results of experiments in which the weight part was fixed and the Zr○2 crystal stabilizer and its addition amount were varied.

その結果、安定イビ剤の添加量はZrに対して安定化剤
として存在する金属元素が1〜40原子当量%の範囲が
適当であり、かつ全ての安定化剤の添加の効果が認めら
れた。
As a result, it was found that the appropriate amount of the stabilizing agent added was in the range of 1 to 40 atomic equivalent percent of the metal element present as a stabilizer relative to Zr, and the effects of adding all the stabilizers were observed. .

(実験例−3) 土量組成中SiC100重量部に対して種々な重量比率
のZrO2配合物に関する実験例の結果を表4に示した
。ZrO2が95重量部のN004についてはやや理論
密度比が低下し、強度および破壊靭性値が著しく低下し
た。ZrO2が3重量部のN058では2000℃まで
の温度で充分な焼結密度が得られず破壊靭性値も強度も
低下した。従って破壊靭性値の大きいのはZr025〜
80重量部の範囲にある。
(Experimental Example-3) Table 4 shows the results of experimental examples regarding ZrO2 blends at various weight ratios to 100 parts by weight of SiC in the soil composition. Regarding N004 containing 95 parts by weight of ZrO2, the theoretical density ratio decreased slightly, and the strength and fracture toughness values decreased significantly. With N058 containing 3 parts by weight of ZrO2, sufficient sintered density could not be obtained at temperatures up to 2000° C., and the fracture toughness and strength decreased. Therefore, Zr025~ has the highest fracture toughness value.
It is in the range of 80 parts by weight.

(実験例−4) SiC100重量部、ZrO245重量部、金属窒化物
^IN 10.2重量部に固定して希土類元素酸化物の
量比を変えて実験を行った。その結果を表5に示す。
(Experiment Example 4) An experiment was conducted by fixing 100 parts by weight of SiC, 245 parts by weight of ZrO, and 10.2 parts by weight of metal nitride ^IN, and changing the ratio of rare earth element oxides. The results are shown in Table 5.

Y203の場合、No、10とNo、−11の比較でZ
rに対するYの原子当量%が40%を越えても高価にな
るだけで性能向上につながらず、陽12と患13の比較
でZrに対するYの原子当量%が1%以下になると破壊
靭性値、強度等の機械的性質が著しく低下した。Ce2
O3についても、Zrに対するCeの原子当量%が40
%以上では効果が小さく、1%以下では同様に機械的性
質が著しく低下した。従って希土類元素については、Z
rに対する原子当量%は1〜40%が適量範囲であるこ
とが判る。
In the case of Y203, Z is compared between No. 10 and No. -11.
Even if the atomic equivalent % of Y to r exceeds 40%, it will only become expensive and will not lead to improved performance, and when the atomic equivalent % of Y to Zr is less than 1%, the fracture toughness value, Mechanical properties such as strength were significantly reduced. Ce2
Regarding O3, the atomic equivalent % of Ce to Zr is 40
% or more, the effect is small, and if it is 1% or less, the mechanical properties similarly deteriorate significantly. Therefore, for rare earth elements, Z
It can be seen that the appropriate range of atomic equivalent % to r is 1 to 40%.

(実験例−5) SiC100重量部、ZrO2’ 45]i量部、金属
窒化物AIN 10.2重量部で固定された配合物に種
々な希土類元素酸化物の1種または2種を添加した組成
物に関する実験例の結果を表6に示した。市販の炭化珪
素焼結体の破壊靭性値が17〜21 kgf/+u%で
あるのに対して、Sm2O3、Sc2 o3. Eu2
03 。
(Experimental Example-5) Composition in which one or two of various rare earth element oxides were added to a composition fixed with 100 parts by weight of SiC, 45]i parts by ZrO2', and 10.2 parts by weight of metal nitride AIN. Table 6 shows the results of the experimental examples regarding the products. While the fracture toughness value of commercially available silicon carbide sintered bodies is 17 to 21 kgf/+u%, Sm2O3, Sc2o3. Eu2
03.

Er203 、 Y203等がより高い破壊靭性値を示
した。
Er203, Y203, etc. showed higher fracture toughness values.

(実験例−6) 表7に5iC100重量部、ZrO235重量部および
Y20310M量部(Zrに対してY31原子当量%)
を固定し金属窒化物および添加量を変えた場合の実験結
果を表7に示した。焼結条件は実施例2と同様である。
(Experimental Example-6) Table 7 shows 100 parts by weight of 5iC, 35 parts by weight of ZrO, and 10 parts by weight of Y20 (Y31 atomic equivalent % relative to Zr).
Table 7 shows the experimental results when the metal nitride and the amount added were varied while the metal nitride was fixed. The sintering conditions are the same as in Example 2.

実験No、 29〜No、33は金属窒化物としてAI
Nを用い土量組成中のStに対する^lの原子当量%を
0.7〜25%まで変えた結果でこれからSiに対する
Alの原子当量%が1.0%以下のときは緻密化力j不
充分であり、20%以上のときは緻密化は進行するが機
械的性質が劣化することがわかる。
Experiments No. 29 to No. 33 used AI as a metal nitride.
As a result of changing the atomic equivalent % of ^l to St in the soil volume composition from 0.7 to 25% using N, it can be seen that when the atomic equivalent % of Al to Si is 1.0% or less, the densification power j is It can be seen that when it is sufficient and 20% or more, densification progresses but mechanical properties deteriorate.

実験No、34−No、38は、金属窒化物としてGe
Nを用い、Stに対するGeの原子当量%を0.5〜2
2%まで変えた場合の結果を示し、AINと比較すると
理論密度比および機械的性質はやや劣るが、はぼ同様の
挙動を示すことがわかった。
Experiments No. 34-No. 38 used Ge as a metal nitride.
Using N, the atomic equivalent % of Ge to St is 0.5 to 2.
The results are shown when the change is made up to 2%, and it was found that although the theoretical density ratio and mechanical properties are slightly inferior compared to AIN, it exhibits similar behavior to AIN.

(実験例−7) SiC100重量部、ZrO233重量部、希土類元素
酸化物をY2038.5重量部に固定して金属窒化物お
よび添加量を変えて実験した結果を表8に示した。その
結果、全ての金属窒化物について緻密化が見られ特にB
Hについてその効果が顕著であった。
(Experimental Example-7) Table 8 shows the results of an experiment in which 100 parts by weight of SiC, 33 parts by weight of ZrO, and the rare earth element oxide were fixed at 38.5 parts by weight of Y2, and the metal nitride and the amount added were changed. As a result, densification was observed for all metal nitrides, especially B
The effect was remarkable for H.

(実験例−8) 実施例2と同様の成形体をAr:COのガス体積比80
:20の混合ガスを用いて30気圧1800℃の条件で
雰囲気加圧焼結を行ったところ、理論密度比95%の焼
結体が得られた。
(Experimental Example-8) The same molded body as in Example 2 was heated to an Ar:CO gas volume ratio of 80.
When pressurized sintering was performed at 30 atmospheres and 1800° C. using a mixed gas of:

(実験例−9) 実施例2の非残炭性有機バインダーのかわりに残炭率6
0iv10のフェノール樹脂をバインダーとして用い他
は同一条件で得られた成形体を静圧1.5および25気
圧で1800℃の雰囲気加圧焼結を行ったところ、得ら
れた焼結体は静圧1.5では理論密度比62%、重量変
化−25匈10.Ar圧25気圧では理論密度比95%
、重量変化−4!10であった。
(Experimental Example-9) Carbon residual ratio 6 was used instead of the non-carbon residual organic binder of Example 2.
A molded body obtained under the same conditions using a 0iv10 phenolic resin as a binder was subjected to atmospheric pressure sintering at 1800°C under static pressures of 1.5 and 25 atm. 1.5, the theoretical density ratio is 62%, the weight change is -25 匈10. Theoretical density ratio is 95% at Ar pressure of 25 atm.
, the weight change was -4!10.

(実験例−10) 表9にZrO2安定化剤としてMgOおよびCaOを用
いた実験の条件と結果を示す。これからMgOおよびC
aOを安定化剤として用い°た場合緻密な焼結体は得ら
れるが、機械的強度が比較的低いことがわかる。この理
由は明らかではないが、粒界相の組成が影響していると
思われる。また表記していないがHgOおよびCaO添
加の場合には1400℃の熱間曲げ強度が希土類酸化添
加の場合に比較して低下した。
(Experimental Example-10) Table 9 shows the conditions and results of an experiment using MgO and CaO as ZrO2 stabilizers. From now on MgO and C
It can be seen that when aO is used as a stabilizer, a dense sintered body can be obtained, but the mechanical strength is relatively low. Although the reason for this is not clear, it is thought that the composition of the grain boundary phase has an effect. Although not shown, the hot bending strength at 1400° C. was lower in the case of addition of HgO and CaO than in the case of addition of rare earth oxidation.

〔実施例〕〔Example〕

以下、本発明の焼結体の例を比較例とともに挙げて、そ
の効果を説明する。
Hereinafter, examples of the sintered body of the present invention will be given along with comparative examples, and the effects thereof will be explained.

実施例l SiCとして純度99%以上平均粒径0.3μの市販α
晶SiC粉末を用い、ZrO2として純度99%以上平
均粒径0.2μの市販単斜晶ZrO2を用いた。
Example 1 Commercially available α as SiC with a purity of 99% or more and an average particle size of 0.3μ
Commercially available monoclinic ZrO2 with a purity of 99% or more and an average particle size of 0.2 μm was used as the ZrO2.

SiC200g、 ZrO290g、およびY2031
9gを非残炭性有機バインダーとともにエタノール中で
ボール・ミル混合し、次いで乾燥し、得られた粉末を2
ton/C4の圧力でラバー・プレスした。このように
して得られた成形体を50気圧の計器囲気下で1800
゛cまで加熱し雰囲気加圧焼結を行った。
SiC200g, ZrO290g, and Y2031
9 g was mixed in a ball mill in ethanol with a non-charcoal organic binder, then dried, and the resulting powder was mixed with 2
Rubber pressing was performed at a pressure of ton/C4. The thus obtained molded body was heated to 1800 m
The material was heated to 100°C and pressure sintered in an atmosphere.

その結果、理論密度の95%の焼結体が得られ焼結前後
の重量変化は一4w10であり、破壊靭性値21 kg
f/龍へ、3点曲げ強度は72kg / va 2であ
った。
As a result, a sintered body with 95% of the theoretical density was obtained, the weight change before and after sintering was -4w10, and the fracture toughness was 21 kg.
f/Ryu, the three-point bending strength was 72 kg/va 2.

実施例2 SiCとして純度99%以上平均粒径0.3μの市販α
晶SiCを用い、ZrO2として純度99%以上平均粒
径0.2μの市販単斜晶ZrO2を用いた。5iC20
0g、Zr0z 90g、AlN9.3gおよびy20
3 ]、9gを非残炭性有機バインダーとともにエタノ
ール中でポール・ミル混合、乾燥し、2 ton / 
cJの圧力でラバー・プレスした。得られた成形体を5
0気圧の計器囲気中で1800℃まで加熱し雰囲気加圧
焼結を行った。
Example 2 Commercially available α with a purity of 99% or more and an average particle size of 0.3μ as SiC
Commercially available monoclinic ZrO2 with a purity of 99% or more and an average particle size of 0.2 μm was used as ZrO2. 5iC20
0g, Zr0z 90g, AlN9.3g and y20
3], 9 g was mixed with a non-charcoal organic binder in a Pall mill in ethanol, dried, and 2 tons/
Rubber pressed with a pressure of cJ. The obtained molded body was
Atmospheric pressure sintering was performed by heating to 1800° C. in an instrument environment at 0 atm.

その結果、理論密度比94%の焼結体が得られ焼結前後
の重量変化は一4w10であり、破壊靭性値25 kg
f/ yn%、3点曲げ強度は80kg / m* ”
であった。X線解析で正方晶ZrO2とαSiCが土量
組成でありZrCは認められなかった。ZrO2のピー
クは正規の位置より高角側にシフトしていた。
As a result, a sintered body with a theoretical density ratio of 94% was obtained, the weight change before and after sintering was -4w10, and the fracture toughness was 25 kg.
f/yn%, 3-point bending strength is 80kg/m*”
Met. X-ray analysis revealed that the volume composition was tetragonal ZrO2 and αSiC, and ZrC was not observed. The peak of ZrO2 was shifted to the higher angle side from the normal position.

比較例1 実施例2と同様の成形体を1.5気圧のAr雰囲気下で
1800℃まで加熱したところ、得られた焼結体の理論
密度比は73%で焼結前後の重量変化は一20w10で
あった。X線解析によりZrO2のピークは認められず
ZrCの極めて大きいピークが認められた。
Comparative Example 1 A molded body similar to Example 2 was heated to 1800°C in an Ar atmosphere of 1.5 atm. The theoretical density ratio of the obtained sintered body was 73%, and the weight change before and after sintering was the same. It was 20w10. X-ray analysis revealed that no ZrO2 peak was observed, but an extremely large ZrC peak was observed.

比較例−2 実施例2と同様の成形体を25および100気圧のAr
雰囲気下で1800℃まで加熱したところ、前者では理
論密度比90%、破壊靭性値22 kgf/ tm%、
3点曲げ強度は71.3kg/H2、後者では理論密度
比96.5%、破壊靭性値28 kgf/1%、3点曲
げ強度は84.4kg/n2の焼結体が各々得られた。
Comparative Example 2 The same molded body as in Example 2 was heated in Ar at 25 and 100 atm.
When heated to 1800℃ in an atmosphere, the former had a theoretical density ratio of 90%, a fracture toughness value of 22 kgf/tm%,
A sintered body with a 3-point bending strength of 71.3 kg/H2, a theoretical density ratio of 96.5%, a fracture toughness of 28 kgf/1%, and a 3-point bending strength of 84.4 kg/N2 was obtained.

実施例−2、比較例−1及び比較例−2より雰囲気加圧
焼結を行わないと緻密な焼結体は得られず、一方100
気圧以上の雰囲気加圧を行っても大きな効果は得られな
いことがわかる。
From Example-2, Comparative Example-1, and Comparative Example-2, a dense sintered body cannot be obtained unless atmosphere pressure sintering is performed;
It can be seen that even if the atmosphere is pressurized to a level higher than atmospheric pressure, no significant effect can be obtained.

比較例−3 実施例2と同様の成形体を50気圧の計器囲気下で16
00℃および2100℃で加熱したところ、得られた焼
結体は前者では理論密度比65%であり、後者では78
%であった。比較例3から1600℃および2100℃
で雰囲気加圧焼結しても緻密な焼結体は得られないこと
がわかる。
Comparative Example-3 A molded product similar to that of Example 2 was heated under an instrument atmosphere of 50 atmospheres for 16 hours.
When heated at 00°C and 2100°C, the obtained sintered body had a theoretical density ratio of 65% in the former case, and 78% in the latter case.
%Met. 1600°C and 2100°C from Comparative Example 3
It can be seen that a dense sintered body cannot be obtained even if pressure sintered in an atmosphere.

実施例−3 SiCとして純度99%以上、平均粒径0.3μの市販
β晶SiCを用い、ZrO2として純度99%以上平均
粒径0.2μの市販単斜晶ZrO2を用いた。
Example 3 Commercially available β-crystalline SiC with a purity of 99% or more and an average particle size of 0.3μ was used as the SiC, and commercially available monoclinic ZrO2 with a purity of 99% or more and an average grain size of 0.2μ was used as the ZrO2.

5iC200g、 ZrO290gをバインダーととも
に湿式混合、乾燥し、2ton/cJMの圧力でラバー
プレスした。得られた成形体を50気圧のAr雰囲気中
で1800℃まで加熱し雰囲気加圧焼結を行った。
200 g of 5iC and 290 g of ZrO were wet mixed together with a binder, dried, and rubber pressed at a pressure of 2 ton/cJM. The obtained compact was heated to 1800° C. in an Ar atmosphere of 50 atm to perform atmospheric pressure sintering.

その結果、理論密度比93%の焼結体が得られ、破壊靭
性値20kgf/m%、3点曲げ強度は70 kg /
N2であった。
As a result, a sintered body with a theoretical density ratio of 93% was obtained, a fracture toughness value of 20 kgf/m%, and a three-point bending strength of 70 kg/m%.
It was N2.

実施例−4 実施例3の配合にAlN9.3 gを加えた配合をバイ
ンダーとともに湿式混合、乾燥し外は実施例3と同様に
して成形、焼結した。得られた焼結体は理論密度比95
%であり、破壊靭性値は23kgf/+n’i、3点曲
げ強度は75 kg / m++ 2であった。
Example 4 A mixture obtained by adding 9.3 g of AlN to the formulation of Example 3 was wet mixed with a binder, dried, and otherwise molded and sintered in the same manner as in Example 3. The obtained sintered body has a theoretical density ratio of 95
%, the fracture toughness value was 23 kgf/+n'i, and the 3-point bending strength was 75 kg/m++2.

実施例3と4から本発明はSiCの結晶型がβ晶であっ
ても同様の効果を奏することがわかる。
It can be seen from Examples 3 and 4 that the present invention provides similar effects even when the crystal type of SiC is β crystal.

Claims (1)

【特許請求の範囲】 1、 ジルコニアと′ジルコニア安定化剤とを含む炭化
珪素粉末の成形体を雰囲気焼結してなることを特徴とす
る高靭性焼結体。 2、 ジルコニアとジルコニア安定化剤と高温安定な金
属窒化物とを含む炭化珪素粉末の成形体を雰囲気焼結し
てなることを特徴とする高靭性焼結体。 3、 ジルコニアが炭化珪素100重量部に対して5〜
80重量部含有されてなることを特徴とする特許請求範
囲第1項または第2項に記載の高靭性焼結体。 4、 ジルコニアの安定化剤が、ジルコニア中のジルコ
ニウムに対して1〜40原子当量%の金属元素を含有さ
れてなることを特徴とする特許請求範囲第1項または第
2項に記載の高靭性焼結体。 5、 ジルコニアの安定化剤が、酸化イツトリウム、酸
化セリウム、酸化スカンジウム、酸化ランタン、酸化ネ
オジム、酸化サマリウム、酸化ユーロピウム、酸化エル
ビウム、酸化ツリウム、酸化インテルビウム、酸化ルテ
チウム、酸化プラセオジム、酸化プロメチウム、酸化ガ
ドリニウム、酸化テルビウム、酸化ジスプロシウム、酸
化ホルミウム、酸化マグネシウム、酸化カルシウム、硼
化サマリウム、硬化ランタンの群のうち1あるいは2種
以上の混合物であることを特徴とする特許請求範囲第1
項または第2項に記載の高靭性焼結体。 6、金属窒化物′中に存在する金属元素量が成形体中の
珪素に対して1〜20原子当量%であることを特徴とす
る特許請求範囲第1項または第2項に記載の高靭性焼結
体。 7、金属窒化物が窒化アルミニウム、窒化硼素、窒化ゲ
ルマニウム、窒化ベリリウム、窒化クロム、窒化ガリウ
ム、窒化珪素、窒化ニオブ、窒化タンタル、窒化ハフニ
ウムからなる群のうち1あるいは2種以上の混合物であ
ることを特徴とする特許請求範囲第1項または第2項に
記載の高靭性焼結体。 8、雰囲気焼結が、非酸化性あるいは不活性な加圧雰囲
気下の焼結であることを特徴とする特許請求範囲第1項
または第2項に記載の高靭性焼結体。 9、加圧雰囲気の圧力が2〜100気圧であることを特
徴とする特許請求範囲第8項に記載の高靭性焼結体。 10、雰囲気焼結が一酸化炭素ガスを含む雰囲気下での
焼結であることを特徴とする特許請求範囲第1項または
第2項に記載の高靭性焼結体。 11、雰囲気焼結が1600℃〜2100°C1望まし
くは1700℃〜2000℃での焼結であることを特徴
とする特許請求範囲第1項または第2項に記載の高靭性
焼結体。
[Claims] 1. A high-toughness sintered body, characterized in that it is obtained by atmospheric sintering of a molded body of silicon carbide powder containing zirconia and a zirconia stabilizer. 2. A high-toughness sintered body characterized by being formed by atmospheric sintering of a molded body of silicon carbide powder containing zirconia, a zirconia stabilizer, and a high-temperature stable metal nitride. 3. Zirconia is contained in an amount of 5 to 100 parts by weight of silicon carbide.
The high toughness sintered body according to claim 1 or 2, characterized in that it contains 80 parts by weight. 4. High toughness according to claim 1 or 2, wherein the zirconia stabilizer contains a metal element in an amount of 1 to 40 atomic equivalents relative to zirconium in the zirconia. Sintered body. 5. Zirconia stabilizers include yttrium oxide, cerium oxide, scandium oxide, lanthanum oxide, neodymium oxide, samarium oxide, europium oxide, erbium oxide, thulium oxide, interbium oxide, lutetium oxide, praseodymium oxide, promethium oxide, and Claim 1, characterized in that it is one or a mixture of two or more of the group consisting of gadolinium, terbium oxide, dysprosium oxide, holmium oxide, magnesium oxide, calcium oxide, samarium boride, and hardened lanthanum.
The high toughness sintered body according to item 1 or 2. 6. High toughness according to claim 1 or 2, characterized in that the amount of metal elements present in the metal nitride' is 1 to 20 atomic equivalent % with respect to silicon in the molded article Sintered body. 7. The metal nitride is one or a mixture of two or more of the group consisting of aluminum nitride, boron nitride, germanium nitride, beryllium nitride, chromium nitride, gallium nitride, silicon nitride, niobium nitride, tantalum nitride, and hafnium nitride. A high toughness sintered body according to claim 1 or 2, characterized by: 8. The high-toughness sintered body according to claim 1 or 2, wherein the atmosphere sintering is sintering in a non-oxidizing or inert pressurized atmosphere. 9. The high toughness sintered body according to claim 8, wherein the pressure of the pressurized atmosphere is 2 to 100 atmospheres. 10. The high-toughness sintered body according to claim 1 or 2, wherein the atmosphere sintering is performed in an atmosphere containing carbon monoxide gas. 11. The high toughness sintered body according to claim 1 or 2, wherein the atmosphere sintering is carried out at 1600°C to 2100°C, preferably 1700°C to 2000°C.
JP59002426A 1984-01-09 1984-01-09 High tenacity sintered body Pending JPS60145957A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59002426A JPS60145957A (en) 1984-01-09 1984-01-09 High tenacity sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59002426A JPS60145957A (en) 1984-01-09 1984-01-09 High tenacity sintered body

Publications (1)

Publication Number Publication Date
JPS60145957A true JPS60145957A (en) 1985-08-01

Family

ID=11528925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59002426A Pending JPS60145957A (en) 1984-01-09 1984-01-09 High tenacity sintered body

Country Status (1)

Country Link
JP (1) JPS60145957A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988000578A1 (en) * 1986-07-10 1988-01-28 Commonwealth Scientific And Industrial Research Or Method of forming a ceramic product
EP0294844A1 (en) * 1987-06-11 1988-12-14 Hitachi Metals, Ltd. High toughness ZrO2 sintered body and method of producing same
JPH0365560A (en) * 1989-07-31 1991-03-20 Kyocera Corp Colored zirconia sintered compact
CN104446486A (en) * 2014-10-30 2015-03-25 孙学贤 Thermal shock resistant ceramic tube mold and preparation method thereof
CN106380224A (en) * 2016-09-19 2017-02-08 南京工业大学 Preparation method of silicon carbide porous ceramic for high-temperature flue gas filtration

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988000578A1 (en) * 1986-07-10 1988-01-28 Commonwealth Scientific And Industrial Research Or Method of forming a ceramic product
EP0294844A1 (en) * 1987-06-11 1988-12-14 Hitachi Metals, Ltd. High toughness ZrO2 sintered body and method of producing same
US5180696A (en) * 1987-06-11 1993-01-19 Hitachi Metals, Ltd. High-toughness zro2 sintered body and method of producing same
JPH0365560A (en) * 1989-07-31 1991-03-20 Kyocera Corp Colored zirconia sintered compact
CN104446486A (en) * 2014-10-30 2015-03-25 孙学贤 Thermal shock resistant ceramic tube mold and preparation method thereof
CN106380224A (en) * 2016-09-19 2017-02-08 南京工业大学 Preparation method of silicon carbide porous ceramic for high-temperature flue gas filtration

Similar Documents

Publication Publication Date Title
US5200374A (en) Sialon-based sintered body and process for producing same
KR0151367B1 (en) Boron nitride containing material and method thereof
US5030597A (en) Process for producing ceramic composites
KR0184846B1 (en) Sintered moulding and its use
US5830816A (en) Sintered molding
EP1414580B1 (en) Multication doped alpha-beta sialon ceramics
JP2829229B2 (en) Silicon nitride ceramic sintered body
US5618768A (en) Sintered body of silicon nitride and composite sintered body of silicon nitride and silicon carbide
EP0493802A1 (en) Silicon nitride-silicon carbide composite sintered material
JPS60145957A (en) High tenacity sintered body
EP0676380B1 (en) Composite powders of silicon nitride and silicon carbide
US5668069A (en) Cutting tool composed of silicon nitride
AU599243B2 (en) Ceramic material
JPS6316358B2 (en)
US5527746A (en) Method for manufacturing an aluminum oxide sintered body
JPS6346031B2 (en)
JPH0254297B2 (en)
JP2849055B2 (en) Sialon-based sintered body and coated sintered body
JPH0535697B2 (en)
JP3044290B2 (en) Method for producing particle-dispersed composite ceramics
JPH0694390B2 (en) Silicon nitride sintered body
JPS60145960A (en) Anticorrosive ceramic sintered body
EP0219885A2 (en) Sintered silicon nitride having improved density and mechanical strength and process for producing the same
JPH08337476A (en) Silicon nitride-silicon carbide combined sintered compact and its production
JP2592267B2 (en) Sialon reinforced with silicon carbide whiskers